4.6 Montel’s Theorem

Let X be a topological space. We denote by $\mathcal{C}(X)$ the set of complex valued continuous functions on X.

Definition 4.26. A topological space is called *separable* iff it contains a countable dense subset.

Definition 4.27. Let X be a topological space, $F \subseteq \mathcal{C}(X)$. F is called *pointwise bounded* iff for each $a \in X$ there is a constant $M > 0$ such that $|f(a)| < M$ for all $f \in F$. F is called *locally bounded* iff for each $a \in X$ there is a constant $M > 0$ and a neighborhood $U \subseteq X$ of a such that $|f(x)| < M$ for all $x \in U$ and for all $f \in F$.

Definition 4.28. Let X be a topological space. A subset $F \subseteq \mathcal{C}(X)$ is called *equicontinuous at $a \in X$* iff for every $\epsilon > 0$ there exists a neighborhood $U \subseteq X$ of a such that

$$|f(x) - f(y)| < \epsilon \quad \text{for all } x, y \in U.$$

A subset $F \subseteq \mathcal{C}(X)$ is called *locally equicontinuous* iff F is equicontinuous at a for all $a \in X$.

Definition 4.29. Let X be a topological space. A subset $F \subseteq \mathcal{C}(X)$ is called *normal* iff every sequence of elements of F has a subsequence that converges uniformly on every compact subset of X.

Theorem 4.30 (Arzela-Ascoli). Let X be a separable topological space and $F \subseteq \mathcal{C}(X)$. Suppose that F is pointwise bounded and locally equicontinuous. Then, F is normal.

Proof. Let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence of elements of F. We have to show that there exists a subsequence that converges uniformly on any compact subset of X. We encode subsequences of a sequence through infinite subsets of \mathbb{N} in the obvious way. Let $\{x_k\}_{k \in \mathbb{N}}$ be a sequence of points which is dense in X. Set $N_0 := \mathbb{N}$ and construct iteratively $N_k \subseteq N_{k-1}$ as follows. The sequence $\{f_n(x_k)\}_{n \in N_{k-1}}$ is bounded by the assumption of pointwise boundedness of F. Thus there exists a convergent subsequence given by an infinite subset $N_k \subseteq N_{k-1}$. Proceeding in this way we obtain a sequence of decreasing infinite subsets $N_0 \supset N_1 \supset N_2 \supset \ldots$. Now consider the sequence $\{n_l\}_{l \in \mathbb{N}}$ of strictly increasing natural numbers n_l obtained as follows: n_l is the lth element of the set N_l. It is then clear that the sequence $\{f_{n_l}(x_k)\}_{l \in \mathbb{N}}$ converges for every $k \in \mathbb{N}$.
Now let $K \subseteq X$ be compact and choose $\epsilon > 0$. Since F is locally equicontinuous, we find for each $a \in K$ an open neighborhood $U_a \subseteq X$ such that $|f(x) - f(y)| < \epsilon$ for all $f \in F$ if $x, y \in U_a$. Since K is compact there are finitely many points $a_1, \ldots, a_m \in K$ such that U_{a_1}, \ldots, U_{a_m} cover K. Since $\{x_k\}_{k \in \mathbb{N}}$ is dense in X there exists for each $j \in 1, \ldots, m$ an index k_j such that $x_{k_j} \in U_{a_j}$. Now, $\{f_{n_l}(x_{k_j})\}_{l \in \mathbb{N}}$ converges and is Cauchy for all $j \in 1, \ldots, m$. In particular, by taking a maximum if necessary we can find $l_0 \in \mathbb{N}$ such that $|f_{n_l}(x_{k_j}) - f_{n_l}(x_{k_j})| < \epsilon$ for all $i, l \geq l_0$ and for all $j \in 1, \ldots, m$.

Now fix $p \in K$. Then, there is $j \in 1, \ldots, m$ such that $p \in U_{a_j}$. For $i, l \geq l_0$ we thus obtain the estimate

$$|f_{n_i}(p) - f_{n_l}(p)| \leq |f_{n_i}(p) - f_{n_l}(x_{k_j})| + |f_{n_l}(x_{k_j}) - f_{n_l}(x_{k_j})| + |f_{n_l}(x_{k_j}) - f_{n_l}(p)| < 3\epsilon.$$

In particular, this implies that $\{f_{n_l}\}_{l \in \mathbb{N}}$ converges uniformly on K. \hfill \Box

Theorem 4.31 (Montel). Let $D \subseteq \mathbb{C}$ be a region and $F \subseteq \mathcal{O}(D)$. Suppose that F is locally bounded. Then, F is normal.

