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1 Topological and metric spaces

1.1 Basic Definitions

Definition 1.1 (Topology). Let S be a set. A subset T of the set B(S) of
subsets of S is called a topology iff it has the following properties:

epecTand SeT.
o Let {U;}icr be a family of elements in 7. Then U;c; U; € T.
e Let UVeEeT. ThenUNV e€T.

A set equipped with a topology is called a topological space. The elements
of T are called the open sets in S. A complement of an open set in S is
called a closed set.

Definition 1.2. Let S be a topological space and x € S. Then a subset
U C S is called a neighborhood of x iff it contains an open set which in turn
contains x.

Definition 1.3. Let S be a topological space and U a subset. The closure
U of U is the smallest closed set containing U. The interior U of U is the

largest open set contained in U.

Definition 1.4 (base). Let T be a topology. A subset B of T is called a
base of T iff the elements of 7 are precisely the unions of elements of 5. It
is called a subbase iff the elements of T are precisely the finite intersections
of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of B(S). B is the base of
a topology on S iff it satisfies all of the following properties:

o )eB.
e For every x € S there is a set U € B such that x € U.

o Let UV € B. Then there exits a family {Wy}taca of elements of B
such that UNV = Uyea Wa-

Proof. Exercise. O

Definition 1.6 (Filter). Let S be a set. A subset F of the set PB(S) of
subsets of S is called a filter iff it has the following properties:

e )¢ Fand S € F.
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e Let U,V eF. ThenUNV e F.
eletUec FandUCV CS. Then V € F.

Definition 1.7. Let F be a filter. A subset B of F is called a base of F iff
every element of F contains an element of 5.

Proposition 1.8. Let S be a set and B C P(S). Then B is the base of a
filter on S iff it satisfies the following properties:

e ) ¢ B andB+#0.
o Let U,V € B. Then there exists W € B such that W CUNV.
Proof. Exercise. O

Let S be a topological space and x € S. It is easy to see that the set of
neighborhoods of x forms a filter. It is called the filter of neighborhoods of x
and denoted by N,. The family of filters of neighborhoods in turn encodes
the topology:

Proposition 1.9. Let S be a topological space and {N,}recs the family of
filters of neighborhoods. Then a subset U of S is open iff for every x € U,
there is a set W, € N such that W, C U.

Proof. Exercise. O

Proposition 1.10. Let S be a set and {Fy}res an assignment of a filter to
every point in S. Then this family of filters are the filters of neighborhoods
of a topology on S iff they satisfy the following properties:

1. For all x € S, every element of F, contains x.

2. Forallz € S and U € Fy, there exists W € F, such that U € F, for
allye W.

Proof. 1f {F,},es are the filters of neighborhoods of a topology it is clear
that the properties are satisfied: 1. Every neighborhood of a point contains
the point itself. 2. For a neighborhood U of x take W to be the interior of
U. Then W is a neighborhood for each point in W.

Conversely, suppose {F,}.cs satisfies Properties 1 and 2. Given z we
define an open neighborhood of = to be an element U € F, such that U € F,
for all y € U. This definition is not empty since at least S itself is an open
neighborhood of every point = in this way. Moreover, for any y € U, by the
same definition, U is an open neighborhood of y. Now take y ¢ U. Then,
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by Property 1, U is not an open neighborhood of y. Thus, we obtain a good
definition of open set: An open set is a set that is an open neighborhood for
one (and thus any) of its points. We also declare the empty set to be open.

We proceed to verify the axioms of a topology. Property 1 of Defi-
nition I holds since S is open and we have declared the empty set to
be open. Let {Uay}aer be a family of open sets and consider their union
U = Uper Ua. Assume U is not empty (otherwise it is trivially open) and
pick x € U. Thus, there is o € I such that x € U,. But then U, € F,
and also U € F,. This is true for any x € U. Hence, U is open. Consider
now open sets U and V. Assume the intersection U NV to be non-empty
(otherwise its openness is trivial) and pick a point z in it. Then U € F,
and V € F, and therefore U NV € F,. The same is true for any point in
U NV, hence it is open.

It remains to show that {F,},es are the filters of neighborhoods for the
topology just defined. It is already clear that any open neighborhood of
a point z is contained in F,. We need to show that every element of F,
contains an open neighborhood of z. Take U € F,. We define W to be
the set of points y such that U € F,. This cannot be empty as v € W.
Moreover, Property 1 implies W C U. Let y € W, then U € F, and we can
apply Property 2 to obtain a subset V' C W with V' € F,. But this implies
W e Fy. Since the same is true for any y € W we find that W is an open
neighborhood of . This completes the proof. O

Definition 1.11 (Continuity). Let S, T be topological spaces. A map f :
S — T is called continuous at p € S iff f~'(Npyp)) C Ny [ is called
continuous iff it is continuous at every p € S. We denote the space of
continuous maps from S to T' by C(S,T).

Proposition 1.12. Let S, T be topological spaces and f : S — T a map.
Then, f is continuous iff for every open set U € T the preimage f~1(U) in
S is open.

Proof. Exercise. O

Proposition 1.13. Let S,T,U be topological spaces, f € C(S,T) and g €
C(T,U). Then, the composition go f : S — U is continuous.

Proof. Immediate. O]

Definition 1.14. Let S,T be topological spaces. A bijection f : S — T
is called a homeomorphism iff f and f~! are both continuous. If such a
homeomorphism exists S and T" are called homeomorphic.
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Definition 1.15. Let 71, 72 be topologies on the set S. Then, 7; is called
finer than 75 and 7 is called coarser than 77 iff all open sets of 75 are also
open sets of 77.

Definition 1.16 (Induced Topology). Let S be a topological space and U
a subset. Consider the topology given on U by the intersection of each open
set on S with U. This is called the induced topology on U.

Definition 1.17 (Product Topology). Let S be the cartesian product S =
[Iocr Sa of a family of topological spaces. Consider subsets of S of the form
[I.cr Ua where finitely many U, are open sets in S, and the others coincide
with the whole space U, = S,. These subsets form the base of a topology
on S which is called the product topology.

Exercise 1. Let S be the cartesian product S = [],c; S of a family of
topological spaces. Show that the product topology is the coarsest topology
on S that makes all projections S — S, continuous.

Proposition 1.18. Let S,T, X be topological spaces and f € C(S x T, X).
Then the map fr : T — X defined by f.(y) = f(z,y) is continuous for every
xeS.

Proof. Fix x € S. Let U be an open set in X. We want to show that
W = f-YU) is open. We do this by finding for any y € W an open
neighborhood of y contained in W. If W is empty we are done, hence
assume that this is not so. Pick y € W. Then (z,y) € f~1(U) with f~1(U)
open by continuity of f. Since S x T carries the product topology there must
be open sets V, C Sand V,, CT withx € V,, y € Vjy and V, x V), C ffl(U).
But clearly V,, C W and we are done. 0

Definition 1.19 (Quotient Topology). Let S be a topological space and
~ an equivalence relation on S. Then, the quotient topology on S/~ is the
finest topology such that the quotient map S — S/~ is continuous.

Definition 1.20. Let S, T be topological spaces and f:S — T. Fora € S
we say that f is open at a iff for every neighborhood U of a the image f(U)
is a neighborhood of f(a). We say that f is open iff it is open at every a € S.

Proposition 1.21. Let S, T be topological spaces and f: S — T. f is open
iff it maps any open set to an open set.

Proof. Straightforward. O
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Definition 1.22 (Ultrafilter). Let F be a filter. We call F an ultrafilter iff
F cannot be enlarged as a filter. That is, given a filter 7’ such that F C F’
we have F/' = F.

Lemma 1.23. Let S be a set, F an ultrafilter on S and U C S such that
UNV £ forallV eF. ThenU € F.

Proof. Let F be an ultrafilter on S and U C S such that U NV # () for all
V e F. Then, B:={UNV :V € F} forms the base of a filter 7’ such that
F C Fand U € F'. But since F is ultrafilter we have F = F' and hence
UeF. O

Proposition 1.24 (Ultrafilter lemma). Let F be a filter. Then there exists
an ultrafilter F' such that F C F'.

Proof. Exercise.Use Zorn’s Lemma. O

1.2 Some properties of topological spaces

In a topological space it is useful if two distinct points can be distinguished
by the topology. A strong form of this distinguishability is the Hausdorff
property.

Definition 1.25 (Hausdorff). Let S be a topological space. Assume that
given any two distinct points x,y € S we can find open sets U,V C S such
that z € U and y € V and UNV = (). Then, S is said to have the Hausdorff
property. We also say that S is a Hausdorff space.

Definition 1.26. A topological space S is called completely reqular iff given
a closed subset C' C S and a point p € S\ C there exists a continuous function

f:S —10,1] such that f(C) = {0} and f(p) = 1.

Definition 1.27. A topological space is called normal iff it is Hausdorff
and if given two disjoint closed sets A and B there exist disjoint open sets
U,V such that ACU and BC V.

Lemma 1.28. Let S be a normal topological space, U an open subset and
C a closed subset such that C C U. Then, there exists an open subset U’
and a closed subset C' such that C CU' CC'CU.

Proof. Exercise. ]

Theorem 1.29 (Uryson’s Lemma). Let S be a normal topological space
and A, B disjoint closed subsets. Then, there exists a continuous function

f:8 —10,1] such that f(A) = {0} and f(B) = {1}.
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Proof. Let Cy := A and Uy := S\ B. Applying Lemma we find an open
subset U; /5 and a closed subset (/5 such that

Co C Uy CCyp CULL

Performing the same operation on the pairs Cy C Uy and Cy C U we
obtain

Co C Uy CCy CUyp SO CU3p4 €T3y C UL

We iterate this process, at step n replacing the pairs C_1)/2n C Uy /on by
C(k_l)/Qn - U(gk,l)/2n+1 - C(zk,l)/gnﬂ - Uk/2n for all k € {1,...,n}.
Now define

o) o= {1 ifpe B

inf{z € (0,1]:pe U,} ifp¢ B

Obviously f(B) = {1} and also f(A) = {0}. To show that f is continuous it
suffices to show that f~1([0,a)) and f~1((b,1]) are continuous for 0 < a < 1
and 0 < b < 1. But,

FH0,a) = Us, fHGBAD) =S\ Co).

r<a z>b

Corollary 1.30. Every normal space is completely reqular.

Definition 1.31. Let S be a topological space. S is called first-countable iff
for each point in S there exists a countable base of its filter of neighborhoods.
S is called second-countable iff the topology of S admits a countable base.

Definition 1.32. Let S be a topological space and U,V C S subsets. U is
called dense in V iff V C U.

Definition 1.33 (separable). A topological space is called separable iff it
contains a countable dense subset.

Proposition 1.34. A topological space that is second-countable is separable.
Proof. Exercise. O

Definition 1.35 (open cover). Let S be a topological space and U C S
a subset. A family of open sets {Uy}aca is called an open cover of U iff
UC UaEA Ua.
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Proposition 1.36. Let S be a second-countable topological space and U C S
a subset. Then, every open cover of U contains a countable subcover.

Proof. Exercise. O

Definition 1.37 (compact). Let S be a topological space and U C S a
subset. U is called compact iff every open cover of U contains a finite
subcover.

Definition 1.38. Let S be a topological space and U C S a subset. Then,
U is called relatively compact in S iff the closure of U in S is compact.

Proposition 1.39. A closed subset of a compact space is compact. A com-
pact subset of a Hausdorff space is closed.

Proof. Exercise. O

Proposition 1.40. The image of a compact set under a continuous map s
compact.

Proof. Exercise. O

Lemma 1.41. Let Ty be a compact Hausdorff space, Ty be a Hausdorff space
and f :T7 — Ty a continuous bijective map. Then, f is a homeomorphism.

Proof. The image of a compact set under f is compact and hence closed
in T5. But every closed set in 77 is compact, so f is open and hence a
homeomorphism. ]

Lemma 1.42. Let T be a Hausdorff topological space and Ci, Co disjoint
compact subsets of T. Then, there are disjoint open subsets Uy, Us of T
such that C7 C Uy and Cy C Us. In particular, if T is compact, then it is
normal.

Proof. We first show a weaker statement: Let C' be a compact subset of T
and p ¢ C. Then there exist disjoint open sets U and V such that p € U and
C C V. Since T is Hausdorff, for each point ¢ € C there exist disjoint open
sets Uy and V, such that p € U, and ¢ € V. The family of sets {V}q,cc
defines an open covering of C'. Since C' is compact there is a finite subset
S C C such that the family {V,}4es already covers C. Define U := 1,5 Uy
and V' := Ugecg Vg These are open sets with the desired properties.

We proceed to the prove the first statement of the lemma. By the pre-
vious demonstration, for each point p € C; there are disjoint open sets U,
and V), such that p € U, and Cy C V},. The family of sets {Up}pec, defines
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an open covering of Cy. Since C] is compact there is a finite subset S C Cy
such that the family {U,}pes already covers Cy. Define Uy := [J,eg Up and

U2 = anS ‘/1-7
For the second statement of the lemma observe that if T" is compact,
then every closed subset is compact. O

Definition 1.43. A topological space is called locally compact iff every point
has a compact neighborhood.

Definition 1.44. A topological space is called o-compact iff it is locally
compact and admits a covering by countably many compact subsets.

Definition 1.45. Let T be a topological space. A compact exhaustion of
T is a sequence {U; };en of open and relatively compact subsets such that
U; CU;yq for all i € N and UienUi =T.

Proposition 1.46. A topological space admits a compact exhaustion iff it
18 o-compact.

Proof. Suppose the topological space T is o-compact. Then there exists
a sequence {Kp}nen of compact subsets such that J,cny Kn = T. Since
T is locally compact, every point possesses an open and relatively compact
neighborhood. (Take an open subneighborhood of a compact neighborhood.)
We cover K7 by such open and relatively compact neighborhoods around
every point. By compactness a finite subset of those already covers Kj.
Their union, which we call Uy, is open and relatively compact. We proceed
inductively. Suppose we have constructed the open and relatively compact
set U,. Consider the compact set U, U K, 1. Covering it with open and
relatively compact neighborhoods and taking the union of a finite subcover
we obtain the open and relatively compact set U,41. It is then clear that
the sequence {U, },en obtained in this way provides a compact exhaustion
of T since U; C U;yq for alli € Nand T = Unen Kn € Unen Un-
Conversely, suppose T is a topological space and {U, },en is a compact
exhaustion of T. Then, the sequence {U,, } ,en provides a countable covering
of T by compact sets. Also, given p € T there exists n € N such that
p € U,. Then, the compact set U, is a neighborhood of p. That is, T is
locally compact. O

Proposition 1.47. Let T be a topological space, K C T a compact subset
and {Up }nen a compact exhaustion of T. Then, there exists n € N such that
K CU,.

Proof. Exercise. O
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Exercise 2 (One-point compactification). Let S be a locally compact Haus-
dorff space. Let S := S U {co} to be the set S with an extra element oo
ajoint. Define a subset U of S to be open iff either U is an open subset of
S or U is the complement of a compact subset of S. Show that this makes
S into a compact Hausdorff space.

1.3 Sequences and convergence

Definition 1.48 (convergence of sequences). Let z := {z,},en be a se-
quence of points in a topological space S. We say that x convergestop € S
iff for any neighborhood U of p there is a number n € N such that z € U
for all K > n. Then, p is said to be a limit of . We also say that p € S
is accumulation point of x iff for every neighborhood U of p, x € U for
infinitely many k& € N.

Definition 1.49. Let S be a topological space and U C S a subset. Con-
sider the set By of sequences of elements of U. Then the set U’ consisting
of the points to which some element of By converges is called the sequential
closure of U.

Proposition 1.50. Let S be a topological space and U C S a subset. Then,
UCU’ CU. If, moreover, S is first-countable, then U° = U.

Proof. Exercise. O

Proposition 1.51. Let S,T be topological spaces and f : S — T. If f
is continuous, then for any p € S and sequence {x,}nen converging to p,
the sequence f{(xn)}nen in T converges to f(p). Conversely, if S is first-
countable and for any p € S and sequence {x,}nen converging to p, the
sequence f{(xyp)}nen in T converges to f(p), then f is continuous.

Proof. Exercise. O

Proposition 1.52. Let S be Hausdorff space and {z,}neN a sequence in S
which converges to a point p € S. Then, {xy}nen does not converge to any
other point in S.

Proof. Exercise. O

Definition 1.53. Let S be a topological space and U C S a subset. U
is called limit point compact iff every sequence in U has an accumulation
point. U is called sequentially compact iff every sequence in U contains a
converging subsequence.
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Proposition 1.54. Let S be a first-countable topological space and r =
{Zn}nen a sequence in S with accumulation point p. Then, x has a subse-
quence that converges to p.

Proof. By first-countability choose a countable base {U, } nen of the filter of
neighborhoods at p. Now consider the family {W,,},en of open neighbor-
hoods Wy, := N—; U at p. It is easy to see that this is again a countable
neighborhood base at p. Moreover, it has the property that W,, C W, if
n > m. Now, Choose n; € N such that z,, € Wj. Recursively, choose
ng41 > ng such that z,, . € Wiy, This is possible since W1 contains
infinitely many points of . Let V' be a neighborhood of p. There exists
some k € N such that U, C V. By construction, then W,, C W, C Uy
for all m > k and hence z,,, € V for all m > k. Thus, the subsequence
{xn,, tmeN converges to p. O

Proposition 1.55. Sequential compactness implies limit point compactness.
In a first-countable space the converse is also true.

Proof. Exercise. O
Proposition 1.56. A compact space is limit point compact.

Proof. Consider a sequence x in a compact space S. Suppose z does not have
an accumulation point. Then, for each point p € S we can choose an open
neighborhood U,, which contains only finitely many points of x. However, by
compactness, S is covered by finitely many of the sets U,. But their union
can only contain a finite number of points of x, a contradiction. ]

1.4 Filters and convergence

Definition 1.57 (convergence of filters). Let S be a topological space and
F a filter on a subset A of S. F is said to converge to p € S iff every
neighborhood of p is contained in F, i.e., N, € F. Then, x is said to be a
limit of x. Also, p € S is called accumulation point of F iff p € NyerU.

Proposition 1.58. Let S be a topological space and F a filter on a subset
A of S converging to p € S. Then, p is accumulation point of F.

Proof. Exercise. O

Proposition 1.59. Set S be a topological space and F, F' filters on a subset
A of S such that F C F'. If p € S is accumulation point of F', then it is
also accumulation point of F. If F converges to p € S, then so does F'.
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Proof. Immediate. O

Let 2 = {x, }nen be a sequence of points in a topological space S. We
define the filter F, associated with this sequence as follows: F, contains
all the subsets U of S such that U contains all x,,, except possibly finitely
many.

Proposition 1.60. Let x := {xy, }nen be a sequence of points in a topological
space S. Then x converges to a point p € S iff the associated filter F,
converges to p. Also, p € S is accumulation point of x iff it is accumulation
point of Fy.

Proof. Exercise. ]

Proposition 1.61. Let S be a topological space and U C S a subset. Con-
sider the set Ay of filters on U. Then, the closure U of U coincides with
the set of points to which some element in Ay converges.

Proof. If U = (), then Ay is empty and the proof is trivial. Assume the
contrary. If z € U, then the intersection of U with the filter A, of neigh-
borhoods of z is a filter on U that converges to z as desired. If z ¢ U, then
there exists a neighborhood V' of x such that U NV = (). So no filter in U
can contain V. O

Proposition 1.62. Let S,T be topological spaces and f : S — T. If f
is continuous, then for any p € S and filter F converging to p, the filter
generated by f(F) in T converges to f(p). Conversely, if for any p € S and
filter F converging to p, the filter generated by f(F) in T converges to f(p),
then f is continuous.

Proof. Exercise. O

Proposition 1.63. Let S be a Hausdorff topological space, F a filter on a
subset A of S converging to a pointp € S. Then F does not converge to any
other point in S.

Proof. Exercise. O

Proposition 1.64. Let S be a topological space and K C S a subset. Then,
K is compact iff every filter in K has at least one accumulation point in K.



14 Robert Oeckl — FA NOTES - 05/12/2011

Proof. Let K C S be compact. We suppose that there is a filter F on
K that has no accumulation point. For each U € F consider the open
set Oy := S\ U. By assumption, these open sets cover K. Since K is
compact, there must be a finite subset {Uj,...,U,} of elements of F such
that {Op,,...,0p,} covers K. But this implies N, U; = 0 and thus, in
particular, also Ny U; = 0, contradicting the fact that F is a filter. Thus,
any filter on K must have an accumulation point.

Now suppose that K C S is not compact. Then, there exists a cover of
K by open sets {Uy}aca which does not admit any finite subcover. Now
consider finite intersections of the sets Cy, := K \ U,. These are non-empty
and form the base of a filter in K. But this filter clearly has no accumulation
point. Thus, if every filter in K is to posses an accumulation point, K must
be compact. ]

1.5 Metric and pseudometric spaces

Definition 1.65. Let S be a set and d : S x § — Rar a map with the
following properties:

o d(z,y) =d(y,x) Vx,y € S. (symmetry)
o d(z,z) <d(xz,y) +d(y,z) Vzx,y,z € S. (triangle inequality)
o d(z,z)=0 Vzels.

Then d is called a pseudometric on S. S is also called a pseudometric space.
Suppose d also satisfies

e d(z,y) =0 = x =y Va,y € S. (definiteness)
Then d is called a metric on S and S is called a metric space.

Definition 1.66. Let S be a pseudometric space, € S and r > 0. Then
the set By(z) == {y € S : d(z,y) < r} is called the open ball of radius r
centered around z in S. The set B, (z) := {y € S : d(z,y) < r} is called the
closed ball of radius r centered around x in S.

Proposition 1.67. Let S be a pseudometric space. Then, the open balls
in S together with the empty set form the basis of a topology on S. This
topology is first-countable and such that closed balls are closed. Moreover,
the topology is Hausdorff iff S is metric.

Proof. Exercise. O
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Definition 1.68. A topological space is called (pseudo)metrizable iff there
exists a (pseudo)metric such that the open balls given by the (pseudo)metric
are a basis of its topology.

Proposition 1.69. In a pseudometric space any open ball can be obtained
as the countable union of closed balls. Similarly, any closed ball can be
obtained as the countable intersection of open balls.

Proof. Exercise. ]

Proposition 1.70. Let S be a set equipped with two pseudometrics d' and
d?. Then, the topology generated by d? is finer than the topology generated by
d' iff for allz € S and ry > 0 there exists ro > 0 such that BZ (z) C B} (z).
In particular, d* and d*> generate the same topology iff the condition holds
both ways.

Proof. Exercise. O

Proposition 1.71 (epsilon-delta criterion). Let S, T be pseudometric spaces
and f: S — T a map. Then, [ is continuous at x € S iff for every ¢ > 0
there exists 0 > 0 such that f(Bs(x)) C Bc(f(z)).

Proof. Exercise. O

1.6 Elementary properties of pseudometric spaces
Proposition 1.72. Every metric space is normal.

Proof. Let A, B be disjoint closed sets in the metric space S. For each x € A
choose €; > 0 such that B, () N B = () and for each y € B choose ¢, > 0
such that B, (y)NA = (). Then, for any pair (z,y) with z € Aand y € B we
have B., /o(x) N Be,/2(y) = 0. Consider the open sets U := e Be, j2(2)
and V := Uyep Be,/2(y). Then, UNV =0, but AC U and BC V. So S is

normal. O

Proposition 1.73. Let S be a pseudometric space and x := {Ty}nen @
sequence in S. Then x converges to p € S iff for any € > 0 there exists an
no € N such that d(xy,p) < € for all n > ny.

Proof. Immediate. O

Definition 1.74. Let S be a pseudometric space and = := {z, }nen a se-
quence in S. Then z is called a Cauchy sequence iff for all € > 0 there exists
an ng € N such that for all n,m > ng : d(xn, xm) < €.
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Proposition 1.75. Any converging sequence in a pseudometric space is a
Cauchy sequence.

Proof. Exercise. O

Proposition 1.76. Suppose x is a Cauchy sequence in a pseudometric
space. If p is accumulation point of x then x converges to p.

Proof. Exercise. O

Definition 1.77. Let S be a pseudometric space and U C S a subset. If
every Cauchy sequence in U converges to a point in U, then U is called
complete.

Proposition 1.78. A complete subset of a metric space is closed. A closed
subset of a complete pseudometric space is complete.

Proof. Exercise. O

Definition 1.79 (Totally boundedness). Let S be a pseudometric space. A
subset U C S is called totally bounded iff for any r > 0 the set U admits a
cover by finitely many open balls of radius 7.

Proposition 1.80. A subset of a pseudometric space is compact iff it is
complete and totally bounded.

