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6 The Riemann Sphere

6.1 De�nition

De�nition 6.1. A topological space is called locally compact i� every point
has a compact neighborhood.

Proposition 6.2 (One-Point Compacti�cation). Let X be a Hausdor� topo-

logical space that is locally compact. Consider the set X̂ := X∪{∞} equipped

with the following topology: A set U ⊆ X̂ is open i� U ⊆ X and U is open

in X or if U = V ∪ {∞} where V ⊆ X such that X \ V is compact in X.

Then, X̂ is a compact Hausdor� space.

Proof. Exercise.

Remark 6.3. The metric introduced above can be obtained from the stere-
ographic projection of Ĉ identi�ed with the unit disk to the complex plane.

Proposition 6.4. Consider the topological space Ĉ with the subsets U0 :=
Ĉ \ {∞} and U∞ := Ĉ \ {0}. Consider the maps φ0 : U0 → C given by

φ0(z) := z for all z ∈ U0 and φ∞ : U∞ → C given by φ∞(z) := 1/z for all

z ∈ U∞ \ {∞} and φ∞(∞) := 0. Then, φ0 and φ∞ are homeomorphisms.

Moreover, φ0 ◦ φ−1
∞ |C\{0} is the biholomorphism C \ {0} → C \ {0} given by

z 7→ 1/z.

Remark 6.5. The topological space Ĉ together with the structures intro-
duced in the preceding Proposition is called the Riemann sphere. It is an
example of a complex manifold. The maps φ0, φ∞ are called charts.

Exercise 62. Let {zn}n∈N be a sequence of complex numbers such that for
each M > 0 there exists n0 ∈ N such that |zn| > M for all n ≥ n0. Show
that limn→∞ zn = ∞ in Ĉ.

Exercise 63. Consider the symmetric function d : Ĉ × Ĉ → R+
0 given by

d(z, z′) :=
2|z − z′|√

(1 + |z|2)(1 + |z′|2)
∀z, z′ ∈ C

d(∞, z) :=
2√

1 + |z|2
∀z ∈ C

d(∞,∞) := 0.

Show that d de�nes a metric on the Riemann sphere that is compatible with
its topology.
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6.2 Functions on Ĉ

Exercise 64. Let D ⊆ Ĉ be a region and f : D → C be continuous. Let
a ∈ D \ {0,∞}. Show that f ◦ φ−1

0 is holomorphic/conformal at φ0(a) i�
f ◦ φ−1

∞ is holomorphic/conformal at φ∞(a).

De�nition 6.6. Let D ⊆ Ĉ be a region and f : D → C be continuous.
Let a ∈ D. If a 6= ∞, we say that f is holomorphic/conformal at a i�
f ◦ φ−1

0 is holomorphic/conformal at φ0(a). If a 6= 0, we say that f is
holomorphic/conformal at a i� f ◦ φ−1

∞ is holomorphic/conformal at φ∞(a).
We say that f is holomorphic/conformal in D i� f is holomorphic/conformal
at each point a ∈ D.

Exercise 65. Let D ⊆ Ĉ be a region and a ∈ D\{0,∞}. Let f ∈ O(D\{a}).
Show that the type and order of the singularity of f ◦ φ−1

0 at φ0(a) is the
same as the type and order of the singularity of f ◦ φ−1

∞ at φ∞(a).

De�nition 6.7. Let D ⊆ Ĉ be a region, a ∈ D and f ∈ O(D \ {a}).
If a 6= ∞, we say that f has a removable singularity/a pole of order n/an
essential singularity at a i� f◦φ−1

0 has a removable singularity/a pole of order
n/an essential singularity at φ0(a). If a 6= 0, we say that f has a removable
singularity/a pole of order n/an essential singularity at a i� f ◦ φ−1

∞ has a
removable singularity/a pole of order n/an essential singularity at φ∞(a).

Proposition 6.8. Let f ∈ O(Ĉ). Then, f is constant.

Proof. Exercise.

De�nition 6.9. Let D ⊆ Ĉ be a region and A ⊂ D be a discrete and
relatively closed subset. A function f ∈ O(D \ A) is called meromorphic i�
each point a ∈ A is either a removable singularity or a pole of f .

Proposition 6.10. Let f ∈ M(Ĉ). Then, f is a rational function.

Proof. Exercise.[Hint: First assume that f has a pole only at ∞ and show
that |f(z)| < M |z|n for some constants M > 0 and n ∈ N. Conclude that f
must be a polynomial. In the general case show and use the fact that f can
only have �nitely many poles.]

6.3 Functions onto Ĉ and Aut(Ĉ)

Exercise 66. Let D ⊆ Ĉ be a region and f ∈ M(D). Let P ⊂ D be the
set of poles of f and Z ⊆ D the set of zeros of f . De�ne f̂ : D → Ĉ by
f̂(z) := φ−1

0 (f(z)) if z ∈ D \ P and f̂(z) := ∞ if z ∈ P . Show that f̂ is

continuous and that φ0 ◦ f̂ |D\P as well as φ∞ ◦ f̂ |D\Z are holomorphic.
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Exercise 67. Let D ⊆ Ĉ be a region and f̂ : Ĉ → Ĉ be continuous. Let
Z := {z ∈ Ĉ : f̂(z) = 0} and P := {z ∈ Ĉ : f̂(z) = ∞}. Suppose that
φ0 ◦ f̂ |D\P as well as φ∞ ◦ f̂ |D\Z are holomorphic. De�ne f : D \ P → C by

f := φ0 ◦ f̂ |D\P . If P 6= D, then f ∈ M(D).

De�nition 6.11. Let D ⊆ Ĉ be a region and f : D → Ĉ be continuous. Let
a ∈ D. If f(a) 6= ∞, we say that f is conformal at a i� φ0 ◦ f is conformal
at a. If f(a) 6= 0, we say that f is conformal at a i� φ∞ ◦ f is conformal at
a. We say that f is conformal in D i� f is conformal at each point a ∈ D.

De�nition 6.12. A conformal mapping Ĉ → Ĉ that has a conformal inverse
is called a conformal automorphism of Ĉ.

Proposition 6.13. Möbius transformations are conformal automorphisms

of Ĉ.

Proof. Exercise.

Theorem 6.14. Suppose that f : Ĉ → Ĉ is conformal and injective. Then,

f is a Möbius transformation.

Proof. (Sketch.) As in Exercise 67 we can think of f as a meromorphic
function on Ĉ. Thus, by Proposition 6.10, f is rational, i.e., a quotient p/q
of polynomials. Without loss of generality we may assume p and q not to
have common divisors. Since f is injective, p can only have one zero which
must be simple. Similarly, q can only have one pole which must be simple.
Thus, f is a Möbius transformation.

Corollary 6.15. Aut(Ĉ) = Möb.

Theorem 6.16. Let (a, b, c) and (a′, b′, c′) be triples of distinct points in Ĉ.

Then, there exists exactly one Möbius transformation f such that f(a) = a′,
f(b) = b′, f(c) = c′.

Proof. Exercise.


