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6 The Riemann Sphere

6.1 Definition

Definition 6.1. A topological space is called locally compact iff every point
has a compact neighborhood.

Proposition 6.2 (One-Point Compactification). Let X be a Hausdorff topo-
logical space that is locally compact. Consider the set X = X U{oo} equipped
with the following topology: A set U C X is open iff U C X and U is open
in X or if U =V U{oco} where V.C X such that X \'V is compact in X.
Then, X isa compact Hausdorff space.

Proof. Exercise. O

Remark 6.3. The metric introduced above can be obtained from the stere-
ographic projection of C identified with the unit disk to the complex plane.

Proposition 6.4. Consider the topological space C with the subsets Uy :=
C\ {0} and Uy := C\ {0}. Consider the maps ¢o : Uy — C given by
b0(z) :== z for all z € Uy and ¢oo : Uso — C given by ¢oo(2) := 1/z for all
2z € Uso \ {00} and ¢poo(00) := 0. Then, ¢o and ¢oo are homeomorphisms.
Moreover, ¢g o qbgol\(c\{o} is the biholomorphism C\ {0} — C\ {0} given by
z—1/z.

Remark 6.5. The topological space C together with the structures intro-
duced in the preceding Proposition is called the Riemann sphere. It is an
example of a complex manifold. The maps ¢g, ¢ are called charts.

Exercise 62. Let {z,}nen be a sequence of complex numbers such that for
each M > 0 there exists ng € N such that |z,| > M for all n > ny. Show
that lim,, .o 2z, = 0o in C.

Exercise 63. Consider the symmetric function d : CxC— Rg given by

2 _ ]
d(z,7') = |z — 7] Vz,2' € C
VA DA+ [?)
d(oo, z) 1= 2 VzeC
V14 |z]?

d(o0,00) := 0.

Show that d defines a metric on the Riemann sphere that is compatible with
its topology.
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6.2 Functions on C

Exercise 64. Let D C C be a region and f : D — C be continuous. Let
a € D\ {0,00}. Show that f o ¢y is holomorphic/conformal at ¢o(a) iff
f o ¢} is holomorphic/conformal at ¢ (a).

Definition 6.6. Let D C C be a region and f : D — C be continuous.
Let a € D. If a # oo, we say that f is holomorphic/conformal at a iff
f o ¢yt is holomorphic/conformal at ¢o(a). If a # 0, we say that f is
holomorphic/conformal at a iff f o ¢3! is holomorphic/conformal at ¢ (a).
We say that f is holomorphic/conformal in D iff f is holomorphic/conformal
at each point a € D.

Exercise 65. Let D C C be aregion and a € D\{0,00}. Let f € O(D\{a}).
Show that the type and order of the singularity of f o qﬁal at ¢p(a) is the
same as the type and order of the singularity of f o ¢5} at ¢oo(a).

Definition 6.7. Let D C C be a region, a € D and f € O(D \ {a}).
If a # oo, we say that f has a removable singularity/a pole of order n/an
essential singularity at a iff fog, ! has a removable singularity /a pole of order
n/an essential singularity at ¢g(a). If a # 0, we say that f has a removable
singularity/a pole of order n/an essential singularity at a iff f o ¢3! has a
removable singularity/a pole of order n/an essential singularity at ¢oo(a).

Proposition 6.8. Let f € O(C). Then, f is constant.

Proof. Exercise. O

Definition 6.9. Let D C C be a region and A C D be a discrete and
relatively closed subset. A function f € O(D \ A) is called meromorphic iff
each point a € A is either a removable singularity or a pole of f.

Proposition 6.10. Let f € M(C). Then, f is a rational function.

Proof. Exercise.|[Hint: First assume that f has a pole only at co and show
that | f(2)| < M|z|™ for some constants M > 0 and n € N. Conclude that f
must be a polynomial. In the general case show and use the fact that f can
only have finitely many poles.| O

6.3 Functions onto C and Aut(C)

Exercise 66. Let D C C be a region and f € M(D). Let P C D be the
set of poles of f and Z C D the set of zeros of f. Define f :D — C by
f(z) == ¢ (f(2)) if z € D\ P and f(2) := oo if z € P. Show that f is
continuous and that ¢g o f\D\p as well as ¢ © f|D\Z are holomorphic.
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Exercise 67. Let D C C be a region and f : C — C be continuous. Let
Z:={2e€C: f(z) =0} and P:= {z € C: f(z) = co}. Suppose that
¢o o f]D\p as well as ¢ © f]D\Z are holomorphic. Define f: D\ P — C by
f=doo flp\p. If P# D, then f € M(D).

Definition 6.11. Let D C C be a regionand f: D — C be continuous. Let
a € D. If f(a) # oo, we say that f is conformal at a iff ¢ o f is conformal
at a. If f(a) # 0, we say that f is conformal at a iff ¢ o f is conformal at
a. We say that f is conformal in D iff f is conformal at each point a € D.

Definition 6.12. A conformal mapping C — C that has a conformal inverse
is called a conformal automorphism of C.

Proposition 6.13. Mobius transformations are conformal automorphisms

of C.
Proof. Exercise. O

Theorem 6.14. Suppose that f : C—Cis conformal and injective. Then,
f is a Mébius transformation.

Proof. (Sketch.) As in Exercise 67 we can think of f as a meromorphic
function on C. Thus, by Proposition 6.10, f is rational, i.e., a quotient p/q
of polynomials. Without loss of generality we may assume p and ¢ not to
have common divisors. Since f is injective, p can only have one zero which
must be simple. Similarly, ¢ can only have one pole which must be simple.
Thus, f is a Mobius transformation. O

Corollary 6.15. Aut(C) = Mdob.

Theorem 6.16. Let (a,b,¢) and (a’,V,¢) be triples of distinct points in C.
Then, there exists exactly one Mobius transformation f such that f(a) = d,

Fb) =V, f(e) = .

Proof. Exercise. O