Proof. We first show that compactness implies totally boundedness and com-
pleteness. Let U be a compact subset. Then, for r > 0 cover U by open balls
of radius r centered at every point of U. Since U is compact, finitely many
balls will cover it. Hence, U is totally bounded. Now, consider a Cauchy
sequence x in U. Since U is compact z must have an accumulation point
p € U (Proposition I58) and hence (Proposition IZ7G) converge to p. Thus,
U is complete.

We proceed to show that completeness together with totally bounded-
ness imply compactness. Let U be a complete and totally bounded subset.
Assume U is not compact and choose a covering {Uy}aca of U that does
not admit a finite subcovering. On the other hand, U is totally bounded and
admits a covering by finitely many open balls of radius 1/2. Hence, there
must be at least one such ball By such that Cy := By NU is not covered
by finitely many U,. Choose a point x; in C;. Observe that C; itself is
totally bounded. Inductively, cover C,, by finitely many open balls of radius
2-(+1) " For at least one of those, call it Byt1, Cht1 := Bpy1 N Cy is not
covered by finitely many U,. Choose a point x,y1 in Cpy1. This process
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yields a Cauchy sequence z := {zj}ren. Since U is complete the sequence
converges to a point p € U. There must be @ € A such that p € U,. Since
U, is open there exists r > 0 such that B(p,r) C U,. This implies, C,, C U,
for all n € N such that 27"+! < r. However, this is a contradiction to the
C,, not being finitely covered. Hence, U must be compact. ]

Proposition 1.81. The notions of compactness, limit point compactness
and sequential compactness are equivalent in a pseudometric space.

Proof. Exercise. O
Proposition 1.82. A totally bounded pseudometric space is second-countable.
Proof. Exercise. O

Proposition 1.83. The notions of separability and second-countability are
equivalent in a pseudometric space.

Proof. Exercise. ]

Theorem 1.84 (Baire’s Theorem). Let S be a complete metric space and
{Un}nen a sequence of open and dense subsets of S. Then, the intersection
Npen Un is dense in S.

Proof. Set U := (,en Un- Let V be an arbitrary open set in S. It suffices
to show that V.NU # (. To this end we construct a sequence {z,}nen
of elements of S and a sequence {€,}nen of positive numbers. Choose
x1 € Uy NV and then 0 < ¢; < 1 such that B, (z1) € U3 NV. Now,
consecutively choose ¥py1 € Unt1 N B, j2(zn) and 0 < €41 < 27" such
that B, (zn+1) € Ups1 N Be, (zn). The sequence {z, },en is Cauchy since
by construction d(z,,zn+1) < 27" for all n € N. So by completeness it
converges to some point x € S. Indeed, z € B¢, (z1) C V. On the other

hand, z € B, (x,) C U, for all n € N and hence x € U. This completes the
proof. O

Proposition 1.85. Let S be equipped with o pseudometric d. Then p ~
g < d(p,q) =0 for p,q € S defines an equivalence relation on S. The
prescription d([pl,[q]) = d(p,q) for p,q € S is well defined and yields a
metric d on the quotient space S/~. The topology induced by this metric
on S/~ is the quotient topology with respect to that induced by d on S.
Moreover, S/~ is complete iff S is complete.

Proof. Exercise. O



18 Robert Oeckl — FA NOTES - 05/12/2011

1.7 Completion of metric spaces

Often it is desirable to work with a complete metric space when one is
only given a non-complete metric space. To this end one can construct the
completion of a metric space. This is detailed in the following exercise.

Exercise 3. Let S be a metric space.

o Let z:= {x, }nen and y := {yn }nen be Cauchy sequences in S. Show
that the limit limy, o0 d(2p, yn) exists.

e Let T be the set of Cauchy sequences in S. Define the function d :
TxT — Rg by d(z,y) := limy 00 d(Tp, yn). Show that d defines a
pseudometric on 7.

e Show that T is complete.

e Define S as the metric quotient 7'/~ as in Proposition IZ853. Then, S
is complete.

e Show that there is a natural isometric embedding (i.e., a map that
preserves the metric) ig : S — S. Furthermore, show that this is a
bijection iff S is complete.

Definition 1.86. The metric space S constructed above is called the com-
pletion of the metric space S.

Proposition 1.87 (Universal property of completion). Let S be a metric
space, T a complete metric space and f : S — T an isometric map. Then,
there is a unique isometric map f : S — T such that f = foig. Furthermore,

the closure of f(S) in T is equal to f(S).

Proof. Exercise. O
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2 Vector spaces with additional structure

In the following K denotes a field which might be either R or C.

Definition 2.1. Let V be a vector space over K. A subset A of V is called
balanced iff for all v € A and all A € K with |A| < 1 the vector Av is contained
in A. A subset A of V is called convex iff for all z,y € V and ¢ € [0, 1] the
vector (1 —t)z +ty is in A. Let A be a subset of V. Consider the smallest
subset of V' which is convex and which contains A. This is called the convex
hull of A, denoted conv(A).

Proposition 2.2. (a) Intersections of balanced sets are balanced. (b) The
sum of two balanced sets is balanced. (c) A scalar multiple of a balanced set
is balanced.

Proof. Exercise. O

Proposition 2.3. Let V' be vector space and A a subset. Then

conv(A) = {Z Aizi s A €[0,1],x; € A’Z)‘i = 1} ,

i=1 =1

Proof. Exercise. O

We denote the space of linear maps between a vector space V and a
vector space W by L(V, W).

2.1 Topological vector spaces

Definition 2.4. A set V that is equipped both with a vector space structure
over K and a topology is called a topological vector space (tvs) iff the vector
addition + : V x V' — V and the scalar multiplication - : K x V' — V are
both continuous. (Here the topology on K is the standard one.)

Proposition 2.5. Let V be a tvs, A € K\O, w € V. The mapsV —V :v —
A andV —V v v+ w are automorphisms of V' as a tvs. In particular,
the topology T of V is invariant under rescalings and translations: XT =T
and T +w = T. In terms of filters of neighborhoods, M\, = Ny, and
Ny +w = Nyiy for allveV.

Proof. 1t is clear that non-zero scalar multiplication and translation are vec-
tor space automorphisms. To see that they are also continuous use Propo-
sition IR. The inverse maps are of the same type hence also continuous.
Thus we have homeomorphisms. The scale- and translation invariance of
the topology follows. O
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Note that this implies that the topology of a tvs is completely determined
by the filter of neighborhoods of one of its points, say 0.

Definition 2.6. Let V be a tvs and U a subset. U is called bounded iff for
every neighborhood W of 0 there exists A € R™ such that U C A\W.

Remark: Changing the allowed range of A in the definition of bound-
edness from RT to K leads to an equivalent definition, i.e., is not weaker.
However, the choice of R* over K is more convenient in certain applications.

Proposition 2.7. Let V' be a tvs. Then:
1. Every point set is bounded.
2. Every neighborhood of 0 contains a balanced subneighborhood of 0.

3. Let U be a neighborhood of 0. Then there exists a subneighborhood W
of 0 such that W +W CU.

Proof. We start by demonstrating Property 1. Let x € V and U some
open neighborhood of 0. Then Z := {(\,y) € Kx V : Ay € U} is open
by continuity of multiplication. Also (0,z) € Z so that by the product
topology there exists an € > 0 and an open neighborhood W of z in V' such
that B.(0) x W C Z. In particular, there exists p > 0 such that yz € U,
ie., {2} C u~ U as desired.

We proceed to Property 2. Let U be an open neighborhood of 0. By
continuity Z := {(A\,z) € Kx V : Ax € U} is open. By the product
topology, there are open neighborhoods X of 0 € K and W of 0 € V such
that X x W C Z. Thus, X - W C U. Now X contains an open ball of
some radius € > 0 around 0 in K. Set Y := B.(0) - W. This is an (open)
neighborhood of 0 in V| it is contained in U and it is balanced.

We end with Property 3. Let U be an open neighborhood of 0. By
continuity Z := {(z,y) € V.xV : x +y € U} is open. By the product
topology, there are open neighborhoods W7 and Ws of 0 such that Wi x Wy C
Z. This means W7 + Wy C U. Now define W := W7 N Wa. O

Proposition 2.8. Let V be a vector space and F a filter on V. Then F
is the filter of neighborhoods of 0 for a compatible topology on V iff O is
contained in every element of F and A\F = F for all X € K\ {0} and F
satisfies the properties of Proposition 1.

Proof. 1t is already clear that the properties in question are necessary for F
to be the filter of neighborhoods of 0 of V. It remains to show that they are
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sufficient. If F is to be the filter of neighborhoods of 0 then, by translation
invariance, F, := F + x must be the filter of neighborhoods of the point z.
We show that the family of filters {F,}.cv does indeed define a topology
on V. To this end we will use Proposition II0. Property 1 is satisfied
by assumption. It remains to show Property 2. By translation invariance
it will be enough to consider x = 0. Suppose U € F. Using Property 3
of Proposition P4 there is W € F such that W + W C U. We claim that
Property 2 of Proposition 110 is now satisfied with this choice of W. Indeed,
let y € W theny+W € Fyand y+W C U so U € F, as required.

We proceed to show that the topology defined in this way is compatible
with the vector space structure. Take an open set U C V and consider
its preimage Z = {(z,y) € V.xV : x +y € U} under vector addition.
Take some point (x,y) € Z. U — x — y is an open neighborhood of 0. By
Property 3 of Proposition 224 there is an open neighborhood W of 0 such
that W+ W CU -z —y,ie, (c+W)+(y+W)CU. But 2+ W is
an open neighborhood of = and y + W is an open neighborhood of y so
(x +W) x (y+ W) is an open neighborhood of (x,y) in V' x V contained in
Z. Hence vector addition is continuous.

We proceed to show continuity of scalar multiplication. Consider an
open set U C V and consider its preimage Z = {(\,z) e Kx V : \x € U}
under scalar multiplication. Take some point (\,z) € Z. U — Az is an
open neighborhood of 0 in V. By Property 3 of Proposition EZ4 there is an
open neighborhood W of 0 such that W + W = U — Azxz. By Property 2
of Proposition P70 there exists a balanced subneighborhood X of W. By
Property 1 of Proposition 227 (boundedness of points) there exists € > 0
such that ez € X. Now define Y := (e+|A|) "1 X. Note that scalar multiples
of (open) neighborhoods of 0 are (open) neighborhoods of 0 by assumption.
Hence Y is open since X is. Thus B¢(\) x (z +Y') an open neighborhood of
(A, x) in K x V. We claim that it is contained in Z. First observe that since
X is balanced, B(0) -z C X. Similarly, we have B¢(\)-Y C By 5(0) Y =
B;1(0)-X C X. Thus we have B¢(0)-z+Bc(\)-Y C X+X C W+W C U—Az.
But this implies B¢(\) - (x +Y) C U as required. O

Proposition 2.9. (a) The interior of a balanced set is balanced. (b) The
closure of a balanced set is balanced.

Proof. Let U be balanced and let A € K with 0 < |A| < 1. It is then enough
to observe that for (a) AU = AU C U and for (b) A\U = AU C U. O

Proposition 2.10. In a tvs every neighborhood of 0 contains a closed and
balanced subneighborhood.
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Proof. Let U be a neighborhood of 0. By Proposition P272.3 there exists a
subneighborhood W C U such that W + W C U. By Proposition 2Z2.2
there exists a balanced subneighborhood X C W. Let Y := X. Then, Y is
obviously a closed neighborhood of 0. Also Y is balanced by Proposition 279.
Finally, let y € Y = X. Any neighborhood of y must intersect X. In
particular, y + X is such a neighborhood. Thus, there exist x € X, z € X
suchthat t =y+2z,ie,y=0—2e X—-X=X+XCU. So, Y CU. O

Proposition 2.11. (a) Subsets of bounded sets are bounded. (b) Finite
unions of bounded sets are bounded. (c) The closure of a bounded set is
bounded. (d) The sum of two bounded sets is bounded. (e) A scalar multiple
of a bounded set is bounded.

Proof. Exercise. O

Definition 2.12. Let V be a tvs and C' C V a subset. Then, C is called
totally bounded iff for each neighborhood U of 0 in V there exists a finite
subset ' C C such that C C F 4+ U.

Proposition 2.13. (a) Subsets of totally bounded sets are totally bounded.
(b) Finite unions of totally bounded sets are totally bounded. (c) The closure
of a totally bounded set is totally bounded. (d) The sum of two totally
bounded sets is totally bounded. (e) A scalar multiple of a totally bounded
set is totally bounded.

Proof. Exercise. O

Proposition 2.14. Compact sets are totally bounded. Totally bounded sets
are bounded.

Proof. Exercise. O

Let A, B be topological vector spaces. We denote the space of maps from
A to B that are linear and continuous by CL(A, B).

Definition 2.15. Let A, B be tvs. A linear map f : A — B is called bounded
iff there exists a neighborhood U of 0 in A such that f(U) is bounded. A
linear map f : A — B is called compact iff there exists a neighborhood U of

0 in A such that f(U) is compact.

Let A, B be tvs. We denote the space of maps from A to B that are
linear and bounded by BL(A, B). We denote the space of maps from A to
B that are linear and compact by KL(A, B).
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Proposition 2.16. Let A, B be tvs and f € L(A, B). (a) f is continuous iff
the preimage of any neighborhood of 0 in B is a neighborhood of 0 in A. (b)
If f is continuous it maps bounded sets to bounded sets. (c) If f is bounded
then f is continuous, i.e., BL(A, B) C CL(A, B). (d) If f is compact then
f is bounded.

Proof. Exercise. O

A useful property for a topological space is the Hausdorff property, i.e.,
the possibility to separate points by open sets. It is not the case that a
tvs is automatically Hausdorff. However, the way in which a tvs may be
non-Hausdorff is severely restricted. Indeed, we shall see int the following
that a tvs may be split into a part that is Hausdorff and another one that
is maximally non-Hausdorff in the sense of carrying the trivial topology.

Proposition 2.17. Let V be a tvs and C C V a vector subspace. Then, the
closure C of C is also a vector subspace of V.

Proof. Exercise.[Hint: Use Proposition ITG1.] O

Proposition 2.18. Let V' be a tvs. The closure of {0} in V' coincides with
the intersection of all neighborhoods of 0. Moreover, V is Hausdorff iff

{0] = {0}
Proof. Exercise. O
Proposition 2.19. Let V be a tvs and C C V' a vector subspace.

1. The quotient space V/C' is a tvs.

2. V/C is Hausdorff iff C is closed in V.

3. The quotient map q : V — V/C' is linear, continuous and open. More-
over, the quotient topology on V/C' is the only topology such that q is
continuous and open.

4. The image of a base of the filter of neighborhoods of 0 in V is a base
of the filter of neighborhoods of 0 in V/C.

Proof. Exercise. ]

Thus, for a tvs V' the exact sequence

0— {0} -V = V/{0} -0
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describes how V is composed of a Hausdorff piece V/{0} and a piece {0}
with trivial topology. We can express this decomposition also in terms of a
direct sum, as we shall see in the following.

A (vector) subspace of a tvs is a tvs with the subset topology. Let A and
B be tvs. Then the direct sum A & B is a tvs with the product topology.
Note that as subsets of A @ B, both A and B are closed.

Definition 2.20. Let V be a tvs and A a subspace. Then another sub-
space B of A in V is called a topological complement iff V= A @ B as tvs
(i.e., as vector spaces and as topological spaces). A is called topologically
complemented if such a topological complement B exists.

Note that algebraic complements (i.e., complements merely with respect
to the vector space structure) always exist (using the Axiom of Choice).
However, an algebraic complement is not necessarily a topological one. In-
deed, there are examples of subspaces of tvs that have no topological com-
plement.

Proposition 2.21 (Structure Theorem for tvs). Let V' be a tvs and B an
algebraic complement of {0} in V. Then B is also a topological complement
of {0} in V. Moreover, B is canonically isomorphic to V/{0} as a tvs.

Proof. Exercise. O

We conclude that every tvs is a direct sum of a Hausdorff tvs and a tvs
with the trivial topology.

2.2 Metrizable and pseudometrizable vector spaces

In this section we consider (pseudo)metrizable vector spaces (mvs), i.e., tvs
that admit a (pseudo)metric compatible with the topology.

Definition 2.22. A pseudometric on a vector space V is called translation-
invariant iff d(z + a,y + a) = d(z,y) for all z,y,a € V. A translation-
invariant pseudometric on a vector space V is called balanced iff its open
balls around the origin are balanced.

As we shall see it will be possible to limit ourselves to balanced translation-
invariant pseudometrics on mvs. Moreover, these can be conveniently de-
scribed by pseudo-seminorms.

Definition 2.23. Let V be a vector space over K. Then a map V' — Rg :
x +— ||z]| is called a pseudo-seminorm iff it satisfies the following properties:
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1. For all A € K, |[A\| <1 implies || Az|| < ||z|| for all x € V.
2. Forall z,y € V : ||z +y| < ||lz|| + ||yl

||| is called a pseudo-norm iff it satisfies in addition the following property.
3. |lz|| = 0 implies z = 0.

Proposition 2.24. There is a one-to-one correspondence between pseudo-
seminorms and balanced translation invariant pseudometrics on a wvector
space via d(z,y) = ||z — y||. This specializes to a correspondence between
pseudo-norms and balanced translation invariant metrics.

Proof. Exercise. O

Proposition 2.25. Let V be a vector space. The topology generated by a
pseudo-seminorm on V' is compatible with the vector space structure iff for
every x € V and € > 0 there exists A € RT such that x € AB.(0).

Proof. Assume we are given a pseudo-seminorm on V that induces a com-
patible topology. It is easy to see that the stated property of the pseudo-
seminorm then follows from Property 1 in Proposition 220 (boundedness of
points).

Conversely, suppose we are given a pseudo-seminorm on V with the
stated property. We show that the filter Ny of neighborhoods of 0 defined
by the pseudo-seminorm has the properties required by Proposition 228 and
hence defines a compatible topology on V. Firstly, it is already clear that
every U € Nj contains 0. We proceed to show that Nj is scale invariant. It
is enough to show that for e > 0 and A € K\ {0} the scaled ball AB(0) is
open. Choose a point Az € AB¢(0). Take 6 > 0 such that ||z|| < e —J. Then
B5(0) + x € Bc(0). Choose n € N such that 27" < |\|. Observe that the
triangle inequality implies By—ng5(0) € 27" Bs(0) (for arbitrary ¢ and n in
fact). Hence Bg-ng(Ax) = By-n5(0) + Az C ABs(0) + Az C AB.(0) showing
that AB¢(0) is open.

It now remains to show the properties of N listed in Proposition 2Z2.
As for Property 3, we may take U to be an open ball of radius e around
0 for some € > 0. Define W := B,/5(0) Then W + W C U follows from
the triangle inequality. Concerning Property 2 we simple notice that open
balls are balanced by construction. The only property that is not automatic
for a pseudo-seminorm and does require the stated condition is Property 1
(boundedness of points). The equivalence of the two is easy to see. O
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Theorem 2.26. A tvsV is pseudometrizable iff it is first-countable, i.e., iff
there exists a countable base for the filter of neighborhoods of 0. Moreover,
if V is pseudometrizable it admits a compatible pseudo-seminorm.

Proof. 1t is clear that pseudometrizability implies the existence of a count-
able base of NVy. For example, the sequence of balls { B, (0)}nen provides
such a base. Conversely, suppose that {U,}nen is a base of the filter of
neighborhoods of 0 such that all U, are balanced and U,y + Upy1 C U,.
(Given an arbitrary countable base of Ay we can always produce another
one with the desired properties.) Now for each finite subset H of N define
U = > enUn and A := >_,,cy 27 ". Note that each Uy is a balanced
neighborhood of 0. Define now the function V — R : z — ||z|| by

lz|| = i%f{)\}ﬂl' eUn}

if z € Uy for some H and ||z| = 1 otherwise. We proceed to show that || - ||
defines a pseudo-seminorm and generates the topology of V.

Fix x € V and X € K with |A| < 1. Since Uy is balanced for each H, Az
is contained at least in the same sets Uy as x. Because the definition of || - ||
uses an infimum, ||[Az| < ||z||. This confirms Property 1 of Definition 2223.

To show the triangle inequality (Property 2 of Definition 2223) we first
note that for finite subsets H, K of N with the property Ag + Ax < 1
there is another unique finite subset L of N such that A\ = Ag + Ag.
Furthermore, U + Ux C Uy in this situation. Now, fix z,y € V. If
llz|| 4+ [ly|| > 1 the triangle inequality is trivial. Otherwise, we can find € > 0
such that ||z|| + |ly|| + 2¢ < 1. We now fix finite subsets H, K of N such
that « € Uy, y € Ux while Ay < [|z|| + € and Ag < ||y|| + €. Let L be the
finite subset of N such that A\, = Ay + Ag. Then =z + y € Uy, and hence
|z +y|l <A =Am + Ak < ||z]| + [Jy]| + 2¢. Since the resulting inequality
holds for any € > 0 we must have ||z + y|| < ||z|| + ||y|| as desired.

It remains to show that the pseudo-seminorm generates the topology of
the tvs. Since the topology generated by the pseudo-seminorm as well as that
of the tvs are translation invariant, it is enough to show that the open balls
around 0 of the pseudo-seminorm form a base of the filter of neighborhoods of
0 in the topology of the tvs. Let n € N. Clearly By-»(0) C U,, C By (n-1)(0).
But this shows that { By—» (0) }n,en generates the same filter as {Uy, }nen. This
completes the proof. ]

Exercise 4. Show that for a tvs with a balanced translation-invariant pseu-
dometric the concepts of totally boundedness of Definitions 79 and 2712
coincide.
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Proposition 2.27. Let V' be a mvs with pseudo-seminorm. Let r > 0 and
0<p<1. Then, B, (0) C uB,(0).

Proof. Exercise. O

Proposition 2.28. Let V, W be mwvs with compatible metrics and f €
L(V,W). (a) f is continuous iff for all € > 0 there exists § > 0 such that
f(BY(0)) € BY(0). (b) f is bounded iff there exists 6 > 0 such that for all
€ > 0 there is pn > 0 such that f(uBY (0)) € BY(0).

Proof. Exercise. ]

Proposition 2.29. Let V be a mvs and C a subspace. Then, the quotient
space V/C' is a mus.

Proof. Exercise. O

2.3 Locally convex tvs

Definition 2.30. A tvs is called locally conver iff every neighborhood of 0
contains a convex neighborhood of 0.

Definition 2.31. Let V be a vector space over K. Then a map V — Rg :
x +— ||z|| is called a seminorm iff it satisfies the following properties:

L. Azl = [A\|||z|| for all A e K,z € V.
2. Forall z,y € V : [z +y| < ||=]| + [|y||. (triangle inequality)

A seminorm is called a norm iff it satisfies in addition the following property:
3. lz[ =0 = z=0.

Proposition 2.32. A seminorm induces a balanced translation-invariant

pseudometric via d(z,y) := ||x —y||. Moreover, the open balls of this metric
are convez.
Proof. Exercise. ]

Proposition 2.33. Let V be a vector space and {|| - ||a}aca a set of semi-
norms on V. For any finite subset I C A and any € > 0 define

Ure i ={x eV :|z|o <eVael}

Then, the sets Ur form the base of the filter of neighborhoods of 0 in a
topology on V' that makes it into a locally conver tvs. If A is countable,
then V' is pseudometrizable. Moreover, the topology is Hausdorff iff for any
x € V\ {0} there exists « € A such that ||x|o > 0.
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Proof. Let I,I' C A be finite and €¢,¢ > 0. Set I” := T UI' and €' :=
min(e,€¢'). Then, U v C Ur NUp . So the Ure really form the basis
of a filter F. We proceed to verify that F satisfies the properties required
by Proposition Z8. Clearly, 0 € U for all U € F since ||0||o = 0 and
so 0 € Ure for all I C A finite and € > 0. Also AF = F since \Uy, =
Urale for all I C A finite and € > 0 by linearity of seminorms. As for
property 1 of Proposition EZ4 consider x € V, I C A finite and € > 0
arbitrary. Set p := maxaer{||z|lo}. Then, x € “THUI,G. Property 2 of
Proposition B2 is satisfied since open balls of a seminorm are balanced
and the sets Ur are finite intersections of such open balls and hence also
balanced. Property 3 of Proposition 277 is sufficient to satisfy for a base.
Observe then, Uy /o +Us /o C Uy for all I C A finite and € > 0 due to the
triangle inequality. Thus, the so defined topology makes V into a tvs.
Observe that the sets Ur are convex, being finite intersections of open
balls which are convex by Proposition EZ32. Thus, V is locally convex. If
A is countable, then there is an enumeration I1, I, ... of the finite subsets
of A. It is easy to see that Uy, 1/, with j € {1,...} and n € N provides
then a countable basis of the filter of neighborhoods of 0. That is, V is
pseudometrizable. Concerning the Hausdorff property suppose that for any
x € V \ {0} there exists a € A such that ||z||, > 0. Then, for this = we
have z ¢ Utay ja|,- S0 V is Hausdorff. Conversely, suppose V' is Hausdorff.
Given z € V'\ {0} there exist thus I C A finite and € > 0 such that = ¢ Uy .
In particular, there exists a € I such that ||z|o > € > 0. O

Exercise 5. In the context of Proposition =33 show that the topology is
the coarsest such that all seminorms || - ||, are continuous.