Proof. We show that F is locally equicontinuous. The result follows then from the Arzela-Ascoli Theorem 4.30. Let $z_0 \in D$ and choose $\epsilon > 0$. Since F is locally bounded, there exists a constant $M > 0$ and $r > 0$ with $B_{2r}(z_0) \subseteq D$ and such that $|f(z)| < M$ for all $z \in B_{2r}(z_0)$ and all $f \in F$. The Cauchy Integral Formula (Theorem 2.20) yields for all $f \in F$ and $z, w \in B_{2r}(z_0)$

$$f(z) - f(w) = \frac{1}{2\pi i} \int_{\partial B_{2r}(z_0)} \left(\frac{f(\xi)}{\xi - z} - \frac{f(\xi)}{\xi - w} \right) d\xi$$

$$= \frac{z - w}{2\pi i} \int_{\partial B_{2r}(z_0)} \frac{f(\xi)}{(\xi - z)(\xi - w)} d\xi.$$

If we restrict to $z, w \in B_r(z_0)$ we have the estimate $|(|\xi - z)(\xi - w)| > r^2$ for all $\xi \in \partial B_{2r}(z_0)$. Combining this with the standard integral estimate (Proposition 2.7) we obtain,

$$|f(z) - f(w)| \leq |z - w| \frac{2\|f\|_{\partial B_{2r}(z_0)}}{r} < |z - w| \frac{2M}{r}.$$

Choosing $\delta := \min \{r; \frac{r}{4M}\}$ yields the estimate

$$|f(z) - f(w)| < \epsilon \quad \forall z, w \in B_\delta(z_0),$$

showing local equicontinuity. This completes the proof. \hfill \Box
Exercise 58. Let X be a metric space and $F \subseteq C(X)$. Suppose that F is normal. Show that F is locally bounded.

Exercise 59 (Vitali’s Theorem). Let $D \subseteq \mathbb{C}$ be a region and $\{f_n\}_{n \in \mathbb{N}}$ a locally bounded sequence of holomorphic functions on D. Let $f \in \mathcal{O}(D)$ and $A := \{z \in D : \lim_{n \to \infty} f_n(z) \text{ exists and } f(z) = \lim_{n \to \infty} f_n(z)\}$. Suppose that A has a limit point in D. Show that $f_n \to f$ uniformly on compact subsets of D for $n \to \infty$.

4.7 The Riemann Mapping Theorem

Proposition 4.32. Let $D \subseteq \mathbb{C}$ be a region and $\{f_n\}_{n \in \mathbb{N}}$ a sequence of holomorphic functions $f_n \in \mathcal{O}(D)$ that converges uniformly on any compact subset of D to f. Then, $f \in \mathcal{O}(D)$ and the sequence $\{f_n^{(k)}\}_{n \in \mathbb{N}}$ converges uniformly on any compact subset of D to $f^{(k)}$ for all $k \in \mathbb{N}$.

Proof. Let $z_0 \in D$ and set $r > 0$ such that $B_r(z_0) \subseteq D$. By Corollary 2.15 f_n is integrable in $B_r(z_0)$. For any closed path γ in $B_r(z_0)$ we thus have

$$\int_{\gamma} f = \int_{\gamma} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_{\gamma} f_n = 0,$$

where we have used Proposition 2.8 to interchange the integral with the limit. Thus, f is integrable in $B_r(z_0)$ and hence holomorphic there by Corollary 2.23. Since the choice of z_0 was arbitrary we find that f is holomorphic in all of D.

Fix $k \in \mathbb{N}$ and consider $z_0 \in D$. Choose $r > 0$ such that $B_{2r}(z_0) \subseteq D$. Now for each $z \in B_r(z_0)$ we have the Cauchy estimate (Proposition 2.31),

$$|f_n^{(k)}(z) - f^{(k)}(z)| \leq k! \frac{1}{r^k} \|f_n - f\|_{\partial B_r(z)} \leq k! \frac{1}{r^k} \|f_n - f\|_{B_{2r}(z_0)}.$$

For $\epsilon > 0$ there is by uniform convergence of $\{f_n\}_{n \in \mathbb{N}}$ an $n_0 \in \mathbb{N}$ such that $|f_n(z) - f(z)| < \epsilon n^k/k!$ for all $n \geq n_0$ and all $z \in B_{2r}(z_0)$. Hence, $|f_n^{(k)}(z) - f^{(k)}(z)| < \epsilon$ for all $n \geq n_0$ and all $z \in B_r(z_0)$. That is, $\{f_n^{(k)}\}_{n \in \mathbb{N}}$ converges to $f^{(k)}$ uniformly on some neighborhood of every point of D. To obtain uniform convergence on a compact subset $K \subseteq D$ it is merely necessary to cover K with finitely many such neighborhoods.