Definition 2.34. Let V be a tvs and W C V a neighborhood of 0. The
map || - [|w : V — R defined as

|z|lw = inf{\ € R} : z € AW}
is called the Minkowski functional associated to W.
Proposition 2.35. Let V be a tvs and W C V' a neighborhood of 0.
1. |px|lw = pllz|lw for allp € R and z € V.
2. If W is balanced, then |cx|lw = |c|||z||lw for allc e K and z € V.
3. If W is convez, then ||z + yllw < ||lz||lw + |lyllw for all z,y € V.

4. If V is Hausdorff and W is bounded, then ||x|w = 0 implies z = 0.
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Proof. Exercise. O

Theorem 2.36. Let V be a tvs. Then, V is locally convex iff there exists
a set of seminorms inducing its topology as in Proposition ZZ33. Also, V is
locally conver and pseudometrizable iff there exists a countable such set.

Proof. Given a locally convex tvs V, let {Uy}aca be a base of the fil-
ter of neighborhoods such that U, is balanced and convex for all a € A.
(Exercise.How can this be achieved?) In case that V is pseudometrizable
we choose the base such that A is countable. Let || - ||, be the Minkowski
functional associated to U,. Then, by Proposition 2233, || - || is & seminorm
for each o € A. We claim that the topology generated by the seminorms is
precisely the topology of V. Exercise.Complete the proof. O

Exercise 6. Let V be a locally convex tvs and W a balanced and convex
neighborhood of 0. Show that the Minkowski functional associated to W is
continuous on V.

Exercise 7. Let V be a vector space and {||-||» }nen & sequence of seminorms
on V. Define the function ¢ : V — Rar via

o0

q(x) = Z 9—n Han

= ezl + 1

(a) Show that ¢ is a pseudo-seminorm on V. (b) Show that the topology
generated on V by ¢ is the same as that generated by the sequence {||-||» } nen-

2.4 Normed and seminormed vector spaces

Definition 2.37. A tvs is called locally bounded iff it contains a bounded
neighborhood of 0.

Proposition 2.38. A locally bounded tvs is pseudometrizable.

Proof. Let V be a locally bounded tvs and U a bounded neighborhood of
0 in V. The sequence {Uy, }nen with U, := LU is the base of a filter F on
V. Take a neighborhood W of 0. By boundedness of U there exists A € RT
such that U C AW. Choosing n € N with n > A we find U, C W, i.e.,
W € F. Hence F is the filter of neighborhoods of 0 and we have presented
a countable base for it. By Theorem P28, V is pseudometrizable. O

Proposition 2.39. Let A, B be a tvs and f € CL(A, B). If A or B is locally
bounded then f is bounded. Hence, CL(A, B) = BL(A, B) in this case.
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Proof. Exercise. O

Definition 2.40. A tvs V is called (semi)normable iff the topology of V is
induced by a (semi)norm.

Theorem 2.41. A tvs V' is seminormable iff V' is locally bounded and locally
convet.

Proof. Suppose V is a seminormed vector space. Then, every ball is bounded
and also convex, so in particular, V is locally bounded and locally convex.

Conversely, suppose V' is a tvs that is locally bounded and locally convex.
Take a bounded neighborhood U; of 0 and a convex subneighborhood Us
of U;. Now take a balanced subneighborhood Us of Us and its convex hull
W = conv(Us). Then W is a balanced, convex and bounded (since W C
Us C U;) neighborhood of 0 in V. Thus, by Proposition 2233 the Minkowski
functional || - ||y defines a seminorm on V. It remains to show that the
topology generated by this seminorm coincides with the topology of V. Let
U be an open set in the topology of V and x € U. The ball B;(0) defined by
the seminorm is bounded since B;(0) C W and W is bounded. Hence there
exists A € R such that B1(0) € A(U — z), i.e., A\™'B1(0) C U — x. But
A71B1(0) = B,-1(0) by linearity and thus By-1(z) C U. Hence, U is open
in the seminorm topology as well. Conversely, consider a ball B.(0) defined
by the seminorm for some € > 0 and take x € B.(0). Choose 6 > 0 such that
|z|lw < e—3. Observe that W C B;(0) and thus by linearity %W C B;(0).
It follows that gW + x C B.(0). But gW + x is a neighborhood of x so it
follows that B(0) is open. This completes the proof. O

Exercise 8. Let V' be locally convex tvs with its topology generated by a
finite family of seminorms. Show that V' is seminormable.

Proposition 2.42. Let V be a seminormed vector space and U C V a
subset. Then, U is bounded iff there exists c € RY such that ||z| < ¢ for all
zeU.

Proof. Exercise. O

Proposition 2.43. Let A, B be seminormed vector spaces and f € L(A, B).
[ is bounded iff there exists ¢ € RT such that ||f(z)| < cl|z|| for all x € A.

Proof. Exercise. O

Proposition 2.44. Let V be a tvs and C a vector subspace. If V is locally
convez, then so is V/C. If V is locally bounded, then so is V/C.

Proof. Exercise. O
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2.5 Inner product spaces

As before K stands for a field that is either R or C.

Definition 2.45. Let V be a vector space over K and (-,-) : V xV - Ka
map. (-,-) is called a bilinear (if K = R) or sesquilinear (if K = C) form iff
it satisfies the following properties:

o (u+v,w) = (u,w) + (v,w) and
(u,v +w) = (u,v) + (u,w) for all u,v,w e V.

o (\u,v) = Mu,v) and (u, \w) = Mu,v) forall \ € Kand v € V.

(+,-) is called symmetric (if K = R) or hermitian (if K = C) iff it satisfies in
addition the following property:

o (u,v) = (v,u) for all u,v € V.

(-,-) is called positive iff it satisfies in addition the following property:
e (v,v) >0forallveV.

(+,-) is called definite iff it satisfies in addition the following property:
o If (v,v) =0thenv=0forallveV.

A map with all these properties is also called a scalar product or an inner
product. V equipped with such a structure is called an inner product space
or a pre-Hilbert space.

Theorem 2.46 (Schwarz Inequality). Let V' be a vector space over K with a
scalar product (-,-) : V. xV — K. Then, the following inequality is satisfied:

|(v, w)|* < (v, v){(w,w) VYv,w e V.

Proof. By definiteness a := (v,v) # 0 and we set § := —(w, v). By positivity
we have,
0 < (Bv + aw, v + aw).

Using bilinearity and symmetry (if K = R) or sesquilinearity and hermiticity
(if K = C) on the right hand side this yields,

0 < [{v,0)[*(w, w) — (v, v)|(v, w)[*.

(Exercise.Show this.) Since (v,v) # 0 we can divide by it and arrive at the
required inequality. O
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Proposition 2.47. Let V be a vector space over K with a scalar product
(,) : V xV — K. Then, V is a normed vector space with norm given by

[ VACHDE

Proof. Exercise.Hint: To prove the triangle inequality, show that ||v +
w||? < (||v]] + ||w|))? can be derived from the Schwarz inequality (Theo-
rem 2728). O

Proposition 2.48. Let V' be an inner product space. Then, Yv,w € V,
1
(v,w) =7 (lo+wl® = Jv—wl?) i K=R,
1
(.0 = 1 ([0 +wl? = llo = wl +ilo +iwl? ~ifo - iw]?) ¥ K=C

Proof. Exercise. O

Proposition 2.49. Let V' be an inner product space. Then, its scalar prod-
uct V. x V. — K is continuous.

Proof. Exercise. O

Theorem 2.50. Let V' be a normed vector space. Then, there exists a scalar
product on V' inducing the norm iff the parallelogram equality holds,

Il +wl® + [lv = wl® = 2[]v]|* + 2w|?  Yv,w e V.
Proof. Exercise. O

Example 2.51. The spaces R" and C" are inner product spaces via
n
(v,w) = Zvim,
i=1

where v;, w; are the coefficients with respect to the standard basis.
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3 First examples and properties

3.1 Elementary topologies on function spaces

If V is a vector space over K and S is some set, then the set of maps
S — V naturally forms a vector space over K. This is probably the most
important source of topological vector spaces in functional analysis. Usually,
the spaces S and V carry additional structure (e.g. topologies) and the maps
in question may be restricted, e.g. to be continuous etc. The topology given
to this vector space of maps usually depends on these additional structures.

Example 3.1. Let S be a set and F'(S,K) be the set of functions on S with
values in K. Consider the set of seminorms {p,}ses on F(S,K) defined by
pz(f) == |f(x)|. This gives F(S,K) the structure of a locally convex tvs.
The topology defined in this way is also called the topology of pointwise
convergence.

Exercise 9. Show that this topology is the coarsest topology making all
evaluation maps, i.e., maps of the type f — f(x), continuous. Show also
that a sequence in F(S,K) converges with respect to this topology iff it
converges pointwise.

Example 3.2. Let S be a set and B(S,K) be the set of bounded functions
on S with values in K. Then, B(S,K) is a normed vector space with the
supremum norm:

Ifll:=sup_|f(z)] Vfe B(SK).
z€B(S,K)

The topology defined in this way is also called the topology of uniform con-
vergence.

Exercise 10. Show that a sequence in B(S,K) converges with respect to
this topology iff it converges uniformly on all of S.

Exercise 11. (a) Show that on B(S,K) the topology of uniform conver-
gence is finer than the topology of pointwise convergence. (b) Under which
circumstances are both topologies equal?

Example 3.3. Let S be a topological space and R the set of compact subsets
of S. For K € 8 define on C(S,K) the seminorm

Ifllx == sup [f(z)| VfeC(SK).
zeK

The topology defined in this way on C(.5, K) is called the topology of compact
convergence.
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Exercise 12. Show that a sequence in C(.5, K) converges with respect to this
topology iff it converges compactly, i.e., uniformly in any compact subset.

Exercise 13. (a) Show that on C(S5,K) the topology of compact conver-
gence is finer than the topology of pointwise convergence. (b) Show that
on the space Cp (9, K) of bounded continuous maps the topology of uniform
convergence is finer than the topology of compact convergence. (c) Give a
sufficient condition for them to be equal.

Definition 3.4. Let S be a set, V a tvs. Let © a non-empty set of non-
empty subsets of S with the property that for X, Y in & there exists Z € &
such that X UY C Z. Let B be a base of the filter of neighborhoods of 0 in
V. Then, for X € G and U € B the sets

M(X,U):={f € F(S,V): f(X)C U}

define a base of the filter of neighborhoods of 0 for a translation invariant
topology on F'(S,V). This is called the &-topology on F (S, V).

Proposition 3.5. Let S be a set, V a tvs and & C B(S) as in Definition B4
Let A C F(S,V) be a vector subspace. Then, A is a tvs with the the &-
topology iff f(X) is bounded for all f € A and X € &.

Proof. Exercise. O

Exercise 14. (a) Let S be a set and & be the set of finite subsets of S. Show
that the G-topology on F(S,K) is the topology of pointwise convergence.
(b) Let S be a topological space and 8 the set of compact subsets of S. Show
that the R-topology on C(S, K) is the topology of compact convergence. (c)
Let S be a set and & a set of subsets of S such that S € &. Show that the
G-topology on B(S,K) is the topology of uniform convergence.

3.2 Completeness

In the absence of a pseudometric we can use the vector space structure of
a tvs to complement the information contained in the topology in order to
define a Cauchy property which in turn will be used to define an associated
notion of completeness.

Definition 3.6. A sequence {z, }nen in a tvs V is called a Cauchy sequence
iff for every neighborhood U of 0 in V' there is a number N > 0 such that
Ty — Ty € U for all n,m > N.
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Proposition 3.7. Let V' be a mvs with translation-invariant pseudometric.
Then, the Cauchy property for sequences in tvs coincide with the previuosly
defined one in pseudometric spaces. That is, Definition B@ coincides then
with Definition [I_73.

Proof. Straightforward. O

This Proposition implies that there is no conflict with our previous def-
inition of a Cauchy sequence in pseudometric spaces if we restrict ourselves
to translation-invariant pseudometrics. Moreover, it implies that for this
purpose it does not matter which pseudometric we use, as long as it is
translation-invariant. This latter condition is indeed essential.

Exercise 15. Give an example of an mvs with two compatible metrics d!,
d? and a sequence z, such that z is Cauchy with respect to d', but not with
respect to d>.

In the following, whenever we talk about a Cauchy sequence in a tvs
(possibly with additional) structure, we mean a Cauchy sequence according
to Definition BM.

For a topologically sensible notion of completeness, we need something
more general than Cauchy sequences: Cauchy filters.

Definition 3.8. A filter F on a subset A of a tvs V is called a Cauchy filter
iff for every neighborhood U of 0 in V' there is an element W € F such that
W—-WwCU.

Proposition 3.9. A sequence is Cauchy iff the associated filter is Cauchy.
Proof. Exercise. O

Proposition 3.10. Let V be a tvs, F a Cauchy filter on a subset A of V.
If p € V is accumulation point of F, then F converges to p.

Proof. Let U be a neighborhood of 0 in V. Then, there exists a neighborhood
W of 0 in U such that W + W C U. Since F is a Cauchy filter there exists
F € F such that F' — F C W. On the other hand, p is accumulation point
of F so there exists ¢ € F N (p+ W). Then, we have FF — g C W and thus
FCq+WCp+W+W Cp—+U. This shows that every neighborhood of
p is contained in F, i.e., F converges to p. O

Proposition 3.11. A converging filter is Cauchy.

Proof. Exercise. O
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Definition 3.12. A subset U of a tvs is called complete iff every Cauchy
filter on U converges to a point in U. It is called sequentially complete iff
every Cauchy sequence in U converges to a point in U.

Since completeness is an important and convenient concept in functional
analisis, the complete versions of Hausdorff tvs have special names. In par-
ticular, a complete metrizable locally convex tvs is called a Fréchet space,
a complete normable tvs is called a Banach space, and a complete inner
product space is called a Hilbert space.

Obviously, completeness implies sequential completeness, but not neces-
sarily the other way round. Note that for an mvs with translation-invariant
pseudometric, completeness in the sense of metric spaces (Definition IZ77)
is now called sequential completeness. However, we will see that in this
context it is equivalent to completeness in the sense of the above definition.

Proposition 3.13. Let V be a mvs. Then, V is complete (in the sense of
tvs) iff it is sequentially complete.

Proof. We have to show that sequential completeness implies completeness.
(The opposite direction is obvious.) We use a translation-invariant pseudo-
metric on V. Suppose F is a Cauchy filter on V. That is, for any € > 0
there exists U € F such that U — U C B(0). Now, for each n € N choose
consecutively Uy, € F such that U, — U, C By/,(0) and U, C U1 if n > 1
(possibly by using the intersection property). Thus, for every N € N we
have that for all n,mm > N : U, — U, C Bl/N(O). Now for each n € N
choose an element x,, € U,,. These form a Cauchy sequence and by sequen-
tial completeness converge to a point x € V. Given n observe that for all
y € Up & d(y,z) < d(y,zn) + d(zn,z) < = + 1 hence U, C By () and
thus By, (z) € F. Since this is true for all n € N, F contains arbitrarily
small neighborhoods of x and hence all of them, i.e., converges to x. ]

Proposition 3.14. (a) Let V be a Hausdorff tvs and A be a complete subset.
Then A is closed. (b) Let V be a tvs and A be a closed subset of a complete
subset B. Then A is complete.

Proof. Exercise. O

We proceed to show the analogue of Proposition [=30.

Lemma 3.15. Let V be a tvs, C C V totally bounded and F an ultrafilter
on C. Then F is Cauchy.
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Proof. Let U be a neighborhood of 0 in V. Choose another neighborhood W
of 0 such that W is balanced and W + W C U. Since C is totally bounded
there is a finite subset F' = {x1,...,2,} of V such that C C F + W. This
implies in turn that there is k € {1,...,} such that (zx + W) N X # 0 for
all X € F. To see that this is true suppose the contrary. Then for each
i € {1,...,n} there is X; € F such that (z; + W) N X; = 0. But, then
0 =N, X; € F, a contradiction. Thus, since F is ultrafilter we must have
zr +W € F by Lemma 023. But (xp + W) —(xp + W) = W - W =
W 4+ W C U by construction. So F is a Cauchy filter. O

Proposition 3.16. Let V be a tvs and C CV a compact subset. Then, C
is complete and totally bounded.

Proof. Exercise. O

Proposition 3.17. Let V be a tvs and C C V a subset. If C is totally
bounded and complete then it is compact.

Proof. Let F be a filter on C. By Proposition there exists an ultrafilter
F'in C such that F C F'. Since C is totally bounded, Lemma BIH implies
that F’ is Cauchy. Since C' is complete, F' must converge to some point
p € C. By Proposition 58, this means that p is accumulation point of F.
By Proposition this implies that p is accumulation point of F. Since F
was arbitrary, Proposition implies that C' is compact. O

Proposition 3.18. Let V be a complete mvs and C' a vector subspace. Then
V/C is complete.

Proof. Exercise. O

Exercise 16. Which of the topologies defined above are complete? Which
become complete under additional assumptions on the space S7

3.3 Finite dimensional tvs

Theorem 3.19. Let V be a Hausdorff tvs of dimension n € N. Then, any
isomorphism of vector spaces from K" to V' is also an isomorphism of tvs.
Moreover, any linear map from V to any tvs is continuous.

Proof. We first show that any linear map from K" to any tvs W is contin-
uous. Define the map ¢ : K" x W" — W given by

g(( Ay s An), (U1, -+ 0n)) = Ao + -+ - + A
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This map can be obtained by taking products and compositions of vector
addition and scalar multiplication, which are continuous. Hence it is con-
tinuous. On the other hand, any linear map f : K® — W takes the form
F1, o ) = g((A1,.. ., An), (v1,...,vy,)) for some fixed set of vectors
{v1,...,v,} in W and is thus continuous by Proposition ITS.

We proceed to show that any linear map V' — K" is continuous. We
do this by induction in n starting with n = 1. For n = 1 any such non-
zero map takes the form g : Ae; — A for some e; € V' \ {0}. (If g =0
continuity is trivial.) For r > 0 consider the element re; € V. Since V
is Hausdorff there exists an open neighborhood U of 0 in V' that does not
contain re;. Moreover, we can choose U to be balanced. But then it is clear
that U C ¢~ 1(B,(0)). That is, g~(B,(0)) is a neighborhood of 0 in V.
Since open balls centered at 0 form a base of neighborhoods of 0 in K this
implies that the preimage of any neighborhood of 0 in K is a neighborhood
of 0 in V. By Proposition E18.a this implies that g is continuous.

We now assume that we have proofed the statement in dimension n — 1.
Let V be a Hausdorff tvs of dimension n. Consider now some non-zero
linear map h : V — K. We factorize h as h = h o p into the projection
p:V — V/kerh and the linear map h : V/kerh — K. kerh is a vector
subspace of V' of dimension n — 1. In particular, it is a Hausdorff tvs and
hence by assumption of the induction isomorphic as a tvs to K»~!. Thus, it
is complete and by Proposition B14.a closed as a subspace of V. Therefore
by Proposition 219 the quotient tvs V/ker h is Hausdorff. Since V/ker h is
also one-dimensional it is isomorphic as a tvs to K as we have shown above.
Thus, h is continuous. Since the projection p is continuous by definition, the
composition k = h o p must be continuous. Hence, any linear map V — K
is continuous. But a linear map V' — K" can be written as a composition of
the continuous map V' — V" given by v + (v,...,v) with the product of n
linear (and hence continuous) maps V' — K. Thus, it must be continuous.

We have thus shown that for any n a Hausdorff tvs V of dimension n is
isomorphic to K" as a tvs via any vector space isomorphism. Thus, by the
first part of the proof any linear map V' — W, where W is an arbitrary tvs
must be continuous. O

Proposition 3.20. Let X be a Hausdorff tvs. Then, any finite dimensional
subspace of X is complete and closed.

Proof. Let A C X be a subspace of dimension n. By Theorem B19, A as a
tvs is isomorphic to K™. In particular, A is complete and thus closed in X
by Proposition B14. O
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Proposition 3.21. Let X be a Hausdorff tvs, C a closed subspace of X and
F a finite-dimensional subspace of X. Then, F + C' is closed in X.

Proof. Since C' is closed X/C' is a Hausdorff tvs. Let p: X — X/C be the
continuous projection. Then, p(F) is finite-dimensional, hence complete and
closed in X/C by Proposition 820. Thus, F +C = p~'(p(F)) is closed. [

Proposition 3.22. Let C' be a bounded subset of K™ with the standard
topology. Then C' is totally bounded.

Proof. Exercise. O

Theorem 3.23 (Riesz). Let V' be a Hausdorff tvs. Then, V is locally com-
pact iff it is finite dimensional.

Proof. If V is a finite dimensional Hausdorff tvs, then its is isomorphic to
K" for some n by Theorem BTY. But closed balls around 0 are compact
neighborhoods of 0 in K”, i.e., K™ is locally compact.

Now assume that V is a locally compact Hausdorff tvs. Let K be a
compact and balanced neighborhood of 0. We can always find this since
given a compact neighborhood by Proposition 22110 we can find a balanced
and closed subneighborhood which by Proposition must then also be
compact. Now let U be an open subneighborhood of %K . By compactness of
K, there exists a finite set of points {z1, ..., x,} such that K C ", (z;+U).
Let W be the finite dimensional subspace of V' spanned by {z1,...,x,}. By
Theorem B9 W is isomorphic to K™ for some m € N and hence complete
and closed in V' by Proposition BI4. So by Proposition 2ZT9 the quotient
space V/W is a Hausdorff tvs. Let 7 : V' — V/W be the projection. Observe
that, K C W+ U C W + £K. Thus, n(K) C 7m(3K), or equivalently
7(2K) C n(K). Tterating, we find 7(2¥K) C 7(K) for all k € N and hence
(V) = 7(K) since V = J32; 2K as K is balanced. Since 7 is continuous
m(K) = n(V) = V/W is compact. But since V/W is Hausdorff any one
dimensional subspace of it is isomorphic to K by Theorem B9 and hence
complete and closed and would have to be compact. But K is not compact, so
V/W cannot have any one-dimensional subspace, i.e., must have dimension
zero. Thus, W =V and V is finite dimensional. ]

Exercise 17. (a) Show that a finite dimensional tvs is always locally com-
pact, even if it is not Hausdorff. (b) Give an example of an infinite dimen-
sional tvs that is locally compact.
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3.4 Equicontinuity

Definition 3.24. Let S be a topological space, T' a tvs and F C C(S,T).
Then, F is called equicontinuous at a € S iff for all neighborhoods W of 0
in T there exists a neighborhood U of a in S such that f(U) C f(a) + W
for all f € F. Moreover, F is called equicontinuous iff F' is equicontinuous
forall a € S.

Exercise 18. Let S be a topological space and F' C C(S,K). (a) Show that
F is bounded in C(S,K) with the topology of pointwise convergence iff for
each x € S there exists ¢ > 0 such that |f(z)| < ¢ for all f € F. (b) Show
that F' is bounded in C(S,K) with the topology of compact convergence iff
for each K C S compact there exists ¢ > 0 such that | f(z)| < cfor allz € K
and for all f € F.

Lemma 3.25. Let S be a topological space and F C C(S,K) equicontinuous.
Then, F' is bounded with respect to the topology of pointwise convergence iff
1t is bounded with respect to the topology of compact convergence.

Proof. Exercise. O

Lemma 3.26. Let S be a topological space and F C C(S,K) equicontinuous.
Then, the closures of F' in the topology of pointwise convergence and in the
topology of compact convergence are equicontinuous.

Proof. Exercise. O

Proposition 3.27. Let S be a topological space and F C C(S,K) equicon-
tinuous. If F' is closed then it is complete, both in the topology of pointwise
convergence and in the topology of compact convergence.

Proof. We first consider the topology of pointwise convergence. Let F be a
Cauchy filter in F'. For each z € S induce a filter F, generated by e (F)
on K through the evaluation map e, : C(S,K) — K given by e, (f) := f(x).
Then each F, is a Cauchy filter on K and thus convergent to a uniquely
defined g(x) € K. This defines a function g : S — K. We proceed to show
that g is continuous. Fix a € S and ¢ > 0. By equicontinuity, there exists
a neighborhood U of a such that f(U) C B¢(f(a)) for all f € F' and hence
|f(x) — f(y)] < 2e for all z,y € U and f € F. Fix z,y € U. Then, there
exists f € F' such that |f(x) — g(x)| < e and |f(y) — g(y)| < e. Hence

l9(x) = g()| < lg(x) = f(@)| + [f(2) = fy)] + [f(y) — 9(y)] < 4e,
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showing that ¢ is continuous. Thus, F converges to g and g € F if F is
closed.

We proceed to consider the topology of compact convergence. Let F be
a Cauchy filter in F' (now with respect to compact convergence). Then, F is
also a Cauchy filter with respect to pointwise convergence and the previous
part of the proof shows that there exists a function g € C(5,K) to which
F converges pointwise. But since F is Cauchy with respect to compact
convergence it must convergence to g also compactly. Then, if F' is closed
we have g € F' and F' is complete. O

Theorem 3.28 (generalized Arzela-Ascoli). Let S be a topological space.
Let F C C(S,K) be equicontinuous and bounded in the topology of pointwise
convergence. Then, F is relatively compact in C(S,K) with the topology of
compact convergence.

Proof. We consider the topology of compact convergence on C(S,K). By
Lemma BZ3, F is bounded in this topology. The closure F' of F is bounded
by Proposition ZT.c, equicontinuous by Lemma and complete by
Proposition B24. Due to Proposition BI7 it suffices to show that F is
totally bounded. Let U be a neighborhood of 0 in V. Then, there exists
K C S compact and € > 0 such that Ug 3. € U, where

Uks:={feV:|f(x)]<dVxre K}

By equicontinuity we can choose for each a € K a neighborhood W of
a such that |f(z) — f(a)] < € for all z € W and all f € F. By com-
pactness of K there is a finite set of points {ai,...,a,} such that the
associated neighborhoods {W7q,..., W)} cover S. Now consider the con-
tinuous linear map p : C(S,K) — K" given by p(f) := (f(a1),..., f(ay)).
Since F' is bounded, p(F') is bounded in K" (due to Proposition Z18.b) and
hence totally bounded (Proposition B22). Thus, there exists a finite subset
{f1,..., fm} C F such that p(F) is covered by balls of radius e centered
at the points p(f1),...,p(fm). In particular, for any f € F there is then
ke {1,...,m} such that |f(a;) — fx(a;)| < € for all i € {1,...,n}. Speci-
fying also © € K there is i € {1,...,n} such that x € W;. We obtain the
estimate

[f (@) = fr(@)] < |f(x) = fai)l + [ f(ai) = frlai)| + | fu(ai) = fu(@)] < 3e.

Since € K was arbitrary this implies f € fi+Ug 3. C fr+U. We conclude
that F is covered by the set {fi,..., fm} + U. Since U was an arbitrary
neighborhood of 0 this means that F' is totally bounded. O
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Proposition 3.29. Let S be a locally compact space. Let F C C(S,K) be
totally bounded in the topology of compact convergence. Then, F is equicon-
tinuous.

Proof. Exercise. O

3.5 The Hahn-Banach Theorem

Theorem 3.30 (Hahn-Banach). Let V' be a vector space over K, p be a
seminorm on V, A C V a vector subspace. Let f : A — K be a linear
map such that |f(x)| < p(z) for all x € A. Then, there exists a linear map
f:V = K, extending f (i.e., f(z) = f(z) for all x € A) and such that
|f(z)| < p(x) forallz e V.

Proof. We first consider the case K = R. Suppose that A is a proper sub-
space of V. Let v € V'\ A and define B to be the subspace of V' spanned by
A and v. In a first step we show that there exists a linear map f : B — R
such that f(z) = f(z) for all z € A and |f(y)| < p(y) for all y € B. Since
any vector y € B can be uniquely written as y = z + Av for some x € A and
some A € R, we have f(y) = f(z) + Af(v), i.e, f is completely determined
by its value on v. For all z,2” € A we have

f@)+ f@') = flz+2') <p(z+2') < p(z —v) +p(a’ +v)
and thus,
f(@) —pz —v) < p(a’ +v) - f(2).

In particular, defining a to be the supremum for z € A on the left and b to
be the infimum for y € A on the right we get

a = sup{f(z) —p(z —v)} < inf {p(z’ +v) - f(2")} = b.
€A T'e

Now choose ¢ € [a,b] arbitrary. We claim that by setting f(v) := ¢, f is
bounded by p as required. For x € A and A > 0 we get

flz+ )=\ (f()\_lﬂc) + c) <Ap (A_1x+v) =p(z+ \v)
flz =)=\ (f()\_lx) —c) < Ap ()\_1:6—11) =p(x— ).
Thus, we get f(z) < p(z) for all z € B. Replacing z by —z and using

that p(—z) = p(x) we obtain also —f(z) < p(x) and thus |f(z)| < p(z) as
required.
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We proceed to the second step of the proof, showing that the desired
linear form f exists on V. We will make use of Zorn’s Lemma. Consider
the set of pairs (W, f) of vector subspaces A C W C V with linear forms
f: W — R that extend f and are bounded by p. These pairs are partially
ordered by extension, i.e., (W, f) < (W’/,f") if W € W' and f'|y = f.
Moreover, for any totally ordered subset of pairs {(W;, fi)}ics there is an
upper bound given by (W7, fr) where Wy := (J;c; Wi and fi(x) := fi(z) for
x € W;. Thus, by Zorn’s Lemma there exists a maximal pair (W, f ). Since
the first part of the proof has shown that for any proper vector subspace
of V we can construct an extension, i.e., a pair that is strictly greater with
respect to the ordering, we must have W = V. This concludes the proof in
the case K = R.

We turn to the case K = C. Let f,(x) := Rf(z) for all x € A be the
real part of the linear form f: A — C. Since the complex vector spaces A
and V are also real vector spaces and p reduces to a real seminorm, we can
apply the real version of the proof to f, to get a real linear map f, : V. — R
extending f, and being bounded by p. We claim that f: V — C given by

f@) = fi(z) —if,(ix) VzeV

is then a solution to the complex problem. We first verify that f is complex
linear. Let z € V and A € C. Then, A = a + ib with a,b € R and

FO) = af(x) + bf(ix)
= afr(z) — aify(ix) + bfr(ix) + bifr (z)
= (a+ib) (fo(x) — ife(ia))
= \(z).
We proceed to verify that f(z) = f(z) for all z € A. For all z € A,

f(x) = Rf(x) —iRf(ir) = Rf(x) — R(1f (2)) = RS (2) +13(f(2)) = f(2).

It remains to show that f is bounded by p. Let € V. Choose A € C with
|A| = 1 such that Af(z) € R. Then,

@) = |7 @)] = [FOa)| = |7:00)| < p(A) = p(a).
This completes the proof. O

Corollary 3.31. Let V be a seminormed vector space, ¢ > 0, A CV a
vector subspace and f : A — K a linear form satisfying | f(x)| < c||z|| for all
x € A. Then, there exists a linear form f :V — K that coincides with f on
A and satisfies | f(x)| < c||z| for all z € V.
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Proof. Immediate. O

Theorem 3.32. Let V be a locally convex tvs, A CV a vector subspace and
[+ A— K a continuous linear form. Then, there exists a continuous linear
form f:V — K that coincides with f on A.

Proof. Since f is continuous on A, the set U := {x € A : |f(x)] < 1} isa
neighborhood of 0 in A. Since A carries the subset topology, there exists
a neighborhood U of 0 in V such that U N A C U. By local convexity,
there exists a convex and balanced subneighborhood W C U of 0 in V.. The
associated Minkowski functional || - ||y is a seminorm on V' according to
Proposition 235 and we have |f(x)| < ||z||w for all x € A. Thus, we may
apply the Hahn-Banach Theorem BZ30 to obtain a linear form f : V — K
that coincides with f on the subspace A and is bounded by || - ||w. Since
| - |lw is continuous this implies that f is continuous. O

Corollary 3.33. Let V' be a locally convex Hausdorff tvs. Then, CL(V,K)
separates points in V. That is, for any pair x,y € V such that x # y, there
exists f € CL(V,K) such that f(x) # f(y).

Proof. Exercise. O

Proposition 3.34. Let X be a locally convexr Hausdorff tvs. Then, any
finite dimensional subspace of X admits a closed complement.

Proof. We proceed by induction in dimension. Let A C X be a subspace of
dimension 1 and v € A\ {0}. Define the linear map A : A — K by A(v) = 1.
Then, the Hahn-Banach Theorem in the form of Theorem B=32 ensures that
A extends to a continuous map A : X — K. Then, clearly ker \ is a closed
complement of A in X. Now suppose we have shown that for any subspace
of dimension n a closed complement exists in X. Let N be a subspace of
X of dimension n + 1. Choose an n-dimensional subspace M C N. This
has a closed complement C' by assumption. Moreover, C' is a locally convex
Hausdorff tvs in its own right. Let A = NNC'. Then, A is a one-dimensional
subspace of C' and we can apply the initial part of the proof to conclude that
it has a closed complement D in C. But D is closed also in X since C' is
closed in X and it is a complement of N. O

3.6 More examples of function spaces

Definition 3.35. Let T be a locally compact space. A continuous function
f T — K is said to vanish at infinity iff for any ¢ > 0 the subset {z €
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T : |f(x)| > €} is compact in T. The set of such functions is denoted by
Co(T,K).

Exercise 19. Let T be a locally compact space. Show that Cy(T,K) is
complete in the topology of uniform convergence, but not in general complete
in the topology of compact convergence.

Definition 3.36. Let U be a non-empty open subset of R™. For a multi-
index [ € Nj we denote the corresponding partial derivative of a function
f:R" - K by
oh ... 9
~—oh ol
Oxy ...0xn

Let k € Ny. If all partial derivatives with |I| := I; + -+ + 1, < k for a
function f exist and are continuous, we say that f is k£ times continuously
differentiable. We denote the vector space of k times continuously differ-
entiable functions on U with values in K by C¥(U,K). We say a function
f U — K is infinitely differentiable or smooth if it is k times continuously
differentiable for any k£ € Ny. The corresponding vector space is denoted by
C>*(U,K).

D'y

Definition 3.37. Let U be a non-empty open and bounded subset of R” and
k € No. We denote by C*(U,K) the set of continuous functions f : U — K
that are k times continuously differentiable on U, and such that any partial
derivative D!f with |I| < k extends continuously to U. Similarly, we denote
by C*(U,K) the set of continuous functions f : U — K, smooth in U and
such that any partial derivative extends continuously to U.

Example 3.38. Let U be a non-empty open and bounded subset of R™.
Let I € N2 and define the seminorm p; : CK(U,K) — R{ via

pi(f) = sup|(D'f) ()]
zelU
for k € Ng with k& > |I| or for k = co. For any k € Ny the set of seminorms
{p1: 1 € NB,|l| < k} makes C*(U,K) into a normable vector space. Similarly,
the set of seminorms {p; : | € N’} makes C*°(U,K) into a locally convex
mvs.

Exercise 20. Let U be a non-empty open and bounded subset of R™.
Show that C>°(U,K) with the topology defined above is complete, but not
normable.
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Proposition 3.39. Let T be a o-compact space. Then, C(T,K) with the
topology of compact convergence is metrizable.

Proof. Exercise. O

Example 3.40. Let U be a non-empty open subset of R” and k& € NgU{oo}.
Let W be an open and bounded subset of R™ such that W C U and let [ € N
such that |I| < k. Define the seminorm py;, : C¥(U,K) — R via

P, (f) = sup | (D'f) ()]

zeEW
The set of these seminorms makes C*(U, K) into a locally convex tvs.

Exercise 21. Let U C R™ be non-empty and open and let k£ € Ny U {o0}.
Show that C*(U,K) is complete and metrizable, but not normable.

Exercise 22. Let 0 < k < m < oo. (a) Let U C R™ be non-empty, open and
bounded. Show that the inclusion map C™(U,K) — C*(U,K) is injective
and continuous, but does not in general have closed image. (b) Let U C R"
be non-empty and open. Show that the inclusion map C™(U,K) — C*(U, K)
is injective and continuous, but is in general neither bounded nor has closed
image.

Exercise 23. Let U C R" be non-empty, open and bounded, let & € Ny U
{oo}. Show that the inclusion map C¥(U,K) — CF(U,K) is injective and
continuous. Show also that its image is in general not closed.

Exercise 24. Let k € Ny U {oo}. For f € C!(R,K) consider the operator
D(f) := f'. (a) Show that D : C**1(]0,1],K) — C*([0,1],K) is continuous.
(b) Show that D : CF1(R,K) — C*(R,K) is continuous.

Exercise 25. Let k € Ny U {oc}. For f € C(R,K) consider the operator

(I()(y) == /0 ! b(2) da

(a) Show that I : C*([0,1],K) — C*¥+1(]0,1],K) is continuous. (b) Show
that I : Ck(R,K) — C*1(R,K) is continuous.

Definition 3.41. Let D be a non-empty, open and connected subset of C.
We denote by O(D) the vector space of holomorphic functions on D. If D
is also bounded we denote by O(D) the vector space of complex continuous
functions on D that are holomorphic in D.
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Exercise 26. (a) Show that O(D) is complete with the topology of uniform
convergence. (b) Show that O(D) is complete with the topology of compact
convergence.

Theorem 3.42 (Montel). Let D C C be non-empty, open and connected
and F C O(D). Then, the following are equivalent:

1. F is relatively compact.
2. F is totally bounded.
3. F is bounded.

Proof. 1.=2. F is compact and hence totally bounded by Proposition I-S0.
Since F is a subset of F' it must also be totally bounded. 2.=3. This follows
from Proposition 1. 3.=-1. Since D is locally compact, it is easy to see
that boundedness is equivalent to the following property: For each point
z € D there exists a neighborhood U C D and a constant M > 0 such that
|f(z)] < M for all z € U and all f € F. It can then be shown that F is
equicontinuous [Notes on Complex Analysis, Theorem 5.28]. The Arzela-
Ascoli Theorem then ensures that F' is relatively compact. O

Definition 3.43. Let X be a measurable space, p a measure on X and
p > 0. Define

LP(X, pu,K) :={f : X — Kmeasurable : | f|? integrable}.
Also define
LX(X, 1, K) :={f : X - K measurable : |f| bounded almost everywhere}.
We recall the following facts from real analysis.
Example 3.44. The set £P(X, u,K) for p € (0, 00] is a vector space.
Lo floo s £2°(X, p, K) — R{ given by
| flloo :=inf{||lg|lsup : ¢ = fa.e. and g : X — K bounded measurable}

defines a seminorm on £°(X, i, K), making it into a complete semi-
normed space.
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2. If 1 < p < oo, then || - ||, : LP(X, 11, K) — R{ given by

i = ([1s7)"

defines a seminorm on £P(X, u, K), making it into a complete semi-
normed space.

3. If p <1, then s, : LP(X, 1, K) — RJ given by

()= [ 1P

defines a pseudo-seminorm on L£P(X, u, K), making it into a complete
pseudometrizable space.

Example 3.45. For any p € (0,00, the closure N := {0} of zero in
LP(X, u, K) is the set of measurable functions that vanish almost every-
where. The quotient space LP(X,u,K) := LP(X,u,K)/N is a complete
mvs. It carries a norm (i.e., is a Banach space) for p > 1 and a pseudo-norm
otherwise. In the case p = 2 the norm comes from an inner product making
the space into a Hilbert space.

3.7 The Banach-Steinhaus Theorem

Definition 3.46. Let S be a topological space. A subset C' C S is called
nowhere dense iff its closure C' does not contain any non-empty open set. A
subset C' C S is called meager iff it is the countable union of nowhere dense
subsets.

Proposition 3.47. Let X and Y be tvs and A C CL(X,Y). Then A is
equicontinuous iff for any neighborhood U of 0 in'Y there exists a neighbor-
hood V of 0 in X such that

f(V)YCw VfeA.
Proof. Immediate. O

Theorem 3.48 (Banach-Steinhaus). Let X andY be tvs and A C CL(X,Y).
For x € X define A(x) :={f(x): f € A} CY. Define BC X as

B :={x € X : A(z) is bounded}.

If B is not meager in X, then B = X and A is equicontinuous.
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Proof. We suppose that B is not meager. Let U be an arbitrary neighbor-
hood of 0 in Y. Choose a closed and balanced subneighborhood W of 0.
Set
E:= () 71 (W)
feA

and note that F is closed and balanced, being an intersection of closed and
balanced sets. If x € B, then A(x) is bounded, there exists n € N such that
A(z) € nW and hence = € nE. Therefore,

(o.9]
BC |JnE.

n=1

If all sets nE were meager, their countable union would be meager and also
the subset B. Since by assumption B is not meager, there must be at least

one n € N such that nF is not meager. But since the topology of X is scale
o o

invariant, this implies that F itself is not meager. Thus, the interior £ = F
o
is not empty. Also, F is balanced since F is balanced and thus must contain
[¢]

0. In particular, E, being open, is therefore a neighborhood of 0 and so is
FE itself. Thus,
f(E)CW CU VfeA.

This means that A is equicontinuous at 0 and hence equicontinuous by
linearity (Proposition B27). Let now = € X arbitrary. Since z is bounded,
there exists A > 0 such that z € AE. But then, f(z) € f(AE) C AU for all
f € A. That is, A(x) C AU, i.e., A(x) is bounded and = € B. Since = was
arbitrary, B = X. O

Proposition 3.49. Let S be a complete metric space and C C S a meager
subset. Then, C' does not contain any non-empty open set. In particular,

C+#S.

Proof. Since C' is meager, there exists a sequence {C), },en of nowhere dense
subsets of S such that C' = (J,cy Cn. Define U,, := S\ C, for all n € N.
Then, each U, is open and dense in S. Thus, by Baire’s Theorem X2
the intersection (,cyUn is dense in S. Thus, its complement U,cn Cr
cannot contain any non-empty open set. The same is true for the subset
C - UnEN Cn O

Corollary 3.50. Let X be a complete Hausdorff mvs, Y be a tvs and A C
CL(X,Y). Suppose that A(z) := {f(z) : f € A} CY is bounded for all
x € X. Then, A is equicontinuous.
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Proof. Exercise. O

Corollary 3.51. Let X be a Banach space, Y a normed vector space and
A CCL(X,Y). Suppose that

sup || f(z)|| < o0 Ve X.
feA

Then, there exists M > 0 such that
[f(2)]l < Mllz|| VzeX,VfeA

Proof. Exercise. O

3.8 The Open Mapping Theorem

Theorem 3.52 (Open Mapping Theorem). Let X be a complete Hausdorff
mus, Y a Hausdorff tvs, f € CL(X,Y) and f(X) not meager in' Y. Then,
Y is a complete Hausdorff mvs and f is open and surjective.

Proof. Suppose U is a neighborhood of 0 in X. Let V C U be a balanced
subneighborhood of 0. Since every point of X is bounded we have

X = U nV and hence f(X)= U nf(V).

neN neN

But f(X) is not meager, so nf(V) is not meager for at least one n € N.
But then scale invariance of the topology of Y implies that f(V') itself is

not meager. Thus, f(V) is not empty, is open and balanced (since V is
balanced) and thus forms a neighborhood of 0 in Y. Consequently, f(V) is
also a neighborhood of 0 in Y and so is f(U).

Consider now a compatible pseudonorm on X. Let U be a neighbor-
hood of 0 in X. There exists then » > 0 such that B,(0) C U. Let
y1 € f(B,/2(0)). We proceed to construct sequences {yy }nen and {z, fnen

by induction. Supposed we are given y,, € f(B, /2 (0)). By the first part of
the proof f(B, on+1(0)) is a neighborhood of 0 in Y. Thus,

F(Byy20(0)) 1 (3o + F(By s (0)) ) £ 0.

In particular, we can choose z,, € B, /on(0) such that

f(@n) € yn + (B /2n+1(0)).
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Now set ynt1 := yn — f(2n). Then, yny1 € f(B,/on+1(0)) as the latter is
balanced.

Since in the pseudonorm |lz,| < r/2" for all n € N, the partial sums
{3, Tn }men form a Cauchy sequence. (Use the triangle inequality). Since
X is complete, they converge to some z € X with ||z| < r, i.e., z € B,(0).
On the other hand

f <Z mn) Zf Tn) = Z — Ynt1) = Y1 — Ym+1-
n=1 = n=1

Since f is continuous the limit m — oo exists and yields
fx)=y1—y where y:= lim y,,.

Note that our notation for the limit ¢ implies uniqueness which indeed fol-
lows from the fact that Y is Hausdorff.

We proceed to show that y = 0. Suppose the contrary. Again using that
Y is Hausdorff there exists a closed neighborhood C' of 0 in Y that does not
contain y. Its preimage f~1(C) is a neighborhood of 0 in X by continuity
and must contain a ball B, j5n (0) for some n € N. But then f(B, /on(0)) € C
and f(B,2n(0)) € C since C' is closed. But yi € f(B,/2:(0)) € C for all
k > n. So no yi for k > n is contained in the open neighborhood Y \ C' of
y, contradicting convergence of the sequence to y. We have thus established
f(z) = y1. But since z € B,(0) and y1 € f(B,/2(0)) was arbitrary we may
conclude that f(B,/2(0)) € f(B-(0)) € f(U). By the first part of the proof

f(B,2(0)) is a neighborhood of 0 in Y. So we may conclude that f(U) is
also a neighborhood of 0 in Y. This establishes that f is open at 0 and
hence open everywhere by linearity.

Since f is open the image f(X) must be open in Y. On the other hand
f(X) is a vector subspace of Y. But the only open vector subspace of a tvs
is the space itself. Hence, f(X) =Y, i.e., f is surjective.

Let now C := ker f. Since f is surjective, Y is naturally isomorphic to
the quotient space X/C' as a vector space. Since f is continuous and open Y
is also homeomorphic to X/C by Proposition 219.3 and hence isomorphic
as a tvs. But then Propositions and BIX imply that Y is metrizable
and complete. ]

Corollary 3.53. Let X, Y be complete Hausdorff mvs and f € CL(X,Y)

surjective. Then, f is open.

Proof. Exercise. O
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4 Algebras, Operators and Dual Spaces

4.1 The Stone-Weierstraf3l Theorem

Definition 4.1. A vector space A over the field K is called an algebra over
K iff it is equipped with an associative bilinear map - : A x A — A. This
map is called multiplication.

Definition 4.2. Let A be an algebra over K. A is called a commutative
algebra iff a-b=10-a for all a,b € A. An element e € A is called a unit iff
e-a=a-e=aforalla€ Aande#0. Iff Aisequipped with a unit it
is called a wunital algebra. Assume now A to be unital and consider a € A.
Then, b € A is called an inverse of a iff b-a =a-b=-e. An element a € A
possessing an inverse is called invertible.

It is immediately verified that a unit and an inverse are unique.
Definition 4.3. Let A be an algebra over K equipped with a topology. Then
A is called a topological algebra iff vector addition, scalar multiplication and

algebra multiplication are continuous.

Proposition 4.4. Let S be a topological space. Then, C(S,K) with the
topology of compact convergence is a unital topological algebra.

Proof. Exercise. O

Lemma 4.5. Let ¢ > 0. The absolute value function |- | : R — R given
by © — |z| can be approximated uniformly on [—c,c| by polynomials with
vanishing constant term.

Proof. Exercise. O

Lemma 4.6. Let ¢ > 0 and € > 0. Then, there exist polynomials Py, and

Ppax of n variables and without constant term such that for all ay,...,a, €
[_Cv 0]7

| Pmin (a1, ..., a,) —min{ay,...,an}| <,

| Pmax(a1, . ..,a,) —max{ay,...,a,}| <e.

Furthermore, Pyin(a,...,a) = a and Pyax(a,...,a) = a.



54 Robert Oeckl — FA NOTES - 05/12/2011

Proof. 1t suffices to show the statement for n = 2. Since the minimum
and maximum functions can be evaluated iteratively, the general statement
follows then by iteration and a multi-e argument. We notice that

ap +az  |ag — ag]

max{aj,as} =

2 2
min{a1,a2} = @ —;—ag — |a1 ;aﬂ.

By Lemma B=3 there exists a polynomial P without constant terms such
that |P(z) — |z|| < 2¢ for all x € [—2¢,2¢]. It is easily verified that

a1 + as P(a1 —CLQ)

Pmax(ah a2) = 9 + 9 )
a1 +as Plap —ay
Pmin(ala a2) = 9 - ( 9 )
have the desired properties. O

Definition 4.7. Let S be a set and A C F(5,K). We say that A separates
points iff for each pair z,y € S such that x # y there exists f € A such that
f(x) # f(y). We say that A vanishes nowhere iff for each € S there exists
f € A such that f(z) #0.

Lemma 4.8. Let S be a topological space and A C C(S,K) a subalgebra.
Suppose that A separates points and vanishes nowhere. Then, for any pair
z,y € S with x # y and any pair a,b € K there exists a function f € A such
that f(x) = a and f(y) = 0.

Proof. Exercise. O

Theorem 4.9 (real Stone-Weierstrafl). Let K be a compact Hausdorff space
and A C C(K,R) a subalgebra. Suppose that A separates points and vanishes
nowhere. Then, A is dense in C(K,R) with respect to the topology of uniform
convergence.