Theorem 4.33 (Hurwitz). Let $D \subseteq \mathbb{C}$ be a region and $\{f_n\}_{n \in \mathbb{N}}$ a sequence of functions $f_n \in \mathcal{O}(D)$ converging uniformly in every compact subset of D to f. Let $a \in D$ and $r > 0$ such that $B_r(a) \subseteq D$. Suppose that $f(z) \neq 0$ for all $z \in \partial B_r(a)$. Then, there exists $n_0 \in \mathbb{N}$ such that f and f_n have the same number of zeros in $B_r(a)$ for all $n \geq n_0$.

Proof. Set \(\delta := \inf\{|f(z)| : z \in \partial B_r(a)\} \). By the assumptions \(\delta > 0 \) and \(\{f_n\}_{n \in \mathbb{N}} \) converges uniformly on \(\partial B_r(a) \). Thus, there exists \(n_0 \in \mathbb{N} \) such that \(|f_n(z) - f(z)| < \delta/2 \) for all \(n \geq n_0 \) and all \(z \in \partial B_r(a) \). But this implies,

\[
|f(z) - f_n(z)| < \frac{\delta}{2} < |f(z)| \leq |f(z)| + |f_n(z)| \quad \forall n \geq n_0, \forall z \in \partial B_r(a).
\]

Applying Rouché’s Theorem 3.21 yields the desired result. \(\Box \)

Proposition 4.34. Let \(D \subseteq \mathbb{C} \) be a region and \(\{f_n\}_{n \in \mathbb{N}} \) a sequence of functions \(f_n \in \mathcal{O}(D) \) converging uniformly in every compact subset of \(D \) to \(f \). Suppose that for all \(n \in \mathbb{N} \), \(f_n \) has no zeros. Then, either \(f = 0 \) or \(f \) has no zeros.

Proof. Exercise. \(\Box \)

Proposition 4.35. Let \(D \subseteq \mathbb{C} \) be a region and \(\{f_n\}_{n \in \mathbb{N}} \) a sequence of injective functions \(f_n \in \mathcal{O}(D) \) converging uniformly in every compact subset of \(D \) to \(f \). Then, either \(f \) is constant or \(f \) is injective.

Proof. Suppose that \(f \) is not constant. Let \(a \in D \) and set \(p := f(a) \) and \(p_n := f_n(a) \) for all \(n \in \mathbb{N} \). By injectivity \(f_n - p_n \) never vanishes on \(D \setminus \{a\} \). On the other hand, the sequence \(\{f_n - p_n\}_{n \in \mathbb{N}} \) converges uniformly in any compact subset of \(D \) to \(f - p \). Since \(f - p \neq 0 \), Proposition 4.34 implies that \(f - p \) has no zeros in \(D \setminus \{a\} \). In other words, \(f \) does not take the value \(p \) at any point of \(D \setminus \{a\} \). Since we chose \(a \) arbitrarily it follows that \(f \) is injective. \(\Box \)

Theorem 4.36 (Riemann Mapping Theorem). Every homologically simply connected region which is different from \(\mathbb{C} \) is conformally equivalent to \(\mathbb{D} \).

Proof. Let \(D \) be the region in question. Fix \(z_0 \in D \) arbitrarily. Let \(F \subseteq \mathcal{O}(D) \) be the set of holomorphic functions \(f \in \mathcal{O}(D) \) which are injective, whose image is contained in \(\mathbb{D} \) and such that \(f(z_0) = 0 \). Our strategy is to find an element of \(F \) which is a biholomorphism \(D \to \mathbb{D} \).

First we show that \(F \) is not empty. By assumption \(D \neq \mathbb{C} \), so we can choose \(a \in \mathbb{C} \setminus D \). The function \(f(z) := z - a \) is holomorphic and zero-free in \(D \), so according to Theorem 4.25 there is a holomorphic square root \(g \in \mathcal{O}(D) \) with \(g^2 = f \). If \(g(z_1) = g(z_2) \) then \((g(z_1))^2 = (g(z_2))^2 \) and so \(z_1 = z_2 \) since \(f \) is injective. Therefore also \(g \) is injective. Moreover, if \(g(z_1) = -g(z_2) \) we can draw the same conclusion \(z_1 = z_2 \), but this time we get a contradiction, since \(g \) is zero-free. Thus, if \(z \in \mathbb{C} \) is in the image of \(g \), then \(-z\) cannot be in the image of \(g \). Now since \(g \) is not constant the
Open Mapping Theorem 2.40 ensures that \(g(D) \) is open. In particular there exists \(w \in \mathbb{C} \) and \(r > 0 \) such that \(\overline{B_r(w)} \subseteq g(D) \). But applying the previous statement to all elements of \(B_r(w) \) we obtain \(\overline{B_r(-w)} \cap g(D) = \emptyset \). It is now easy to see that the function \(h \in \mathcal{O}(D) \) defined by \(h(z) := r/(g(z) + w) \) is also injective and satisfies \(h(D) \subseteq \mathbb{D} \). Setting \(v := h(z_0) \), we have \(D_v \circ h \in F \) since \(D_v \in \text{Aut}(\mathbb{D}) \) and \(D_v(v) = 0 \).