Proof. Given f € C(K,R), and € > 0 we have to show that there is k € A
such that k& € B(f), i.e.,

flx)—e<k(x)< f(x)+e VrekK.

Fix z € K. For each y € K we choose a function g,, € A such that
f(x) = gzy(z) and f(y) = gzy(y). This is possible by Lemma B8. By
continuity there exists an open neighborhood U, for each y € K such that
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9zy(2) < f(2) +€/4 for all z € U,. Since K is compact there are finitely
many points y1,...,Y, € K such that the associated open neighborhoods
Uy,,..., Uy, cover K. Let

gz = min{gl‘,yn S ’gI7yn}'

Since K is compact there exists ¢ > 0 such that |g,,,(2)| < ¢ for all z € K
and all 7 € {1,...,n}. Then, by Lemma B8 there exists a polynomial Pyp
such that hy := Pumin(Gzy1s - - -5 Joy,) € A satisfies |hq(2) — g2(2)| < €/4 for
all z € K and hy(z) = gy(z). Thus, h,(x) = f(z) and h,(z) < f(2) +€/2
for all z € K.

Choose now for each x € K a function h, € A as above. Then, by
continuity, for each z € K there exists an open neighborhood U, such that
f(2) —€/2 < hg(z) for all z € U,. By compactness of K there exists a
finite set of points z1,...,x,, € K such that the associated neighborhoods
Ugyy..., Uy, cover K. Let

h:=max{hg ..., hs, }.

Since K is compact there exists ¢ > 0 such that |hg,(2)| < c for all z € K
and all 7 € {1,...,m}. By Lemma B0 there exists a polynomial Pyax such
that k := Pnax(hay,-- -, ha,,) € A satisfies |k(z) — h(z)| < €/2 for all z € K.
Then, f(z)—e < k(z) < f(z)+efor all z € K. This completes the proof. [J

Theorem 4.10 (complex Stone-Weierstraf). Let K be a compact Hausdorff
space and A C C(K,C) a subalgebra. Suppose that A separates points,
vanishes nowhere and is invariant under complex conjugation. Then, A is
dense in C(K,C) with respect to the topology of uniform convergence.

Proof. Let Ag be the real subalgebra of A given by the functions with values
in R. Note that if f € A, then Rf € Ag since Rf = (f + f)/2. Likewise
if f € A, then Sf € Ag since Sf = —R(if). It is then clear that Agr
separates points and vanishes nowhere. Applying the real version of the
Stone-Weierstral Theorem B9 we find that Agr is dense in C(K,R). But
then A = Ag +iAp is dense in C(K,C) = C(K,R) +1i C(K,R). O

Theorem 4.11. Let S be a Hausdorff space and A C C(S,K) a subalgebra.
Suppose that A separates points, vanishes nowhere and is invariant under
complex conjugation if K = C. Then, A is dense in C(S,K) with respect to
the topology of compact convergence.
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Proof. Recall that the sets of the form
Uke:={f € C(SK):|f(z) <eVre K},

where K C S is compact and € > 0 form a basis of neighborhoods of 0 in
C(S,K). Given f € C(S,K), K C S compact and € > 0 we have to show that
there is g € A such that g € f + Uk .. Let Ax be the image of A under the
projection p : C(S,K) — C(K,K). Then, Ay is an algebra that separates
points, vanishes nowhere and is invariant under complex conjugation if K =
C. By the ordinary Stone-Weierstrafl Theorem B9 or B0, Ag is dense
in C(K,K) with respect to the topology of uniform convergence. Hence,
there exists g € A such that p(g) € Bc(p(f)). But this is equivalent to
g€ f + UK,e- O

Theorem 4.12. Let S be a locally compact Hausdorff space and A C
Co(S,K) a subalgebra. Suppose that A separates points, vanishes nowhere
and is invariant under complex conjugation if K = C. Then, A is dense in
Co(S,K) with respect to the topology of uniform convergence.

Proof. Exercise.Hint: Let S = S U {oc} be the one-point compactification
of S (compare Exercise B). Show that Co(S5,K) can be identified with the
closed subalgebra Cj.—o(S,K) € C(5,K) of those continuous functions on

S that vanish at co. Denote by A the corresponding extension of A to S.
Now modify Theorem B9 in such a way that A is assumed to vanish nowhere
except at 0o to show that A is dense in C|o— (5, K). O

4.2 Operators

Proposition 4.13. Let X, Y, Z be tvs. Let f € CL(X,Y) and g €
CL(Y, Z). If f or g is bounded, then go f is bounded. If f or g is compact,

then go f is compact.
Proof. Exercise. O

Definition 4.14. Let X,Y be normed vector spaces. Then, the operator
norm on CL(X,Y’) is given by

£ := sup {|lf(@)]| : 2 € B1(0) € X }.

Proposition 4.15. Let X be a normed vector space andY a Banach space.
Then, CL(X,Y') with the operator norm is a Banach space.
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Proof. Let {f,}nen be a Cauchy sequence in CL(X,Y’). This means,
Ve>0:3IN >0:Vn,m >N :||fn— [l <e.
But by the definition of the operator norm this is equivalent to
Ve>0:3IN >0:Vn,m >N Ve e X : | fo(z) — fm(2)| <e€llz]. (1)

Since Y is complete, so each of the Cauchy sequences { f,,(x) }nen converges
to a vector f(x) € Y. This defines a map f: X — Y. f is linear since we
have for all z,y € X and \,p € K,

f()\x + My) = nh_g.lo fn(AHT + Uy) = nh_fgo()‘fn(x) + ,U/fn(y»
= A lim fo(2) +p im fo(y) = Af(2) + nf(y).

Equation () implies now
Ve>0:3IN >0:Yn> N :Vr e X :|fulx) — f(x)] <€z
This implies that f is continuous and is equivalent to
Ve>0:IN >0:Yn> N :||f, — fll <e

That is, { fn}nen converges to f. O

Exercise 27. Let X, Y be tvs. Let & be the set of bounded subsets of X.
(a) Show that CL(X,Y) is a tvs with the &-topology. (b) Suppose further
that X is locally bounded and Y is complete and Hausdorff. Show that then
CL(X,Y) is complete. (c) Show that if X and Y are normed vector spaces
the G-topology coincides with the operator norm topology.

Example 4.16. Let X be a tvs. Then, CL(X,X) is an algebra over K
and Proposition B13 implies that the subsets BL(X, X) and KL(X, X) of
CL(X, X) are bi-ideals.

Exercise 28. Let X be a normed vector space. Show that CL(X, X) with
the operator norm and multiplication given by composition is a topological
algebra. Moreover, show that ||A o B|| < ||A]|||B|| for all A, B € CL(X, X).



58 Robert Oeckl — FA NOTES - 05/12/2011

4.3 Dual spaces

Definition 4.17. Let X be a tvs over K. Then, the space L(X, K) of linear
maps X — K is called the algebraic dual of X and denoted by X*. The
space CL(X, K) of continuous linear maps X — K is called the (topological)
dual of X and denoted by X*.

Definition 4.18. Let X be a tvs. Then, the weak™ topology on X™* is the
coarsest topology on X* such that the evaluation maps & : X* — K given
by Z(f) := f(x) are continuous for all x € X.

Exercise 29. Let X be a tvs. Show that the weak* topology on X* makes it
into a locally convex tvs and indeed coincides with the topology of pointwise
convergence under the inclusion CL(X,K) C C(X,K). Moreover, show that
CL(X,K) is closed in C(X,K).

Proposition 4.19. Let X be a tvs, F C CL(X,K) equicontinuous. Then,
F' is bounded in the weak® topology.

Proof. Exercise. O

Proposition 4.20. Let X be a normed vector space. Then, the operator
norm topology on X* is finer than the weak* topology.

Proof. Exercise. O

Indeed, we shall see that the following Banach-Alaoglu Theorem has as
a striking consequence a considerable strengthening of the above statement.

Theorem 4.21 (Banach-Alaoglu). Let X be a tvs, U a neighborhood of 0
in X and V a bounded and closed set in K. Then, the set

MU V) ={feX": f(U) CV}
is compact with respect to the weak™ topology.

Proof. We first show that M (U, V) is closed. To this end observe that

MU, V) = m M{z},V) where M{z},V):={feX": f(x) e V}.
zelU

Each set M ({z},V) is closed since it is the preimage of the closed set V/
under the continuous evaluation map z : X* — K. Thus, M (U, V), being
an intersection of closed sets is closed.
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Next we show that M (U, V) is equicontinuous and bounded. Let W be
a neighborhood of 0 in K. Since V is bounded there exists A > 0 such that
V C AW, ie., A7'V C W. But by linearity M(U,V) = M(A\"1U,A"1V).
This means that f(A"'U) C A~V C W for all f € M(U,V), showing
equicontinuity. By Proposition BE19 it is also bounded.

Thus, the assumptions of the Arzela-Ascoli Theorem are satisfied
and we obtain that M (U, V) is relatively compact with respect to the topol-
ogy of compact convergence. But since M (U, V) is closed in the topology of
pointwise convergence it is also closed in the topology of compact conver-
gence which is finer. Hence, M (U, V) is compact in the topology of compact
convergence. But since the topology of pointwise convergence is coarser,
M(U, V) must also be compact in this topology. O

Corollary 4.22. Let X be a normed vector space and B C X* the closed
unit ball with respect to the operator norm. Then B is compact in the weak*
topology.

Proof. Exercise. O

Remark 4.23. Let X be a normed space. Then, X* with the operator
norm topology is complete, i.e., a Banach space (due to Proposition B-13).

Given a normed vector space X, we shall in the following always equip
X* with the operator norm if not mentioned otherwise.

Definition 4.24. Let X be a normed vector space. The bidual space of X,
denoted by X** is the dual space of the dual space X*. Let =z € X.

Proposition 4.25. Let X be a normed vector space. Given x € X the
evaluation map & : X* — K given by Z(y) := y(x) for all y € X* is an
element of X**. Moreover, the canonical linear map ix : X — X** given by
T — T is isomelric.

Proof. The continuity of & follows from Proposition B220. Thus, it is an
element of X**. We proceed to show that ix is isometric. Denote by B xx
the closed unit ball in X*. Then, for all x € X,

12| = sup [2(f)]= sup |f(z)| < sup [[fl[l=] =[]
fEBx+ fe€Bxx* fe€Bxx

On the other hand, given x € X choose with the help of the Hahn-Banach
Theorem (Corollary B=31) g € X* such that g(z) = ||z|| and ||g|]| = 1. Then,

12 = Sup 2N = [2(9)] = lg(=)] = |||

EBx*
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Definition 4.26. A Banach space X is called reflexive iff the canonical
linear map 7x : X — X™** is surjective.

4.4 Adjoint operators

Definition 4.27. Let X, Y be tvs and f € CL(X,Y). The adjoint operator
f* e L(Y*, X*) is defined by

(f*(9)(x) :==g(f(x)) VeeX,geY"

Remark 4.28. It is immediately verified that the image of f* is indeed
contained in X™* and not merely in X *.

Proposition 4.29. Let X, Y be tvs and f € CL(X,Y). Then, f* €
CL(Y™, X*) if we equip X* and Y* with the weak® topology.

Proof. Exercise. O

Proposition 4.30. Let X, Y be normed vector spaces and f € CL(X,Y).
Then, f* € CL(Y™*, X*) if we equip X* and Y™ with the operator norm topol-
ogy. Moreover, equipping also CL(X,Y") and CL(Y™*, X*) with the operator
norm we get || f*|| = ||f|| for all f € CL(X,Y). That is, * : CL(X,Y) —
CL(Y™*, X*) is a linear isometry.

Proof. Exercise.Hint: Use the Hahn-Banach Theorem in the form of Corol-
lary B33T to show that || f*[| > || f]l- O

Lemma 4.31. Let X, Y be normed vector spaces and f € CL(X,Y). Then,
ffoix =1yof.

Proof. Exercise. O

Proposition 4.32. Let X, Y be normed vector spaces and f € CL(X,Y).
Equip X* and Y* with the operator norm topology. Then, compactness of f
implies compactness of f*. Supposing in addition that 'Y is complete, also
compactness of f* implies compactness of f.

Proof. Suppose first that f is compact. Then, C := f(B;(0)) is compact.
Let By+ be the open unit ball in Y*. Then, By« is equicontinuous and
the restriction of By« to C' C Y is bounded in C(C,K) (with the topology
of pointwise convergence). Thus, by the Arzela-Ascoli Theorem BZR, By«
restricted to C is totally bounded in C(C,K) (with the topology of uniform
convergence). In particular, for any € > 0 there exists a finite set F' C By«
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such that for any g € By- there is § € F with |g(y) —g(y)| < e forally € C.
But then also |f*(g)(x) — f*(g)(z)| < € for all x € B1(0) € X. This in turn
implies ||f*(g) — f*(g)]| < e. That is, f*(By~) is totally bounded and hence
relatively compact. Hence, f* is compact.

Conversely, suppose that f* is compact. Then, by the same argument
as above f**: X** — Y** is compact. That is, there is a neighborhood U**
of 0 in X** such that f**(U**) is compact in Y**. Since ix is continuous
U = i)_(l(U**) is a neighborhood of 0 in X. Using Lemma B30 we get
f(U*) D f*oix(U) =iyof(U). In particular, this means that iy o f(U)
is totally bounded. Since iy is isometric, f(U) is also totally bounded. So,
F(U) is totally bounded and also complete given completeness of Y, hence
compact. Thus, f is compact. O

Proposition 4.33. Let X, Y be Hausdorff tvs, A € CL(X,Y). Then, there
are canonical isomorphisms of vector spaces,

1. (Y/m)* — ker(A¥),

2. Y*/ker(A%) - (A(X)) .

Moreover, supposing in addition that Y 1is locally convex, if we equip dual
space with the weak® topology, these isomorphisms become isomorphisms of
tvs.  Similarly, If X and Y are normed vector spaces and we equip dual
spaces with the operator norm, the isomorphisms become isometries.

Proof. Let q : Y — Y/A(X) be the quotient map. The adjoint of ¢ is
—_—\
q* (Y/A(X)) — Y™. Since ¢ is surjective, ¢* is injective. We claim

that the image of ¢* is ker(A*) C Y™* proving 1. Let f € (Y/m)*
Then, A*(¢*(f)) = fogo A = 0 since already ¢ o A = 0. Now suppose
f € ker(A*) CY*. Then, foA=0,ie., fl4x) =0. Since f is continuous,
we must actually have f |m = 0. But this means there is a well defined

g:Y/A(X) — K such that f = g o q. Moreover, the continuity of f implies
continuity of g by the definition of the quotient topology on Y/A(X). This
completes the proof of 1.

Consider the inclusion i : A(X) — Y. The adjoint of i is i* : Y* —
(M)* Since 7 is injective, ¢* is surjective. We claim that the kernel of ¢*
is precisely ker(A*) so that quotienting it leads the isomorphism 2. Indeed,
let feY* feker(A*)iff 0 = A*(f) = f o A. But this is equivalent to
f|A(X) = (0. Since f is continuous this is in turn equivalent to f|m = 0.
But this is in turn equivalent to 0 = foi = i*(f), completing the proof of 2.
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Exercise.Complete the topological part of the proof. O

4.5 Approximating Compact Operators

Definition 4.34. Let X, Y be tvs. We denote the space of continuous linear
maps X — Y with finite dimensional image by CLg,(X,Y).

Proposition 4.35. Let X, Y be tvs such thatY is Hausdorff. Then, CLg,(X,Y) C
KL(X,Y).

Proof. Exercise. O

Proposition 4.36. Let X be a normed vector space, Y a Banach space.
Then, CLgn(X,Y) C KL(X,Y) with respect to the operator norm topology.

Proof. Let f € CLg,(X,Y) and € > 0. Then, there exists g € CLgyn(X,Y)
such that || f — g|| < e. In particular, (f — g)(B1(0)) € B(0). This implies
f(B1(0)) € g(B1(0))+ B(0). But g(B1(0)) is a bounded subset of the finite
dimensional subspace g(X) and hence totally bounded. Thus, there exists
a finite subset F' C ¢(B1(0)) such that g(B1(0)) C F + B(0). But then,
f(B1(0)) € F + Bc(0) + Be(0) C F' 4 B2.(0). That is, f(B1(0)) is covered
by a finite number of balls of radius 2¢. Since ¢ was arbitrary this means
that f(B1(0)) is totally bounded and hence relatively compact. O

Proposition 4.37. Let X,Y be normed vector spaces. Suppose there ex-
ists a bounded sequence {sn}nen of operators s, € CLgn(Y,Y) such that
lim, o0 Sn(y) = y for ally € Y. Then, KL(X,Y) C CLg,(X,Y) with
respect to the operator norm topology.

Proof. Exercise.Hint: For f € KL(X,Y) and € > 0 show that there exists
n € N such that ||s, o f — f]| <e. O

4.6 Fredholm Operators

Proposition 4.38. Let X be a Hausdorff tvs and T € KL(X,X). Then,
the kernel of S :=1—T € CL(X, X) is finite-dimensional.

Proof. Note that T acts as the identity on the subspace ker S. Denote this
induced operator by T : ker S — ker S. Since T is compact so is T. Thus,
there exists a neighborhood of 0 in ker S that is compact. In particular,
ker S is locally compact. By Theorem B3, ker S is finite dimensional. [
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Proposition 4.39. Let X, Y be Banach spaces and f € CL(X,Y) injective.
Then, f(X) is closed iff there exists ¢ > 0 such that || f(z)| > c|lz|| for all
reX.

Proof. Suppose first that f(X) is closed. Then, f(X) is complete since Y
is complete. Thus, by Corollary B53, f is open as a map X — f(X). In
particular, f(B1(0)) is an open neighborhood of 0 in f(X). Thus, there
exists ¢ > 0 such that B.(0) C f(B1(0)) € f(X). By injectivity of f this
implies that ||f(x)|| > ¢ for all x € X with ||z|| > 1. This implies in turn
| f(z)|| > c||z]|| for all z € X.

Conversely, assume that there is ¢ > 0 such that ||f(z)] > c|z| for
all x € X. Let y € f(X). Then there exists a sequence {z,}nen in X
such that { f(zy) tnen converges to y. In particular, { f(zy) }nen is a Cauchy
sequence. But as is easy to see the assumption then implies that {x, }nen is
also a Cauchy sequence. Since X is complete this sequence converges, say
to x € X. But since f is continuous we must have

y= lim f(zn) = f (nlgn;o xn) = f(=).

In particular, y € f(X), i.e., f(X) is closed. O

Proposition 4.40. Let X be a Banach space and T € KL(X,X). Then,
the image of S :=1—T € CL(X, X) is closed and has finite codimension,
i.e., X/S(X) is finite dimensional.

Proof. We first show that S(X) is a closed subspace of X. Since S is contin-
uous ker S is a closed subspace of X. The quotient map ¢ : X — X/ ker(S)
is thus a continuous and open linear map between Banach spaces. S factor-
izes through ¢ via S = S o ¢, where S : X/ker(S) — X is linear, continuous
and injective. We equip X/ker(S) with the quotient norm. By Propo-
sitions 244 and BTR this space is a Banach space. By Proposition
the image of S (and thus that of S) is closed iff there exists a constant
¢ > 0 such that ||S(y)|| > ¢|y|| for all y € S/ker(S). Hence, we have to
demonstrate the existence of such a constant. Suppose it does not exist.
Then, there is a sequence {y, }nen of elements of X/ ker(S) with ||y,| = 1
and such that lim,_, S (yn) = 0. Now choose a preimages x,, of the y, in
X with 1 < ||lzy|| < 2. Then, {z,}nen is bounded so that {T'(xy,)}nen is
compact. In particular, there is a subsequence {zy }ren so that {T(zg) }ren
converges, say to z € X. Since on the other hand limy_, S(zr) = 0 we
find with S + 7T = 1 that limg_,oc xx = 2. So by continuity of S we get
S(z) =0, i.e., z € ker(S) and hence z € kerq. By continuity of ¢ this im-
plies, limg_, ||¢(x)|| = 0, contradicting ||g(zx)|| = ||yx|| = 1 for all k£ € N.
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This completes the proof of the existence of ¢ and hence of the closedness
of the image of S.

The compactness of T implies the compactness of 7™ by Proposition A=32.
Thus, by Proposition B338, S* = 1* — T™ has finite dimensional kernel. But

Proposition B33.1 implies then that the codimension of S(X) in X, i.e.,

the dimension of X/S(X) is also finite. Since we have seen above that
S(X) = S(X), this completes the proof. O

Definition 4.41. Let X, Y be normed vector spaces and A € CL(X,Y).
A is called a Fredholm operator iff the kernel of A is finite dimensional and
its image is closed and of finite codimension. Then, we define the index of
a A to be

ind A = dim(ker A) — dim(Y/A(Y)).

We denote by FL(X,Y") the set of Fredholm operators.

Lemma 4.42 (Riesz). Let X be a normed vector space and C a closed
subspace. Then, for any 1 > € > 0 there exists x € X \ C with ||z|| = 1 such
that for all y € C,

lz =yl =1—e
Proof. Choose xyp € X \ C arbitrary. Now choose yp € C such that

I =1 I
Ty — To — Y|/
0~ Yoll = lITo =Yl

for all y € C. We claim that

Lo — Yo
lz0 = woll

has the desired property. Indeed, for all y € C,

e — ] = 20 — 4o — (lzo — yol)yll < llzo = yoll(X —¢€)
lz0 = woll w0 — ol

O

Proposition 4.43. Let X, Y be Banach space. Then, the subset CLiyy (X,Y)
of continuously invertible maps is open in CL(X,Y).

Proof. Let f: X — Y be linear and continuous and with continuous inverse
f~1. By Proposition there is a constant ¢ > 0 such that || f(x)| > c||z|
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for all x € X. Now consider g € CL(X,Y) such that ||f — g|| < ¢/2. We
claim that ¢g has a continuous inverse. First, observe

lg@)I| = [lf @) = [[f(z) = g(2)]| = ellz]| — gl!fCH = g\lwll VeeX. (2)

This implies that g is injective and moreover has closed image by Proposi-
tion B=39. Suppose now that g(z) # Y. By Lemma B2 there exists then
yo € Y\ g(X) with ||yo|| = 1 such that ||yo —y|| > 1/2 for all y € g(X). Let
2o := f~'(yo). Then,

1

1
5 = 51F@o)ll = S lwoll > £ (x0) = glao) | >

9

N | =

a contradiction. Thus, g(X) =Y and g is invertible. But g~! is continuous

since (B) now implies |7 (y)| < (2/¢)|y|| for all y € Y. O

Proposition 4.44. Let X, Y be Banach spaces. Then, FL(X,Y) is open
in CL(X,Y). Moreover, ind : FL(X,Y) — Z is continuous.

Proof. Let S: X — Y be Fredholm. Since ker S is finite dimensional, there
exists a closed complement C' C X by Proposition B34. Then, S|¢: C — Y
is injective and has closed image S(C) = S(X). Also, let D C Y be a
complement of S(X). Since S is Fredholm, D is finite-dimensional and thus
also closed. Note that C@ D is a Banach space. It will be convenient to equip
it with the norm ||z + y|| := ||z|| + ||y|| for z € C, y € D. Define the map
S:C®D —Y by S(z,y) := S(x)+y. S is the product of two continuously
invertible maps and hence continuously invertible. By Proposition =243 there
is thus 7 > 0 such that B,(S) € CLin(C @ D,Y). Let T € CL(X,Y) such
that ||T'— S| < r. Define T: C® D — Y as T(z,y) := T(x) + 3. Then,

IT =S| = sup || T(z)—S(z)|| = sup | T(z) = S(x)|| <|IT -S|,
z+yl<1 lzll<1

where z € C and y € D. In particular, ||[T — S| < 7, so T has a continuous
inverse.

Note that ker TN C = {0}, so there is a subspace N C X such that
X = C®N @kerT. In particular, ker T is finite-dimensional. Since T
is homeomorphism, T(C) = T(C) is closed and thus complete. On the
other hand T'(N) being finite-dimensional is also complete. Thus T'(X) =
T(N) & T(C) is also complete and thus closed in Y. Also, T(C)+ D =Y,
so in particular 7'(C') has finite codimension and so does T'(X). Thus, T is
Fredholm.

Exercise.Complete the proof by showing ind 7T = ind S. O
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Corollary 4.45. Let X be a Banach space and T € KL(X,X). Then,
S:=1-T e FL(X, X). Moreover, ind S = 0.

Proof. Exercise.Hint: For the second assertion consider the family of op-
erators Sy := 1 — ¢T for t € [0,1] and use the continuity of ind. O

Proposition 4.46 (Fredholm alternative). Let X be a Banach spaces, T €
KL(X,X) and A € K\ {0}. Then, either the equation

Ax—Tzr=y

has one unique solution x € X for each y € X, or it has no solution for
some y € X and infinitely many solutions for all other y € X.

Proof. Exercise. O

4.7 Eigenvalues and Eigenvectors

Definition 4.47. Let X be a tvs and A € CL(X, X). Then, A € K is called
an eigenvalue of A iff there exists x € X \ {0} such that Az — Az = 0. Then
x is called an eigenvector for the eigenvalue A. Moreover, the vector space
of eigenvectors for the eigenvalue X is called the eigenspace of A.

Proposition 4.48. Let X be a Banach space and T € KL(X,X). Then,
A € K\ {0} is an eigenvalue of T iff \1 — T does not have a continuous
inverse.

Proof. Exercise. O

Lemma 4.49. Let X be a Banach space, T € KL(X, X) and ¢ > 0. Then,
the set of eigenvalues X such that |\| > c is finite.

Proof. Suppose the assertion is not true. Thus, there exists a sequence
{A\n}nen of distinct eigenvalues of T' such that |\,| > ¢ for all n € N. Let
{vn}nen be a sequence of associated eigenvectors. Observe that the set of
these eigenvectors is linearly independent. For all n € N let A, be the
vector space spanned by {v,...,v,}. Thus {A,},en is a strictly ascending
sequence of finite-dimensional subspaces of X. Set y; := v1/[|v1]. Using
Lemma #8722 we choose for each n € N a vector yp,+1 € Anp4+1 such that
|yn+1ll = 1 and ||yny1 —yl| > 1/2 for ally € A,,. Now let n > m > 1. Then,

HTyn - Tym” = ||)\nyn - ()\nyn — Typ + Tym)”

_ 1 1
= |>‘ﬂ|||yn - |/\n| 1(>\nyn - Ty, +Tym)|| > |)\n|§ > 56'
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We have used here that Ay, — Ty, € Ap—1 and that Ty, € A, € Ap_1.
This shows that the image of the bounded set {y;, }nen under 7' is not totally
bounded. But this contradicts the compactness of T'. O

Definition 4.50. Let X be a Banach space and A € CL(X, X). Then, the
set 0(A) := {A € K: A1 — A is not continuously invertible} is called the
spectrum of A.

Theorem 4.51. Let X be a Banach space and T € KL(X, X).
1. If X is infinite-dimensional, then 0 € o(T).
2. The set o(T') is bounded.
3. The set o(T) is countable.
4. o(T) has at most one accumulation point, 0.

Proof. Exercise. O
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5 Banach Algebras

5.1 Invertibility and the Spectrum

Suppose X is a Banach space. Then we are often interested in (continuous)
operators on this space, i.e, elements of the space CL(X,X). We have
already seen that this is again a Banach space. However, operators can
also be composed with each other, which gives us more structure, namely
that of an algebra. It is often useful to study this abstractly, i.e., forgetting
about the original space on which the operators X act. This leads us to
the concept of a Banach algebra. In the following of this section we work
exclusively over the field C of complex numbers.

Definition 5.1 (Banach Algebra). A is called a Banach algebra iff it is a
complete normable topological algebra.

Proposition 5.2. Let A be a complete normable tvs and an algebra. Then,
A is a Banach algebra iff there exists a compatible norm on A such that
lla - b|| < |la]| - ||b]| for all a,b € A. Moreover, if A is unital then it is a
Banach algebra iff there exists a compatible norm that satisfies in addition
Jell = 1.

Proof. Suppose that A admits a norm generating the topology and satisfying
lla- 0| < |la]| - ||b]] for all a,b € A. Fix a,b € A and let € > 0. Choose § > 0
such that

(lall + [6I)3 + 6% < e.

Then,

lla+z) (b+y)—a-bl=lla-y+z btz y| <la-yll+ b +z-yl
< llall - [l + {l]l - ol + Il - [lyll < e

if z,y € B;(0), showing continuity of multiplication.

Now suppose that A is a Banach algebra. Let ||-||’ be a norm generating
the topology. By continuity there exists § > 0 such that ||a - b]|’ < 1 for all
a,b € Bs(0). But this implies ||a - b||" < §72||al|’ - ||b||" for all a,b € A. It is
then easy to see that |la| := §72||a||’ for all @ € A defines a norm that is
topologically equivalent and satisfies ||a - b|| < ||al| - ||b]| for all a,b € A.

Now suppose that A is a unital Banach algebra. Let || - ||" be a norm
generating the topology. As we have just seen there exists a constant ¢ > 0
such that |la - b|]" < c|la]|’ - ||b]|" for all a,b € A. We claim that

lla|| ;= sup |la-b||' Vae A
[l <1
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defines a topologically equivalent norm with the desired properties. It is
easy to see that || - || is a seminorm. Now note that

lall = sup la-ol" <c sup lall” [1b]]" = clla]” Va € A.
1

[[oll<

On the other hand we have

la-el” _ llal
llell” llell

lal| = sup [la-b| > Va € A.
<1

1ol

This shows that || - || is indeed a norm and generates the same topology as
|| - [|’- The proof of the property ||a-b|| < |la| - ||b| for all a,b € A now
proceeds as in Exercise 28. Finally, it is easy to see that ||e|| = 1. O

We have already seen the prototypical example of a Banach algebra in
Exercise 2Z8: The algebra of continuous linear operators CL(X,X) on a
Banach space X.

Exercise 30. Let T be a compact topological space. Show that C(T,C)
with the supremum norm is a unital commutative Banach algebra.

Exercise 31. Consider the space [*(Z), i.e., the space of complex sequences
{an}nez with |la|| :== >, cz lan| < co. 1. Show that this is a Banach space.
2. Define a multiplication by convolution, i.e., (a%b), := > pcz axbn—k. Show
that this is well defined and yields a commutative Banach algebra.

Proposition 5.3. Let A be a unital Banach algebra and a € A. If |le—al <
1 then a is invertible. Moreover, in this case

00
1
-1 _ 2 : —1
a = : (e — a)n and HG, H S m
n=0
Proof. Exercise. O

Proposition 5.4. Let A be a unital Banach algebra. Denote the subset
of invertible elements of A by I4. Then, 14 is open. Moreover, the map
Ia— I4:a— a b is continuous.

Proof. Consider an invertible element a € I4 and choose € > 0. Set

1 1
5= min{ 5la~! |74, el 2}
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Take b € Bs(a). Then b= a(e +a~1(b—a)). But

- - _ 1
la™ (0 = a)ll < fla” "o = all < [la™"{}6 < 5

So by Proposition 63 the element e+ a~!(b— a) is invertible. Consequently,
b is a product of invertible elements and hence itself invertible. Therefore,
Bs(a) C I and I4 is open. Furthermore, using the same inequality we find
by Proposition B33 that

1

e+atb—a))t .
Ie+a™' =) < gy o <2

This implies
16~ < Hla™ llI(e +a™ (b —a)) | < 2[la™ .
Hence,
o=t =6 = lla~ b~ )b~ < la= N6~ 1b — all < 20~ |5 < e
This shows the continuity of the inversion map, completing the proof. [

Definition 5.5. Let A be a unital Banach algebra and a € A. Then, the
set 04(a) := {\ € C: Ae — a not invertible} is called the spectrum of a.

Proposition 5.6. Let A be a unital Banach algebra and a € A. Then
the spectrum o4(a) of a is a compact subset of C. Moreover, |A| < ||a|| if
A€ oyla).

Proof. Consider A € C such that |[A| > ||a||. Then, |A"ta|| = [X7L||a]| < 1.
So, e—A"'a is invertible by Proposition 53. Equivalently, Ae —a is invertible
and hence A ¢ o4(a). This proves the second statement and also implies
that o4(a) is bounded.

It remains to show that oa(a) is closed. Take A ¢ oa(a). Set ¢ :=
[(Ae —a)~t||7t. We claim that for all N € B.()\) the element Ne — a
is invertible. Note that ||[(A — X)(Ae —a)7Y| = |A = N[[|[(de —a) 7} <
e|[(Ae —a)Y| = 1. So by Proposition 533 the element e — (A — \')(Ae —a)~?
is invertible. But the product of invertible elements is invertible and so is
hence Ne —a = (Ae — a)(e — (A — X)(Ae — a)™1), proving the claim. Thus,
C\ ca(a) is open and o4(a) is closed, completing the proof. O

Lemma 5.7. Let A be a unital algebra and a,b € A. Suppose that a -b and
b-a are invertible. Then, a and b are separately invertible.
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Proof. Exercise. O

Theorem 5.8 (Spectral Mapping Theorem). Let A be a unital Banach al-
gebra, p a complex polynomial in one variable and a € A. Then, o4(p(a)) =

p(oa(a)).

Proof. If p is a constant the statement is trivially satisfied. We thus assume
in the following that p has degree at least 1.

We first prove that p(ca(a)) C ca(p(a)). Let A € C. Then the polyno-
mial in ¢ given by p(t) —p(A) can be decomposed as p(t) —p(\) = q(t)(t — )
for some polynomial ¢. In particular, p(a) — p(A) = ¢(a)(a — \) in A. Sup-
pose p(A) ¢ ga(p(a)). Then the left hand side is invertible and so must be
the right hand side. By Lemma B=0 each of the factors must be invertible.
In particular, a — \ is invertible and so A ¢ o 4(a). We have thus shown that
A € 04(a) implies p(A) € ga(p(a)).

We proceed to prove that o4(p(a)) C p(oa(a)). Let p € C and factorize
the polynomial in ¢ given by p(t) — p, i.e., p(t) —p=c(t —v1) - (t — ),
where ¢ # 0. We apply this to a to get p(a) —pu = c(a—~1) -+ - (a—y,). Now
if © € oa(p(a)), then the left hand side is not invertible. Hence, at least one
factor a — vy, must be non-invertible on the right hand side. So, v, € o4(a)
and also p = p(v). Thus, p € p(ca(a)). This completes the proof. O

Definition 5.9. Let A be a Banach algebra and a € A. We define the
spectral radius of a as

ra(a) == inf ||a™|"/".
neN

Lemma 5.10. Let {c, }nen be a sequence of non-negative real numbers such

1/n

that cpym < cnem for alln,m € N. Then {C}/n}neN converges to inf,,cy ¢/
Proof. Define ¢y := 1. For fixed m decompose any positive integer n =
k(n)m 4+ r(n) such that r(n),k(n) € Ng and r(n) < m. Then,

n I/n 1/n k(n)/n 1/n
0711/ < Ck(n)mcr(n) < Cm( )/ Cr(n)‘

Since r(n) is bounded and k(n)/n converges to 1/m for large n the right

hand side tends to c,ln/m for large n. This implies,

: 1/n 1/m
lim sup ¢}/ < ck/m.
n—o0

Since m was arbitrary we conclude,

limsup c/™ < inf ¢//™ < liminf ¢!/™.
n—00 neN n—00

This completes the proof. O
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Proposition 5.11. Let A be a Banach algebra and a € A. Then,

lim ||a

exists and is equal to  inf |la
n—>00 neN

Proof. If a is nilpotent (i.e., a” = 0 for some n) the statement is trivial.
Assume otherwise and set ¢, := a™. Applying Lemma 611 yields the result.
O

Lemma 5.12. Let A be a unital Banach algebra, ¥ : A — C linear and
continuous, a € A. Then the map f : C\ oa(a) — C given by f(z) :=
Y ((a — ze)™Y) is holomorphic in all its domain.

Proof. Let z € C\ o4(a). Since 04(a) is closed, there exists r > 0 such that
€ (a—(z+€)e)~ ! is well defined if ¢ € B,.(0). For ¢ € B,.(0) we thus have
(a—(z+8&e) ™t —(a—ze)™?
= (a—ze)(a — (z+&)e) Ha—ze)™!

—(a—(z+8e)(a— (2 +&e) H(a—2ze)”
=(a—ze—a+(z+8e)(a—(z+€)e) Ha—ze)™!
=&(a—(z48e) Ha—2e)".

In the first equality we have used the commutativity of the subalgebra of A

that is generated by polynomials in a. Supposing £ # 0 we divide by £ and
apply ¥ on both sides yielding,

fz+8) — f(2)
§

Since inversion in A is continuous (Proposition 64), the right hand side of
this equality is continuous in ¢ and we may take the limit,

o fz+8) — f(2)
|¢[—0 §

= (= (z+8e) a—20)7").

= ((a — ze)_l(a — ze)_l) )

This shows that f is complex differentiable at z. Since z was arbitrary in
C\ 04(a), this implies that f is holomorphic in C\ c4(a). O

Theorem 5.13. Let A be a unital Banach algebra and a € A. Then

rala) = . SUIz | I\l
coala

In particular, oa(a) # 0.
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Proof. Choose A € C such that |A| > ra(a). Then there exists n € N such
that [A| > ||a”||"/" and hence |A\"| > ||a”||. By Proposition 68 we know that
A" ¢ o4(a™). By Theorem B3R with p(t) = t" this implies A ¢ o4(a). This
shows |[A| < 74(a) for all A € o4(a).

Applying Proposition 63 to e — a/z yields the power series expansion

o0
(a—ze) ! = Z —a"z "t
n=0

for |z| > ||al|. Given a continuous linear functional ¢ : A — C we obtain the
Laurent series

v (o= ze)) = 3 (e
n=0

However, the left hand side is holomorphic in C\ 0 4(a) due to Lemma 512
Thus, the inner radius of convergence of the Laurent series is at most p :=
SUP)co 4 (a) |Al, SUpposing that o4 (a) # (). This is equivalent to the statement

lim sup [¢) (™) /" < p.

n—oo

Given p > p we obtain

wanh ()
n—+00 M
sup

This in turn implies
a n
o(G))] <=
neN 2

Define now the subset B C A given by

2 3
B:= ",(“) (“) b
w\p f
Identifying A as a Banach space isometrically with the corresponding sub-
space of A™ according to Proposition 223 allows to view B as a subset of

CL(A*,C). We may thus apply the Banach-Steinhaus Theorem in the form
of Corollary B2l to conclude that there is a constant M > 0 such that for

all n € N, .
v ((M) )| < Ml

This in turn implies, for all n € N,

G




Robert Oeckl - FA NOTES - 05/12/2011 75

From this we conclude,
limsup ||a”||"™ < p.
n—oo

Due to the existence of the ordinary limit (Proposition 51) together with
the fact that u > p was arbitrary we obtain,

ra(a) = lim [la"'" < p.

This completes the proof that r4(a) = p.
Exercise.Complete the proof by showing that o4(a) # 0. O

Theorem 5.14 (Gelfand-Mazur). Let A be a unital Banach algebra such
that all its non-zero elements are invertible. Then A is isomorphic to C as
a Banach algebra.

Proof. Exercise. ]

5.2 The Gelfand Transform

Suppose we have some topological space 1. Then, this space gives rise
to a commutative algebra, namely the algebra of continuous functions on
T (with complex values say). A natural question arises thus: If we are
given a commutative algebra, is the algebra of continuous functions on some
topological space? We might refine the question, considering more specific
spaces such as Hausdorff spaces, manifolds etc. On the other hand we could
also consider other classes of functions, e.g., differentiable ones etc. The
Gelfand transform goes towards answering this question in the context of
unital commutative Banach algebras on the one hand and compact Hausdorff
spaces on the other.

5.2.1 Ideals

Definition 5.15. Let A be an algebra. An ideal in A is a vector subspace
J of A such that aJ C J and Ja C J for all a € A. An ideal is called proper
iff it is not equal to A. An ideal is called mazximal iff it is proper and it is
not contained in any other proper ideal.

The special significance of maximal ideals for our present purposes is
revealed by the following Exercise. This also provides a preview of what we
are going to show.
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Exercise 32. Consider the Banach algebra C(T', C) of Exercise B0. Assume
in addition that T is Hausdorff. 1. Show that for any non-empty subset U
of T the set {f € C(T,C) : f(U) = 0} forms a proper closed ideal. 2. Show
that the maximal ideals are in one-to-one correspondence to points of T'.

Proposition 5.16. Let A be a Banach algebra. Then, the closure of an
ideal is an ideal.

Proof. Let J be an ideal. We already know that .J is a vector subspace. It
remains to show the property aJ C J and Ja C J for alla € A. Consider b €
J. Then, there is a sequence {b, }nen With b, € J converging to b. Take now
a € A and consider the sequences {aby, } nen and {bpa}nen. Since J is an ideal
the elements of these sequences are all in J. And since multiplication by a
fixed element is continuous the sequences converge to ab and ba respectively.
So ba € J and ab € J. This completes the proof. O

Proposition 5.17. Let A be a unital Banach algebra.
1. If a € A is invertible it is not contained in any proper ideal.
2. Mazimal ideals are closed.
3. Any proper ideal is contained in a mazximal ideal.

Proof. Suppose J is an ideal containing an invertible element a € A. Then,
a'a = e € J and thus J = A. This proves 1. Suppose J is a proper
ideal. Then, J is an ideal by Proposition 518. On the other hand, by 1. the
intersection of the set I4 of invertible elements of A with J is empty. But
by Proposition 64 this set is open, so T4 NJ = 0. Since e € 14, J # A, i.e.,
J is proper. So we get an inclusion of proper ideals, J C J. If J is maximal
we must therefore have J = J. This proves 2. The proof of 3 is a standard
application of Zorn’s Lemma. O

Proposition 5.18. Let A be a Banach algebra and J a closed proper ideal.
Then, A/J is a Banach algebra with the quotient norm. If A is unital then
sois A/J. If A is commutative then so is A/J.

Proof. Exercise. O

Definition 5.19. Let A be a Banach algebra. The set of maximal ideals of
A is called the maximal ideal space and denoted by M 4. The set of maximal
ideals with codimension 1 is denoted by M}.
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Proposition 5.20. Let A be a commutative unital Banach algebra. Then,
mazximal ideals have codimension 1. In particular, M = M}‘

Proof. Let J be a maximal ideal. By Proposition BT7.2, J is closed. Hence,
by Proposition 518, A/J is a unital commutative Banach algebra. We
show that every non-zero element of A/J is invertible. For a € A\ J set
Jo :={ab+c:be Aandce J}. Itis easy to see that J, is an ideal and
J C J, as well as J, # J. Since J is maximal we find J, = A. But his
means there is a b € A such that [a][b] = [e] in A/J, i.e., [a] is invertible in
A/J. But every non-zero element of A/.J arises as [a] with a € A\ J, so they
are all invertible. By the Theorem 514 of Gelfand-Mazur we find that A/.J
is isomorphic to C and hence 1-dimensional. So, J must have codimension
1. O

5.2.2 Characters

Definition 5.21. Let A be a Banach algebra. An algebra homomorphism
¢: A— Cis called a character of A.

Proposition 5.22. Let A be a Banach algebra. Then, any character ¢ :
A — C is continuous. Moreover, ||¢]| < 1. If A is also unital and ¢ # 0
then ¢(e) =1 and ||¢|| = 1.

Proof. Consider an algebra homomorphism ¢ : A — C. Suppose |¢(a)| >
|la]| for some a € A. Then we can find A € C such that ¢(Aa) = 1 while
IAal] < 1. Set b := > o2 (Aa)”. Then b = Aa + Aab and we obtain the
contradiction ¢(b) = ¢(Aa) + ¢p(Aa)p(b) = 1 + ¢(b). Thus, |¢(a)| < ||al| for
all a € A and ¢ must be continuous. Also, ||¢]| < 1.

Now assume in addition that A is unital and ¢ # 0. Then there exists
a € A such that ¢(a) # 0. We deduce ¢(e) = 1 since ¢(a) = ¢(ea) =
#(e)p(a) and thus ||¢| > 1. O

Definition 5.23. Let A be a Banach algebra. The set of non-zero characters
on A is called the character space or Gelfand space of A, denoted by I" 4. We
view I'4 as a subset of A*, but equipped with the weak® topology. Define
the map A — C(I'4,C) given by a — a where a(¢) := ¢(a). This map is
called the Gelfand transform.

Proposition 5.24. Let A be a unital Banach algebra. Then, I' 4 is a com-
pact Hausdorff space.
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Proof. Since A* is Hausdorff with the weak™ topology so is its subset I'4.
Let ¢ € T'4. By Proposition 622, ¢ is contained in the unit ball B1(0) C
A*. But by Corollary B=22, B1(0) is compact in the weak® topology so I'4
is relatively compact. It remains to show that I'4 is closed in the weak*
topology. Suppose ¢ € I'4. Pick two arbitrary elements a,b € A. We know
that the Gelfand transforms a, 13, ab are continuous functions on A* with the
weak* topology. Hence, choosing an arbitrary € > 0 we can find ¢/ € T'4
such that |¢'(a) — ¢(a)| < € and |¢/(b) — ¢(b)| < € and |¢'(ab) — ¢(ab)| < e.
Exercise.Explain! Then, |¢/(a)¢'(b)—¢(a)d(b)| < e(|¢p(a)|+|o(b)|+¢€). But,
¢’ is a character, so ¢'(a)¢/(b) = ¢/'(ab). Thus, |p(a)d(b) — ¢(ab)| < e(1 +
|p(a)|+ |¢p(b)|+¢€). Since € was arbitrary we conclude that ¢(a)¢p(b) = ¢(ab).
This argument holds for any a,b so ¢ is a character. We have thus shown
that either T4 = I'4 or I'y = T4 U{0}. To exclude the second possibility we
need the unitality of A. Consider the subset E := {¢ € A*: ¢(e) = 1} C A*.
This subset is closed in the weak™ topology since it is the preimage of the
closed set {1} C C under the Gelfand transform é of the unit e of A. Now,
4 C E, but {0} ¢ E, so {0} ¢ T4. O

We are now ready to link the character space with the maximal ideal
space introduced earlier. They are (essentially) the same!

Theorem 5.25. Let A be a Banach algebra. There is a natural map ~y :
'y — M}l given by ¢ — ker ¢. If A is unital, this map is bijective.

Proof. Consider ¢ € T'y. Suppose a € ker¢. Then, for any b € A we
have ab € ker¢ and ba € ker ¢ since ¢(ab) = ¢(a)p(b) = 0 and ¢(ba) =
d(b)p(a) = 0. Thus, ker ¢ is an ideal. Tt is proper since ¢ # 0. Now choose
a € A such that ¢(a) # 0. For arbitrary b € A there is then a A € C such
that ¢(b) = ¢(Xa), ie., (b — Aa) = 0 and b — Aa € ker¢. In particular,
b € Aa+ker ¢. So ker ¢ has codimension 1 in A and must be maximal. This
shows that ~ is well defined.

Suppose now that A is unital and that J is a maximal ideal of codimen-
sion 1. Note that we can write any element a of A uniquely as a = Ae + b
where A € C and b € J. In order for J = ker ¢ for some ¢ € 'y we must
then have ¢(Ae+b) = Aé(e) +¢(b) = A. This determines ¢ uniquely. Hence,
v is injective. On the other hand, this formula defines a non-zero linear map
¢ : A — C. It is easily checked that it is multiplicative and thus a character.
Hence, ~ is surjective. O

Proposition 5.26. Let A be a unital Banach algebra and a € A. Then,
{#(a) : g €Ta} Couala). If A is commutative, then even {p(a): ¢ € T4} =
oala). In particular, T 4 # 0.
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Proof. Suppose A = ¢(a) for some ¢ € T'y. Then, ¢(Ae —a) = 0, i.e.,
Ae —a € ker¢. But by Theorem BZ23, ker ¢ is a maximal ideal which by
Proposition BIA.1 cannot contain an invertible element. So Ae — a is not
invertible and A € o4(a). This proves the first statement.

Suppose now that A is commutative and let A € o4(a). Define J :=
{b(Ae —a) : b € A}. Tt is easy to see that J defines an ideal. It is proper,
since Ae — a is not invertible. So, by Proposition 514.3 it is contained in a
maximal ideal J’. This maximal ideal has codimension 1 by Proposition
and induces by Theorem 625 a non-zero character ¢ with ker ¢ = .J'. Hence,
#(Ae —a) =0 and ¢(a) = A. This completes the proof. O

When I'4 is compact, then the set of continuous functions of I' 4 forms
a unital commutative Banach algebra by Exercise B0. We then have the
following Theorem.

Theorem 5.27 (Gelfand Representation Theorem). Let A be a unital Ba-
nach algebra. The Gelfand transform A — C(I'4,C) is a continuous unital
algebra homomorphism. The image of A under the Gelfand transform, de-
noted A, is a normed subalgebra of C(T 4, C). Moreover, ||a|| < ra(a) < |al|
and o 4(a) € oa(a) for alla € A. If A is commutative we have the sharper
statements ||a|| = ra(a) and 0 4(a) = ca(a).