Since \(D \) is open, there exists \(r > 0 \) such that \(\overline{B_r(z_0)} \subset D \). Using the Cauchy estimate (Proposition 2.31) we find the bound \(|f'(z_0)| < 1/r \) for all \(f \in F \). This implies that

\[
M := \sup\{|f'(z_0)| : f \in F\}
\]

is well defined. On the other hand we will show that if \(f(D) \neq \mathbb{D} \) for some \(f \in F \), then there exists \(g \in F \) such that \(|g'(z_0)| > |f'(z_0)| \). This implies that \(h \in F \) is a biholomorphism \(D \rightarrow \mathbb{D} \) iff \(|h'(z_0)| = M \). We will then show that such an \(h \) exists.

Consider some \(f \in F \) such that \(f(D) \neq \mathbb{D} \). Choose \(p \in \mathbb{D} \setminus f(D) \). Since \(D_p \in \text{Aut}(\mathbb{D}) \), the composition \(D_p \circ f \) is injective and \(D_p \circ f(D) \subset \mathbb{D} \). Furthermore, \(D_p \circ f \) is zero-free since \(D_p^{-1}(0) = \{p\} \). Since \(D \) is homologically simply connected we can find a holomorphic square root \(g \in \mathcal{O}(D) \) with \(g^2 = D_p \circ f \) according to Theorem 4.25. In fact, it is clear that \(g \) is injective and \(g(D) \subseteq \mathbb{D} \). Set \(w := g(z_0) \). Then \(h := D_w \circ g \in F \). Consider now the holomorphic map \(k : \mathbb{D} \rightarrow \mathbb{D} \) given by \(k(z) = D_p((D_w(z))^2) \). Then, \(f = k \circ h \) and applying the chain rule for derivatives we obtain

\[
f'(z_0) = k'(h(z_0))h'(z_0) = k'(0)h'(z_0).
\]

Noting that \(k(0) = 0 \) we can apply the Schwarz Lemma 4.11. Since \(k \) is not a rotation, this implies \(|k'(0)| < 1 \). Hence, \(|f'(z_0)| < |h'(z_0)| \) since \(h'(z_0) \neq 0 \) by injectivity of \(h \).

The image of all functions in \(F \) is contained in the bounded set \(\mathbb{D} \), so in particular \(F \) is locally bounded. According to Montel’s Theorem 4.31 this implies that \(F \) is normal. Consider now a sequence \(\{f_n\}_{n \in \mathbb{N}} \) of elements of \(F \) such that \(|f_n'(z_0)| \rightarrow M \) as \(n \rightarrow \infty \). Since \(F \) is normal, there is a subsequence \(\{f_{n_k}\}_{k \in \mathbb{N}} \) which converges uniformly on any compact subset of \(D \) to a function \(f \in \mathcal{O}(D) \) by Proposition 4.32. By the same Proposition we have convergence of the derivative and thus \(|f'(z_0)| = M \) as desired. It remains to show that \(f \in F \). From the limit process it is clear that \(f(z_0) = 0 \) and \(f(D) \subseteq \overline{\mathbb{D}} \). Since \(f \) is not constant (in particular, \(f'(z_0) \neq 0 \)) the Open Mapping Theorem 2.40 implies that \(f(D) \) must be open and so we must have \(f(D) \subseteq \mathbb{D} \). The injectivity of \(f \) follows from Proposition 4.35. Hence \(f \in F \). This completes the proof. \(\Box \)
Proposition 4.37. Let \(D \subseteq \mathbb{C} \) be a homologically simply connected region, \(a \in D \). Then, there exists exactly one biholomorphism \(f : D \to \mathbb{D} \) such that \(f(a) = 0 \) and \(f'(a) > 0 \).

Proof. Exercise.

Exercise 60. Show that a homologically simply connected region cannot be conformally equivalent to a region that is not homologically simply connected.