Proof. The property of being a unital algebra homomorphism is clear. For
a € A we have ||a]| = supger, |¢(a)|. By Proposition combined with
Theorem 513 we then find ||@|| < r4(a) and in the commutative case ||a|| =
r4(a). On the other hand Proposition b8 combined with Theorem 513
implies r4(a) < ||a||. Thus, the Gelfand transform is bounded by 1 and hence
continuous. Since the Gelfand transform is a unital algebra homomorphism,
invertible elements are mapped to invertible elements, so o ;(a) € oa(a).
Let a € A and consider A € C. If ¢(a) = X for some ¢ € 'y then \é — a
vanishes on this ¢ and cannot be invertible in A, ie., A € ¢ i(a). Using
Proposition we conclude o 4(a) 2 04(a) in the commutative case. [

Proposition 5.28. Let A be a unital commutative Banach algebra. Suppose
that ||a?|| = ||la||® for all a € A. Then, the Gelfand transform A — C(T 4, C)
is isometric. In particular, it is injective and its image A is a Banach
algebra.

Proof. Under the assumption lim, o [|a”||"/", which exists by Proposi-

tion 611, is equal to |a|| for all @ € A. By the same Proposition then
ra(a) = ||lal]. So by Theorem 522, ||a|| = ra(a) = ||la||. Isometry implies of
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course injectivity. Moreover, it implies that the image is complete since the
domain is complete. So A is a Banach algebra. O

Exercise 33. Let A = C(T,C) be the Banach algebra of Exercises B and
B2. Show that I'y = T as topological spaces in a natural way and that the
Gelfand transform is the identity under this identification.
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6 Hilbert Spaces

6.1 The Fréchet-Riesz Representation Theorem

Definition 6.1. Let X be an inner product space. A pair of vectors z,y € X
is called orthogonal iff (z,y) = 0. We write z L y. A pair of subsets
A, B C X is called orthogonal iff x 1 y for all x € A and y € B. Moreover,
if A C X is some subset we define its orthogonal complement to be

At ={yeX:z LyVzec A}
Exercise 34. Let X be an inner product space.

1. Let z,y € X. If 2 L y then ||z|*> + ||ly||* = ||z + y]|*.
2. Let A C X be a subset. Then AL is a closed subspace of X.
3. AC (AH)*

J_ 7L
4. A~ = (spanA) .
5. An A+ C {0}

Proposition 6.2. Let H be a Hilbert space, F C H a closed and convex
subset and x € H. Then, there exists a unique element & € F such that

i — 2| = inf |jy — .
&=l = inf 1y — |

Proof. Define a := infycp ||y—z||. Let {yn}nen be a sequence in F such that
lim,, o0 |yn — || = a. Let € > 0 and choose ng € N such that ||y, — z||? <
a®? + ¢ for all n > ng. Now let n,m > ng. Then, using the parallelogram
equality of Theorem we find

9 =yl = 2llyn — 2l* + 2llym — 21 = lyn + Ym — 22

Yn + Ym
2

2
= 2||yn — $H2 + 2[|ym — tz -4

<2(a®+¢€) +2(a® +€) — 4a® = 4e
This shows that {y, }nen is a Cauchy sequence which must converge to some
vector & € F' with the desired properties since F' is complete.
It remains to show that Z is unique. Suppose Z,z’ € F both satisfy the
condition. Then, by a similar use of the parallelogram equation as above,

~ ~/ 2
T < 2a2+24%—4a2 = 0.

12 -3"||* = 2/|Z—|* +2]| 7' ]| * 4 -

That is, ¥’ = Z, completing the proof. O
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Lemma 6.3. Let H be a Hilbert space, FF C H a closed and convexr subset,
x € H and & € F. Then, the following are equivalent:

1|7 — 2| = infyer [y — z|
2. R(@T—y,z—z)<0VyeF

Proof. Suppose 2. holds. Then, for any y € F' we have
ly — 2| = I(y = %) + (& — 2)|

=y =2l + 2R(y — ,% — ) + | — 2|* > [|& — 2|,

Conversely, suppose 1. holds. Fix y € F' and consider the continuous
map [0,1] — F given by t — y; := (1 — t)& + ty. Then,

17 — 2| < llye — 2] = [ty — ) + (& — 2)||?
= 2|y — 7|2 + 2Ry — &, F — 2) + | — 2|
Subtracting ||Z — z||? and dividing for ¢ € (0,1] by ¢ leads to,
1 i L
Sty — 2" 2 %@ —y, 7 — 2).

This implies 2. O

Lemma 6.4. Let H be a Hilbert space, F C H a closed subspace, x € H
and T € F. Then, the following are equivalent:

1 ||T — 2| = infyer [y — z|
2. (y,z —x)=0Vy € F
Proof. Exercise. O

Proposition 6.5. Let H be a Hilbert space, F C H a closed proper subspace.
Then, F+ # {0}.

Proof. Since F' is proper, there exists x € H \ F. By Proposition there
exists an element Z € F such that ||Z —z| = infycp ||y — z||. By Lemma 634,
(y,# —x) =0 for all y € F. That is, # — x € F*. O

Theorem 6.6 (Fréchet-Riesz Representation Theorem). Let H be a Hilbert
space. Then, the map ® : H — H* given by (®(z))(y) = (y,z) for all
xz,y € H s anti-linear, bijective and isometric.
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Proof. The anti-linearity of ® follows from the properties of the scalar
product. Observe that for all z € H, [ ®(2)| = supy =1 (v, 2)| < [z
because of the Schwarz inequality (Theorem PZH). On the other hand,
(®(x))(z/||z]|)) = ||z| for all x € H \ {0}. Hence, |®(x)| = ||z|| for all
x € H, ie., ® is isometric. It remains to show that ® is surjective. Let
f € H*\ {0}. Then ker f is a closed proper subspace of H and by Propo-
sition B3 there exists a vector v € (ker f)* \ {0}. Observe that for all

xr € H,
f(x)
fv)

v € ker f.

Hence,

(v, 0)

@, 1@ @
.00 = OO ) £(v)

In particular, setting
_ fv)

w =
lv]I?

we see that ®(w) = f. O

Corollary 6.7. Let H be a Hilbert space. Then, H* is also a Hilbert space.
Moreover, H is reflexive, i.e., H** is naturally isomorphic to H.

Proof. By Theorem B3 the spaces H and H* are isometric. This implies in
particular, that H* is complete and that its norm satisfies the parallelogram
equality, i.e., that it is a Hilbert space. Indeed, it is easily verified that the
inner product is given by

(P(z), 2(y))p = (y,z)g Y,y € H.

Consider the canonical linear map iy : H — H**. It is easily verified that
igy = Vo ®, where ¥ : H* — H** is the corresponding map of Theorem G.
Thus, 7z is a linear bijective isometry, i.e., an isomorphism of Hilbert spaces.

O

6.2 Orthogonal Projectors

Theorem 6.8. Let H be a Hilbert space and F C H a closed subspace such
that F # {0}. Then, there exists a unique operator Pr € CL(H, H) with the
following properties:

1. PF|F =1p.
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2. ker Pp = F*.
Moreover, Pr also has the following properties:

3. Pp(H)=F.

4. PpoPp— Pp.

5. ||Pr| = 1.

6. Given x € H, Pr(x) is the unique element of F such that ||Pp(x) —
|| = infyep [ly — x|

7. Given x € H, Pr(x) is the unique element of F' such that x — Pp(x) €
F-.

Proof. We define Pr to be the map x — & given by Proposition E22. Then,
clearly Pr(H) = F and Pp(z) = z if z € F and thus Pr o Pr = Pp. By
Lemma 62 we have Pp(z) —z € F* for all z € H. Since F* is a subspace
we have

()\1PF(1‘1) — >\1$1) + ()\QPF($2) — )\21‘2) € FL

for 1,292 € H and A1, Ay € K arbitrary. Rewriting this we get,
()\1PF($1) + )\QPF(a?Q)) — ()\1:E1 + )\2&72) S Ft.

But Lemma B4 also implies that if given z € H we have z — 2 € F* for
some z € F, then z = Pp(x). Thus,

)\1PF($1) + )\QPF(ZL‘Q) = PF()\lxl + )\2562).

That is, P is linear. Using again that z — Pp(z) € F* we have z — Pr(x) L
Pr(z) and hence the Pythagoras equality (Exercise B4.1)

lz = Pp()|* + |Pp(2)|* = 2|* Va € H.

This implies ||Pr(z)|| < ||z|| for all x € H. In particular, Pp is continuous.
On the other hand ||Pr(z)| = ||z|| if # € F. Therefore, |Pr| = 1. Now
suppose x € ker Pp. Then, (y,z) = —(y, Pr(z) — z) = 0 for all y € F' and
hence x € F+. That is, ker Pr C F+. Conversely, suppose now x € F*.
Then, (y, Pr(x)) = (y, Pp(z)—x) = 0 forally € F. Thus, Pr(z) € F+. But
we know already that Pr(z) € F. Since, F N F+ = {0} we get Pr(z) =0,
i.e., x € ker Pp. Then, F- C ker Pr. Thus, ker Pr = F*. This concludes
the proof the the existence of Pr with properties 1, 2, 3, 4, 5, 6 and 7.
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Suppose now there is another operator Qr € CL(H, H) which also has
the properties 1 and 2. We proceed to show that Qr = Pr. Let x €
H arbitrary. Since Pp(z) —x € F*, property 2 of Qp implies Qp(z) =
Qr(Pp(x)). On the other hand Pr(z) € F so by property 1 of Qr we have
Qr(Pp(x)) = Pp(x). Hence Qr(x) = Pp(x). Since x was arbitrary we have
Qr = Pr, completing the proof. O

Definition 6.9. Given a Hilbert space H and a closed subspace F', the
operator Pr € CL(H, H) constructed in Theorem B3 is called the orthogonal
projector onto the subspace F'.

Corollary 6.10. Let H be a Hilbert space and F a closed subspace. Let
Pr be the associated orthogonal projector. Then 1 — Pr is the orthogonal
projector onto F+. That is, Pr. =1 — Pp.

Proof. Let * € F+. Then, (1 — Pr)(z) = x since ker Pr = F+ by The-
orem BR.1. That is, (1 — Pr)|p1 = 1pi. On the other hand, suppose
(1 — Pr)(z) = 0. By Theorem BER.1. and 3. this is equivalent to z € F.
That is, ker(1 — Pp) = F. Applying Theorem B8 to F'* yields the conclu-
sion Ppi =1 — Pp due to the uniqueness of Py . O

Corollary 6.11. Let H be a Hilbert space and F' a closed subspace. Then,
F = (FH)t.

Proof. Exercise. O

Definition 6.12. Let H; and Hy be inner product spaces. Then, Hy &2 Ho
denotes the direct sum as a vector space with the inner product

(X1 + x2,y1 +y2) := (z1,y1) + (@2, y2) V1,22 € H1,Vy1,y2 € Ho.

Proposition 6.13. Let Hi and Hy be inner product spaces. Then, the
topology of Hi @®o Ho agrees with the topology of the direct sum of Hi and
Hy as tvs. That is, it agrees with the product topology of Hi x Hy. In
particular, if H1 and Ho are complete, then Hy Do Hoy is complete.

Proof. Exercise. O

Corollary 6.14. Let H be a Hilbert space and F' a closed subspace. Then,
H=F @, Ft.

Proof. Exercise. O
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6.3 Orthonormal Bases

Definition 6.15. Let H be a Hilbert space and S C H a subset such that
Is|| = 1 for all s € S and such that (s,t) # 0 for s,¢ € S implies s = t.
Then, S is called an orthonormal system in H. Suppose furthermore that S
is maximal, i.e., that for any orthonormal system T in H such that S C T
we have S =T. Then, S is called an orthonormal basis of H.

Proposition 6.16. Let H be a Hilbert space and S an orthonormal system
in H. Then, S is linearly independent.

Proof. Exercise. O

Proposition 6.17 (Gram-Schmidt). Let H be a Hilbert space and {zp }ner
be a linearly independent subset, indexed by the countable set I. Then,
there exists an orthonormal system {sp}tner, also indexed by I and such
that span{s, : n € I} = span{z,, : n € I}.

Proof. If I is finite we identify it with {1,...,m} for some m € N. Oth-
erwise we identify I with N. We construct the set {s,}ner iteratively. Set
s1:=x1/||z1]|. (Note that z, # 0 for any n € I be the assumption of linear

independence.) We now suppose that {si,..., st} is an orthonormal system
and that span{sy,..., st} = span{z,...,xp}. Set Xy :=span{xy,...,zx}.
By linear independence yry1 = ziy1 — Px,(zr+1) # 0. Set spp1 =
Yr+1/l|yk+1]]. Clearly, sp11 L Xk, ie., {s1,...,8k+1} is an orthonormal
system. Moreover, span{si,...,Sk+1} = span{zy,...,zpr1}. If I is finite

this process terminates, leading to the desired result. If I is infinite, it is
clear that this process leads to span{sy : n € N} = span{z, : n € N}. O

Proposition 6.18 (Bessel’s inequality). Let H be a Hilbert space, m € N
and {s1,...,8m} an orthonormal system in H. Then, for all x € H,

m
Z @, 8n)[* < ||z

Proof. Define y :=x — > (x, $p)Sp. Then, y L s, for all n € {1,...,m}.
Thus, applying Pythagoras we obtain

2
1 = [ly* +

m
Exsn

This implies the inequality. O

m
=yl + D [z, sa)l?
n=1
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Lemma 6.19. Let H be a Hilbert space, S C H an orthonormal system and
x € H. Then, Sy :={s € S:(x,s) # 0} is countable.

Proof. Exercise.Hint: Use Bessel’s Inequality (Proposition 6BI8). O

Proposition 6.20 (Generalized Bessel’s inequality). Let H be a Hilbert
space, S C H an orthonormal system and x € H. Then

>z, ) < llz)|*.
ses
Proof. By Lemma 619, the subset S, := {s € S : (z,s) # 0} is countable.

If S, is finite we are done due to Proposition BI8. Otherwise let o : N — S,
be a bijection. Then, by Proposition EI8

> @ sam)? < ll«)?
n=1

For any m € N. Thus, we may take the limit m — oo on the left hand side,
showing that the series converges absolutely and satisfies the inequality. [J

Definition 6.21. Let X be a tvs and {z;};c; an indexed set of elements of
X. We say that the series > ;.; x; converges unconditionally to v € X iff
Ip:={iel:z; #0} is countable and for any bijection o : N — I the sum
> me1 Ta(n) cOnverges to .

Proposition 6.22. Let H be a Hilbert space and S C H an orthonormal
system. Then, P(x) := Y cq(®,s)s converges unconditionally. Moreover,
P : x — P(x) defines an orthogonal projector onto span S.

Proof. Fix € H. We proceed to show that ) .g(x,s)s converges uncon-
ditionally. The set S can be replaced by the set S, := {s € S : (z,s) # 0},
which is countable due to Lemma BE19. If S, is even finite we are done. Oth-
erwise, let o : N — S be a bijection. Then, given ¢ > 0 by Proposition
there is ng € N such that

oo

Z ’<x7 Sa(n)>’2 < 62‘

n=ng+1

For m > k > ng this implies using Pythagoras,

m k 2 m 2
Z <$7 Sa(n)>sa(n) - Z <H?, Sa(n)>3a(n) - Z <JZ, Sa(n)>8a(n)
n=1 n=1 n=k+1
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So the sequence {371 (¥, Sq(n))Sa(n) men is Cauchy and must converge to
some element y, € H since H is complete. Now let 8 : N — S, be another
bijection. Then, > 377 1 (¥, $(n))S3(n) = yp for some ys € H. We need to
show that yg = yo. Let mo € N such that {a(n) : n < ng} C {B(n) : n <
mo}. Then, for m > mg we have (again using Pythagoras)

m ng 2 00
Z<x7sﬁ(n)>sﬂ(n) - Z<x75a(n)>sa(n) < Z ’<x73a(n)>‘2 < 62'
n=1 n=1 n=ngp+1

Taking the limit m — co we find
no
Ys — Z<J") 8a(n)>8a(n) <e
n=1
But on the other hand we have,
no
Ya — Z<$, Sa(n)>3a(n) < €.
n=1

Thus, ||yg — ya|| < 2€. Since € was arbitrary this shows yg = y, proving the
unconditional convergence.

It is now clear that x — P(z) yields a well defined map P : H — H.
From the definition it is also clear that P(H) C spanS. Let s € S. Then,

(x — P(x),s) = (z,s) — (P(x),s) = (z,s) — (z,s) = 0.

That is, 2 — P(z) € S* = span St By Theorem BR.7 this implies that P
is the orthogonal projector onto span S. ]

Proposition 6.23. Let H be a Hilbert space and S C H an orthonormal
system. Then, the following are equivalent:

1. S is an orthonormal basis.
. Suppose x € H and x L S. Then, x = 0.

. H =span§.

. (a:,y) = ZsES<x’S><Say> Vo,y € H.

2

3

4. x =3 qlz,s)s Vre H.

5

6. o] = Soes @, s)P Ve H.
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Proof. 1.=2.: If there exists x € S+ \ {0} then S U {z/||z||} would be an
orthonormal system strictly containing S, contradicting the maximality of
S. 2.=3.: Note that H = {0}* = (S+)* = (spauaSl)L = span S. 3.=4.:
1(z) = Pgas(@) = Xses(®, s)s by Proposition 622. 4.=5.: Apply (-, y).
Since the inner product is continuous in the left argument, its application
commutes with the limit taken in the sum. 5.=6.: Insert y = z. 6.=1.:
Suppose S was not an orthonormal basis. Then there exists y € H \ {0}

such that y € S*. But then ||y[|? = 3 ,cq[(y, s)|?> = 0, a contradiction. [

Proposition 6.24. Let H be a Hilbert space. Then, H admits an orthonor-
mal basis.

Proof. Exercise.Hint: Use Zorn’s Lemma. 0

Proposition 6.25. Let H be a Hilbert space and S C H an orthonormal
basis of H. Then, S is countable iff H is separable.

Proof. Suppose S is countable. Let QS denote the set of linear combinations
of elements of S with coefficients in Q. Then, QS is countable and also dense
in H by using Proposition 6223.3, showing that H is separable. Conversely,
suppose that H is separable. Observe that ||s — t|| = v/2 for s,¢ € S such
that s # t. Thus, the open balls Bﬁﬂ(s) for different s € S are disjoint.
Since H is separable there must be a countable subset of H with at least
one element in each of these balls. In particular, S must be countable. [J

In the following, we denote by |S| the cardinality of a set S.

Proposition 6.26. Let H be a Hilbert space and S, T C H orthonormal
basis of H. Then, |S| = |T.

Proof. If S or T is finite this is clear from linear algebra. Thus, suppose
that [S| > |N| and |T'| > |N|. For s € S define Ty := {t € T : (s,t) # 0}.
By Lemma 619, |T5| < |N|. Proposition 623.2 implies that T C [J,cg 7.
Hence, |T| < |S] - |N| = |S|. Using the same argument with S and T
interchanged yields |S| < |T'|. Therefore, |S| = |T. O

Proposition 6.27. Let Hi be a Hilbert space with orthonormal basis S1 C
Hq and Hy a Hilbert space with orthonormal basis So C Ho. Then, Hy is
isometrically isomorphic to Hy iff |S1| = |S2].

Proof. Exercise. O
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Exercise 35. Let S be a set. Define £2(S) to be the set of maps f: S — K
such that > ,cg|f(s)[* converges absolutely. (a) Show that ¢2(S) forms a
Hilbert space with the inner product (f, g) := > ,cg f(s)g(s). (b) Let H be
a Hilbert space with orthonormal basis S C H. Show that H is isomorphic
to £2(S) as a Hilbert space.

Example 6.28. Recall the Banach spaces of Example BZ8, where X is a
measurable space with measure . The space L2(X, i, K) is a Hilbert space
with inner product

()= | 13

Exercise 36. Let S be the unit circle with the algebra of Borel sets and
u the Lebesgue measure on S'. Parametrize S' with an angle ¢ € [0, 27) in
the standard way. Show that {¢ > ¢"?/\/27},cz is an orthonormal basis
of L2(St, u, C).

Exercise 37. Equip the closed interval [—1, 1] with the algebra of Borel sets

and the Lebesgue measure p. Consider the set of monomials {z"},en as
functions [~1,1] — C in L?([~1,1], 1, C). (a) Show that the set {z"},en is
linearly independent and dense. (b) Suppose an orthonormal basis {s;, }nen

of functions s, € L2([-1,1],u,C) is constructed using the algorithm of
Gram-Schmidt (Proposition 6G17) applied to {z" }nen. Define py, := 1/2/(2n + 1)sy,.
Show that

(n+ Dppy1(x) = 2n+ Dapy(z) — npp—1(z) Vo € [-1,1],Vn e N\ {1}.

6.4 Operators on Hilbert Spaces

Definition 6.29. Let H;, H be Hilbert spaces and ®; : H; — H the associ-
ated anti-linear bijective isometries from Theorem B8. Let A € CL(Hy, Ha)
and A* : H5 — Hy its adjoint according to Definition B27. We say that
A* € CL(Ha, Hy) given by A* := & o A* 0 @y is the adjoint operator of A
in the sense of Hilbert spaces.

In the following of this section, adjoint will always refer to the adjoint
in the sense of Hilbert spaces.

Proposition 6.30. Let Hi, Hy be Hilbert spaces and A € CL(Hip, Ha).
Then, A* is the adjoint of A iff

(Az,y) g, = (x, A"y)u, Va € Hy,y € Ho.
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Proof. Exercise. O

In the following, we will omit subscripts indicating to which Hilbert space
a given inner product belongs as long as no confusion can arise.

Proposition 6.31. Let Hy, Hy, H3 be Hilbert spaces, A, B € CL(H;, H2),
C e CL(HQ,H;;), A e K.

1. (A+ B)* = A* + B*.
2. (VNA)* = \A*~.
3. (CoA)* =A* o0 C*.
4. (A= A.
o |4l = [[All-
6. 40| = | 4% o A]| = 1%
7. ker A = (A*(H3))* and ker A* = (A(H;))*.
Proof. Exercise. O

Definition 6.32. Let H;, H2 be Hilbert spaces and A € CL(Hy, Ha). Then,
A is called unitary iff A is an isometric isomorphism.

Remark 6.33. It is clear that A € CL(H;, H2) is unitary iff
<A$,Ay> = <‘T’y> VﬂfayGHL
Equivalently, A*o A =1y, or Ao A* =1pg,.

Definition 6.34. Let H be a Hilbert space and A € CL(H, H). A is called
self-adjoint iff A = A*. A is called normal iff A*o A = Ao A*.
Proposition 6.35. Let H be a Hilbert space and A € CL(H, H) self-adjoint.
Then,

|All = sup [(Az, ).

ll=lI<1

Proof. Set M i= supj,j<, {4z, 2)]. Since |(Az, 2)| < || Az||2l| < 1] 2],
it is clear that ||A| > M. We proceed to show that ||A]| < M. Given
x,y € H arbitrary we have

(Alz +y),z +y) — (Alx — y), v — y) = 2(Az,y) + 2(Ay, z)
= 2(Az,y) + 2(y, Az) = 4R(Az, y).
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Thus,
AR(Az, y) < [(A(z +y),z +y)| + [(Alz —y), 2 — y)]
< M(llz+yl? + llz = ylI?) = 2M ([l2]* + [lyl*).

The validity of this for all x,y € H in turn implies

R(Az,y) < M|zlllly| v,y e H.
Replacing = with Az for a suitable A € K with |A| = 1 yields

[(Az, y)| < Mlz[l[ly]| Vz,y € H.
Inserting now y = Az we can infer

|Az|| < M||z|Vz € H,

and hence ||A|| < M, concluding the proof. O

Proposition 6.36. Let H be a complex Hilbert space and A € CL(H, H).
Then, the following are equivalent:

1. A is self-adjoint.
2. (Az,z) € R for allx € H.

Proof. 1.=2.: For all x € H we have (Az,z) = (v, Az) = (Az,z). 2.=1.:
Let x,y € H and X € C. Then,

(A(z + \y), z + \y) = (Az, ) + MAz, y) + MAy, x) + |\*(Ay, y).

By assumption, the left-hand side as well as the first and the last term on
the right-hand side are real. Thus, we may equating the right hand side
with its complex conjugate yielding,

MAz,y) + MAy, z) = My, Az) + Mx, Ay).

Since A € C is arbitrary, the terms proportional to A and those proportional
to A have to be equal separately, showing that A must be self-adjoint. [

Corollary 6.37. Let H be a complex Hilbert space and A € CL(H, H) such
that (Az,z) =0 for allz € H. Then, A=0.

Proof. By Proposition 638, A is self-adjoint. Then, by Proposition B=33,
IIA|| = 0. O
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Exercise 38. Give a counter example to the above statement for the case
of a real Hilbert space.

Proposition 6.38. Let H be a Hilbert space and A € CL(H, H) normal.
Then,
|Az|| = |A*z|| Vx € H.

Proof. For all z € H we have,
0= ((A*0 A— Ao A"z, x) = (Azx, Az) — (A*z, A*z) = || Az|* — || A*z|?.
O

Proposition 6.39. Let H be a Hilbert space and A € CL(H, H) with A # 0
a projection operator, i.e., Ao A= A. Then, the following are equivalent:

1. A is an orthogonal projector.
2. |A|| =1.

3. A is self-adjoint.

4. A is normal.

5. (Az,x) >0 for allx € H.

Proof. 1.=2.: This follows from Theorem BGR.5. 2.=1.: Let x € ker A,
y € F:=A(H) and XA € K. Then,

IMyl* = Az + M)lI* < flz + Ayl|? = [la]® + 2R(z, Ay) + [ Ayl*.

Since A € K is arbitrary we may conclude (z,y) = 0. That is, ker A C F*-.
On the other hand set F' := (1 — A)(H) and note that F' C ker A. But since
1=A+(1—-A) we must have F + F = H. Given F C F this implies
F = Ft and hence ker A = F-. Observe also that F is closed since A is a
projector and hence F' = ker(1 — A). By Theorem GR, A is an orthogonal

projector. 1.=-3.: Using Theorem B8.2 and 6.7, observe for z,y € H:
(Az,y) = (Az, Ay — (Ay —y)) = (Az, Ay) = (Azv — (Az — z), Ay) = (v, Ay).

3.=4.: Immediate. 4.=1.: Combining Proposition with Proposition 6231
we have ker A = ker A* = (A(H))*. Note also that A(H) is closed since A

is a projector. Thus, by Theorem B3R, A is an orthogonal projection. 3.=5.:

For x € H observe

(Az,2) = (Ao Az, z) = (Ax, Az) = ||Az|]® > 0.
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5.=1.: Let x € ker A and y € ' := A(H). Then,
0< (A +y)z+y) = yo+y) =yl + o).

Since z can be scaled arbitrarily, we must have (y, z) = 0. Thus, ker A C F*.
As above we may conclude that A is an orthogonal projector. O

Exercise 39. Let X be a normed vector space and Y a separable Hilbert
space. Show that KL(X,Y) = CLg,(X,Y). [Hint: Use Proposition
and show that the assumptions of Proposition B=37 can be satisfied.]

Exercise 40. Let w € C(]0, 1], R) and consider the map (-, -),, : C(]0, 1], C)x
C([0,1],C) — C given by

1
(fr G = /0 @) g@w(z)de.
1. Give necessary and sufficient conditions for (-,-),, to be a scalar prod-

uct.

2. When is the norm induced by (-, ), equivalent to the norm induced
by the usual scalar product

()= [ Sl

Exercise 41. Let S be a set and H C F(S,K) a subspace of the functions
on S with values in K. Suppose that an inner product is given on H that
makes it into a Hilbert space. Let K : S x § — K and define K, : § - K
by K,(y) := K(y,z). Then, K is called a reproducing kernel iff K, € H for
all x € S and f(x) = (f, K,) for all x € S and f € H. Show the following:

1. If a reproducing kernel exists, it is unique.

2. A reproducing kernel exists iff the topology of H is finer than the
topology of pointwise convergence.

3. If K is a reproducing kernel, then span({K;},cs) is dense in H.

4. Let H be the two-dimensional subspace of L2([0,1],K) consisting of
functions of the form x — ax + b. Determine its reproducing kernel.
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7 C*-Algebras

7.1 The commutative Gelfand-Naimark Theorem

In the same sense as Banach algebras may be seen as an abstraction of the
space of continuous operators on a Banach space, we can abstract the con-
cept of continuous operators on a Hilbert space. Of course, a Hilbert space is
in particular a Banach space. So the algebras we are looking for are in par-
ticular Banach algebras. The additional structure of interest coming from
Hilbert spaces is that of an adjoint. As in the section about Banach algebras
we work in the following exclusively over the field of complex numbers.

Definition 7.1. Let A be an algebra over C. Consider a map *: A — A
with the following properties:

e (a+b)*=a*+b" for all a,b € A.

(Aa)* = Aa* for all A € C and a € A.
e (ab)* =b*a* for all a,b € A.
( *

e (a*)* =aforall a € A.

Then, * is called an (anti-linear anti-multiplicative) involution.

Definition 7.2. Let A be a Banach algebra with involution * : A — A such
that ||a*al| = ||a||®>. Then, A is called a C*-algebra. For an element a € A,
the element a* is called its adjoint. If a* = a, then a is called self-adjoint.
If a*a = aa*, then a is called normal.

Exercise 42. Let A be a C*-algebra. (a) Show that ||a*|| = ||a|| and ||aa*|| =
lal|? for all a € A. (b) If e € A is a unit, show that e* =e. (c) If a € A is
invertible, show that a* is also invertible.

Exercise 43. Let A be a unital C*-algebra and a € A. Show that o 4(a*) =
oala).

Exercise 44. Let X be a Hilbert space. (a) Show that CL(X, X) is a unital
C*-algebra. (b) Show that KL(X, X) is a C*-ideal in CL(X, X).

Exercise 45. Let A be a C*-algebra and a € A. Show that there is a unique
way to write a = b+ ic so that b and c are self-adjoint.

Exercise 46. Let T be a compact topological space. Show that the Banach
algebra C(T, C) of Exercise B0 is a C*-algebra, where the involution is given
by complex conjugation.
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Proposition 7.3. Let A be a C*-algebra and a € A normal. Then, ||a?|| =

lal|* and ra(a) = |al.

Proof. We have [la*||* = [|(a*)*(a®)|| = [|(a*a)*(a*a)|| = [la*a]|* = ([lal|*)*.
This implies the first statement. Also, this implies [|a2"|| = ||a[|?" for all
k € N and hence lim,, ;o ||a™||'/™ = ||a|| if the limit exists. But by Proposi-
tion B the limit exists and is equal to r4(a). O

Proposition 7.4. Let A be a C*-algebra and a € A self-adjoint. Then,
UA(CL) CcR.

Proof. Take a4+ i € og4(a), where «, 5 € R. Thus, for any A\ € R we have
a+1i(8+ A) € oa(a + iXe). By Proposition B8 we have |a +i(8 + A)| <
lla +iXe||. We deduce

o+ (B+A)? = la+i(B+ N
< |la +iXe|?
= |[(a +iXe)*(a + iXe)||
= [[(a —iXe)(a + ie)]]
= |la® + \2¢||
< la®|| + X

Subtracting A? on both sides we are left with a? + 82 4+ 28X < ||a?||. Since
this is satisfied for all A € R we conclude 5 = 0. O

Proposition 7.5. Let A be a unital C*-algebra. Then, the Gelfand trans-
form A — C(T'4,C) is a continuous unital C*-algebra homomorphism. More-
over, its image is dense in C(I' 4,C).

Proof. By Theorem 527, the Gelfand transform is a continuous unital al-
gebra homomorphism. We proceed to show that it respects the *-structure.
Let a € A be self-adjoint. Then, combining Proposition with Proposi-
tion T4 we get a(¢) = ¢(a) € o4(a) C R for all ¢ € I'4. So a is real-valued,
i.e., self-adjoint. In particular, a* = a*. Using the decomposition of Exer-
cise B3 this follows for general elements of A. (Explain!)

It remains to show that the image A of the Gelfand transform is dense.
It is clear that A separates points of I'4 by construction, vanishes nowhere
(as it contains a unit) and is invariant under complex conjugation (as it
is the image of a *-algebra homomorphism). Thus, the Stone-Weierstrass
Theorem B0 ensures that A is dense in C(I'4, C). O
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Theorem 7.6 (Gelfand-Naimark). Let A be a unital commutative C*-algebra.
Then, the Gelfand transform A — C(T' 4, C) is an isometric isomorphism of
unital commutative C*-algebras.

Proof. Using Proposition 3 it remains to show that the Gelfand transform
is isometric. Surjectivity then follows from the fact that the isometric image
of a complete set is complete and hence closed. Since A is commutative all

its elements are normal. Then, by Proposition 3, ||a?|| = ||a||* and we can
apply Proposition to conclude isometry. ]

The Gelfand-Naimark Theorem 7@ (in view of Exercise B3) gives rise to
a one-to-one correspondence between compact Hausdorff spaces and unital
commutative C*-algebras.

Theorem 7.7. The category of compact Hausdorff spaces is naturally equiv-
alent to the category of unital commutative C*-algebras.

Proof. Exercise. O

Before we proceed we need a few more results about C*-algebras.

Proposition 7.8. Let A be a unital C*-algebra and a € A normal. Define B
to be the unital C*-subalgebra of A generated by a. Then, B is commutative
and the Gelfand transform a of a defines a homeomorphism onto its image,
I'p — op(a) which we denote by a.

Proof. B consists of possibly infinite linear combinations of elements of the
form (a*)™a™ where n,m € Ny (and a° = (a*)? = e). In particular, B
is commutative. Consider the Gelfand transform ¢ : I'g — C of a in B.
Suppose a(¢) = a(y) for ¢,1 € I'g. Then, ¢(a) = 1(a), but also

~

¢la*) = a*(¢) = a(9) = a(¥)) = a*(v) = ¥(a"),

using Proposition 3. Thus, ¢ is equal to ¥ on monomials (a*)™a™ by
multiplicativity and hence on all of B by linearity and continuity. This
shows that & is injective. By Proposition the image of a is op(a).
Thus, @ is a continuous bijective map a : I'p — op(a). With Lemma 2T it
is even a homeomorphism. ]

Proposition 7.9. Let A be a unital C*-algebra and a € A. Let B be a
unital C*-subalgebra containing a. Then, op(a) = oa(a).
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Proof. Tt is clear that o4(a) C op(a). It remains to show that if b:= e —a
for any A € C has an inverse in A then this inverse is also contained in B.

Assume first that a (and hence b) is normal. We show that b~! is even
contained in the unital C*-subalgebra C' of B that is generated by b. Suppose
that b~! is not contained in C' and hence 0 € o¢(b). Choose m > b~}
and define a continuous function f : o¢(b) — C such that f(0) = m and
|f(x)x| <1 for all x € o¢(b). Using Theorem 8 and Proposition 8 there
is a unique element ¢ € C such that & = f o b. Observe also that b=io b,
where i : o (b) — C is the inclusion map 2 — 2 and hence & = (f - i) o b.
Using Theorem 8 we find

m < | fIl = llel = Nebb™ | < eblllb~" | = If - alllo~" ] < [lo~]1

This contradicts m > ||b7!. So 0 ¢ o¢(b) and b=! € C as was to be
demonstrated. This concludes the proof for the case that a is normal.
Consider now the general case. If b is not invertible in B then by
Lemma b7 at least one of the two elements b*b or bb* is not invertible in
B. Suppose b*b is not invertible in B (the other case proceeds analogously).
b*b is self-adjoint and in particular normal so the version of the proposition
already proofed applies and o4 (b*b) = op(b*b). In particular, b*b is not
invertible in A and hence b cannot be invertible in A. This completes the
proof. ]

7.2 Spectral decomposition of normal operators

Proposition 7.10 (Spectral Theorem for Normal Elements). Let A be a
unital C*-algebra and a € A normal. Then, there exists an isometric homo-
morphism of unital *-algebras ¢ : C(oa(a),C) — A such that ¢(1) = a.

Proof. Exercise.Hint: Combine Proposition I8 with Theorem 8. O

Of course, an important application of this is the case when A is the
algebra of continuous operators on some Hilbert space and a is a normal
operator.

In the context of this proposition we also use the notation f(a) := ¢(f)
for f € C(oa(a),C). We use the same notation if f is defined on a larger
subset of the complex plane.

Corollary 7.11 (Continuous Spectral Mapping Theorem). Let A be a unital
C*-algebra, a € A normal and f : T — C continuous such that o4(a) C T.

Then, 0a(f(a)) = f(oa(a)).
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Proof. Exercise. O

Corollary 7.12. Let A be a unital C*-algebra and a € A normal. Fur-
thermore, let f : oa(a) — C and g : f(oa(a)) — C continuous. Then

(go f)a) =g(f(a)).
Proof. Exercise. O

Definition 7.13. Let A be a unital C*-algebra. If u € A is invertible and
satisfies u* = v~ we call u unitary. If p € A is self-adjoint and satisfies p? =
p we call it an orthogonal projector. (Exercise.Justify this terminology!)

Exercise. Let A be a unital C*-algebra.

1. Let u € A be unitary. What can you say about o4(u)?

2. Let p € A be an orthogonal projector. Show that o4(p) C {0, 1}.
3. Let a € A be normal and c4(a) C R. Show that a is self-adjoint.

Proposition 7.14. Let A be a unital C*-algebra and a € A normal. Suppose
the spectrum of a is the disjoint union of two non-empty subsets o4(a) =
s1 U sa. Then, there exist ai,as € A normal, such that os(a1) = s1 and
oalaz) = so and a = a1 + az. Moreover, ajaz = aga; = 0 and a commutes
both with a1 and as.

Proof. Exercise. O

Proposition 7.15. Let H be a Hilbert space, A := CL(H,H) and k €
KL(H, H) normal. Then, there exists an orthogonal projector py € A for
each X € o 4(k) such that pxpy =0 if X # X and

k= Z Apy and e = Z Dx-

Aeoa(k) Aeaa(k)

Proof. Exercise. (Explain also in which sense the sums converge!) O

7.3 Positive elements and states

We now move towards a characterization of noncommutative C*-algebras.
We are going to show that any unital C*-algebra is isomorphic to a C*-
subalgebra of the algebra of continuous operators on some Hilbert space.

Definition 7.16. Let A be a unital C*-algebra. A self-adjoint element
a € A is called positive iff o4(a) C [0, 00).
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Exercise 47. Let T be a compact Hausdorff space and consider the C*-
algebra C(T,C). Show that the self-adjoint elements are precisely the real
valued functions and the positive elements are the functions with non-
negative values.

Proposition 7.17. Let A be a unital C*-algebra and a,b € A positive.
Then, a + b is positive.

Proof. Suppose A € 04(a+b). Since a and b are self-adjoint so is a + b. In
particular, o4(a +b) C R and A is real. Set a := ||a|| and § := ||b]|. Then,
(a+B)=X\ € oa((a+B)e—(a+b)) and thus |(a+8)—A| < ra((a+5)e—(a+D))
by Theorem 5T3. But the element (o + 8)e — (a + b) is normal (and even
self-adjoint), so Proposition 23 applies and we have r4((a+ f)e— (a+b)) =
(a4 B)e — (a+b)|| < ||owe—al| + ||Se —b||. Again using Proposition 3 we
find ||ae — al| = ra(ae — a) and ||fe — b|| = ra(Be —b). But c4(a) C [0, q]
by positivity and Proposition 58. Thus, o4(ae — a) C [0,«]. Hence, by
Theorem 613, 74 (e — a) < a. In the same way we find r4(fe—b) < 5. We
have thus demonstrated the inequality |(a + 5) — A| < o+ 8. This implies
A > 0, completing the proof. O

Proposition 7.18. Let A be a unital C*-algebra and a € A self-adjoint.
Then, there exist positive elements ay,a— € A such that a = a4 — a— and
ara_ =a_ay = 0.

Proof. Exercise. Hint: Consider the unital C*-subalgebra generated by a.
O

Proposition 7.19. Let A be a unital C*-algebra and a € A. Then, a is
positive iff there exists b € A such that a = b*b.

Proof. Exercise. O

Lemma 7.20. Let A be a unital C*-algebra and a € A positive and such
that ||al]| < 1. Then, e — a is positive and ||e — al| < 1.

Proof. Exercise. O

A similar role to that played by the characters in the theory of commu-
tative C*-algebras is now played by states.

Definition 7.21. Let A be a unital C*-algebra. A continuous linear func-
tional w : A — C is called positive iff w(a) > 0 for all positive elements
a € A. A positive functional w : A — C is called a state iff it is normalized,
i.e., iff ||w|]| = 1. The set ¥4 of states of A is called the state space of A.
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Exercise 48. Let A be a unital C*-algebra. Show that 'y C ¥4, i.e., each
character is in particular a state.

Proposition 7.22. Let A be a unital C*-algebra and w a positive functional

on A. Then w(a*) = w(a) for all a in A. In particular, w(a) € R if a is
self-adjoint.
Proof. Exercise. O

Proposition 7.23. Let A be a unital C*-algebra and w a positive functional
on A. Consider the map [-,-], : Ax A — C given by [a, b, = w(b*a). It has
the following properties:

1. [-,]w is a sesquilinear form on A.
2. [a,bl, = [b,alw for all a,b e A.
3. [a,alu, >0 for alla € A.

Proof. Exercise. O

This shows that we almost have a scalar product, only the definiteness
condition is missing. Nevertheless we have the Cauchy-Schwarz inequality.

Proposition 7.24. Let A be a unital C*-algebra and w a non-zero positive
functional on A. The following is true:

1. |[a,bo|? < [a,a]u[b, bl for all a,b € A.
2. Leta € A. Then, |a,a], = 0 iff [a,b]l, =0 for all b € A.
3. lab,ab), < ||al?[b, bl for all a,b € A.
Proof. Exercise. O

Proposition 7.25. Let A be a unital C*-algebra and w : A — C continuous
and linear. Then, w is a positive functional iff ||w]| = w(e).

Proof. Suppose that w is a positive functional. Given € > 0 there exists
a € A with [la|| = 1 such that ||w(a)||?> > ||w||* — €. Using the Cauchy-
Schwarz inequality (Proposition 24.1) with b = e we find

lw(@)]* < w(a*a)w(e) < [|wlllaallw(e) = |lwllw(e).

Combining this with the first inequality we get ||w]||? — € < ||w||w(e). Since
€ was arbitrary this implies ||w|| < w(e). On the other hand, the inequality
w(e) < ||wl is clear.
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Conversely, suppose now that w is a continuous linear functional with
the property |w| = w(e). Without loss of generality we normalize w such
that w(e) = 1 = [jw||. We first show that w(a) € R if a € A is self-adjoint.
Assume the contrary, i.e., assume there exists a € A such that w(a) = x+iy
with z,y € R and y # 0. Set b := a — xe. Then, b is self-adjoint and
w(b) =iy. For A € R we get,

lw(b+iXe)|? = |iy + dw(e)|? = 2 + 22y + A2
One the other hand,
w(b+iAe)[2 < w25+ el = [[(b+iAe)*(b+iAe) | < B2 + A2
The resulting inequality is equivalent to,
y® +2xy < |[b]I?,

which obviously cannot be fulfilled for arbitrary A € R (recall that y # 0),
giving a contradiction. This shows that w(a) € R if a € A is self-adjoint.
We proceed to show that w(a) > 0 if a € A is positive. Assume the
contrary, i.e., assume there is a € A positive such that w(a) < 0. (Note that
w(a) € R by the previous part of the proof.) By suitable normalization we
can achieve |ja|| <1 as well. By Lemma 20 we have |le — al| < 1 and thus
|w(e—a)| < 1since |w|| = 1. On the other hand, |w(e—a)| = |1 —w(a)| > 1,
a contradiction. This shows that w must be positive. O

Proposition 7.26. Let A be a unital C*-algebra and a € A positive. Then,
there exists a state w € ¥4 such that w(a) = ||a|.

Proof. Since a is positive we have o4(a) C [0,00). Moreover, a is normal,
so by Proposition =3 we have ra(a) = |lal|. Thus, |a| € ca(a). Let B
be the unital C*-subalgebra of A generated by a. By Proposition 9 we
have op(a) = oa(a) and in particular ||a|| € op(a). By Proposition S,
a induces a homeomorphism I'p — op(a). In particular, there exists a
character ¢ € I'p such that ||a|| = a(¢) = ¢(a). Recall that ¢(e) = 1 and
lloll = 1 by Proposition 622. By the Hahn-Banach Theorem (Corollary B=31)
there exists an extension of ¢ to a linear functional w : A — C such that
w|p = ¢ and |lw| = 1. Note in particular that w(e) = 1 = |jw||. So by
Proposition 23, w € Y 4. O
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7.4 The GNS construction

Proposition 7.27. Let A be a unital C*-algebra and w a state on A. Define
I,:={a€ A:a,al, =0} C A. Then, 1, is a left ideal of the algebra A.
In particular, the quotient vector space A/1,, is an inner product space with
the induced sesquilinear form.

Proof. Exercise. O

Definition 7.28. Let A be a unital C*-algebra and w a state on A. We call
the completion of the inner product space A/, the Hilbert space associated

with the state w and denote it by H,. We denote its scalar product by
(-, )w: Hy x H, — C.

A consequence of the fact that A/I, is a left ideal is that we have a
representation of A on this space and its completion from the left.

Definition 7.29. Let A be a unital C*-algebra and H a Hilbert space. A
homomorphism of unital *-algebras A — CL(H, H) is called a representation
of A. A representation that is injective is called faithful. A representation
that is surjective is called full.

Proposition 7.30. Let A, B be unital C*-algebras and ¢ : A — B a homo-
morphism of unital *-algebras.

1. ||¢(a)|| < ||la|| for all a € A. In particular, ¢ is continuous.
2. If ¢ is injective then it is isometric.

Proof. Exercise. O

Theorem 7.31. Let A be a unital C*-algebra and w a state on A. Then,
there is a natural representation m, : A — CL(H,, H,). Moreover,

(@] > w(a'a) Vae A
and ||m,|| = 1.

Proof. Define the linear maps 7 (a) : A/I, — A/, by left multiplica-
tion, i.e., 7,(a) : [b] + [abl. That 7,(a) is well defined follows from
Proposition 22 (I, is a left ideal). By definition we have then 7, (ab) =
Tw(a) o Ty(b) and 7,(e) = 14/7,. Furthermore, [|7,(a)| < [la| due to
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Proposition 24.3 and hence 7, (a) is continuous. So we have a homomor-
phism of unital algebras 7, : A — CL(A/I,, A/1,). Also, 7, preserves the
*-structure because,

(Tw(a®)[b]; [c))w = [a7b, o = w(ca’b) = [b, acly, = ([b], T (a) [c])w-

Since 7, (a) is continuous it extends to a continuous operator m,(a) : H, —
H,, on the completion H, of A/I,, with the same properties. In particular,
7, is a homomorphism of unital *-algebras.

Due to the bound ||7,(a)|| < |la|| and hence |7, (a)|| < |la|| (or due to
Proposition =30.1) we find |7, || < 1. Observe also that w(e) = 1 By Propo-
sition 23 and hence ||, (a)||? > [ae, ae]u/[e, €] = w(a*a). In particular,
Il 2 ()] > 1. Thus, |m] = 1. 0

The construction leading to the Hilbert spaces H,, and this representa-
tion is called the GNS-construction (Gelfand-Naimark-Segal).

Definition 7.32. Let A be a unital C*-algebra, H a Hilbert space and
¢ : A — CL(H,H) a representation. A vector v € H is called a cyclic
vector iff {¢(a)y : a € A} is dense in H. The representation is then called
a cyclic representation.

Proposition 7.33. Let A be a unital C*-algebra and w a state on A. Then,
there is a cyclic vector i € H,, with the property w(a) = (m,(a), V), for
all a € A.

Proof. Exercise. O

A deficiency of the representation of Theorem [=31 is that it is neither
faithful nor full in general. Lack of faithfulness can be remedied. The idea
is that we take the direct sum of the representations 7, for all normalized
states w.

Proposition 7.34. Let {Hy}ocr be a family of Hilbert spaces. Consider col-
lections v of elements 1o € Hy with o € T such that sup jc; > aey [Vall? <
oo where J ranges over all finite subsets of I.  Then, the set H of such
collections 1 is naturally a Hilbert space and we have isometric embeddings
H, — H forallael.

Proof. Exercise. O

Definition 7.35. The Hilbert space H constructed in the preceding Propo-
sition is called the direct sum of the Hilbert spaces H, and is denoted

69046[ Ha‘
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Proposition 7.36. Let A be a unital C*-algebra, {Huy}acr a family of
Hilbert spaces and ¢o : A — CL(H,, H,) a representation for each o € I.
Then, there exists a representation ¢ : A — CL(H, H) such that ||¢p(a)] =
sUpacr l|Pala)| for all a € A, where H := @,y Ha-

Proof. Exercise. O
We are now ready to put everything together.

Theorem 7.37 (Gelfand-Naimark). Let A be a unital C*-algebra. Then,
there exists a Hilbert space H and a faithful representationm: A — CL(H, H).

Proof. Exercise. O

This result concludes our characterization of the structure of C*-algebras:
Each C*-algebra arises as a C*-subalgebra of the algebra of continuous op-
erators on some Hilbert space.

Exercise 49. Let A be a unital C*-algebra, Hi, Hy Hilbert spaces, ¢ :
A — CL(Hy, Hy) and ¢9 : A — CL(Ha, Hs) cyclic representations. Suppose
that (¢1(a)i1, 1)1 = (¢2(a)ih2,2)e for all @ € A, where 1,92 are the
cyclic vectors in Hy and Hs respectively. Show that there exists a unitary
operator (i.e., an invertible linear isometry) W : H;y — Ha such that ¢(a) =
W*ip(a)W for all a € A.
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