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1 Motivation

Why do we want a Hamiltonian Formulation of GR

@ We want Quantum Gravity and know how to do cannonical quantization

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008



1 Motivation

Why do we want a Hamiltonian Formulation of GR

@ We want Quantum Gravity and know how to do cannonical quantization
o Central for Wheeler-DeWitt and Geometrodynamics, LQG,...

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 3/22



1 Motivation

Why do we want a Hamiltonian Formulation of GR

@ We want Quantum Gravity and know how to do cannonical quantization
o Central for Wheeler-DeWitt and Geometrodynamics, LQG,...

@ Deep insights into nature of constraint- and gauge systems.

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 3/22



1 Motivation

Why do we want a Hamiltonian Formulation of GR

We want Quantum Gravity and know how to do cannonical quantization
Central for Wheeler-DeWitt and Geometrodynamics, LQG,...

Deep insights into nature of constraint- and gauge systems.

Numerical GR needs a description in terms of foliations in order to describe the
dynamical evolution of events.
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2 Foliation of Space—Time

o Hamiltonian formalism requires a time coordinate, since otherwise p = 9L/9q
cannot be defined.
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2 Foliation of Space—Time

Requirements

o Hamiltonian formalism requires a time coordinate, since otherwise p = 9L/9q
cannot be defined.

@ Must cast GR in a form where it exhibits a distinguished time.
(does that not break Diff(M)? = No, to the contrary!)

Definition

A foliation of M is a diffeomorphism X : R X 0 — M.

Facts

@ space— time is a 4-dim globally hyperbolic manifold, and as such admits a foliation
(topological: Geroch '70 and metrical: Bernal and Sanchez '03-'06)
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2 Foliation of Space—Time

Requirements

o Hamiltonian formalism requires a time coordinate, since otherwise p = 9L/9q
cannot be defined.

@ Must cast GR in a form where it exhibits a distinguished time.
(does that not break Diff(M)? = No, to the contrary!)

Definition
A foliation of M is a diffeomorphism X : R X 0 — M.

@ space— time is a 4-dim globally hyperbolic manifold, and as such admits a foliation
(topological: Geroch '70 and metrical: Bernal and Sanchez '03-'06)

o foliation fixes space— time topology to be M =R x o
(might have to allow for topology change in quantum gravity)
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2 Foliation of Space—Time

Breaking of Diff (M)?
@ EH-action is invariant under Diff (M) fixing a coordinate system breaks Diff (M)
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@ EH-action is invariant under Diff (M) fixing a coordinate system breaks Diff (M)

o specification of X (o) breaks Diff (M) but if we keep X generall Diff (M) is
preserved.

@ Define the pulled back action to be equal to the EH-action:

Sapm[X"g] := Sgnulg]-
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2 Foliation of Space—Time

Breaking of Diff (M)?
@ EH-action is invariant under Diff (M) fixing a coordinate system breaks Diff (M)

o specification of X (o) breaks Diff (M) but if we keep X generall Diff (M) is
preserved.

@ Define the pulled back action to be equal to the EH-action:
Sapm[X"g] := Senlg].
= freedom of choice of the foliation is " equivalent to Diff (M)

Sen[¢"g] = Sapm[X " 0 ¢"g] = Sapm((¢ o X)"g] = Sapm[X " g]

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008

5

/ 22



2 Foliation of Space—Time

Tangent Space of Submanifolds

Let (M, g,V) be a 4-dim Lorentzian space— time and (o, h, D) an embedded 3-dim
Riemannian submanifold with the embedding X : R X 0 — M

- %W:N(X)n“(X)—FN“(X)

T, M = N3, @ Tp3.

t

@ The fuctions N and N* are called lapse function and shift vector respectively
o t* is interpreted as describing the " flow of time”.

Felix Haas (UNAM Morelia, Mexico)

Arnowitt-Deser-Misner Formalism

April 11th 2008



2 Foliation of Space—Time

Tangent Space of Submanifolds

Let (M, g,V) be a 4-dim Lorentzian space— time and (o, h, D) an embedded 3-dim
Riemannian submanifold with the embedding X : R X 0 — M

p_ OXM(t,x)
' ot
T, M = NI @ T3,

t =N (X)n"(X)+N*"(X)

@ The fuctions N and N* are called lapse function and shift vector respectively

o t* is interpreted as describing the " flow of time”.

| .

Metrics

(X"g) on Rxo and guv on M

haep O O and huy on X¢:=X(0)
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2 Foliation of Space—Time

Tangent Space of Submanifolds

Let (M, g,V) be a 4-dim Lorentzian space— time and (o, h, D) an embedded 3-dim
Riemannian submanifold with the embedding X : R X 0 — M

p_ OXM(t,x)
' ot
T, M = NI @ T3,

t =N (X)n"(X)+N*"(X)

@ The fuctions N and N* are called lapse function and shift vector respectively

o t* is interpreted as describing the " flow of time”.

| \

Metrics

(X"g) on Rxo and guv on M

haep O O and huy on X¢:=X(0)

We have the relations

v
ha = gu X' X and huv = guv — snuny
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2 Foliation of Space—Time

Dynamic ADM variables

After the foliation, what variables encode the 10 DOF of g,. 7
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ds* = gudX*@dX¥ = g [X*dt + X%dz®] ® [X¥dt + X dz"]
= gu[(Nn* + X% N*)dt + X*dz*]) ® [(Nn” + X3 N®)dt + X%dz’]
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We choose (hap, N, N) as ADM variables since we can fully reconstruct g,.,, from
(hab, N*, N).
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ds’ = gudX" ®dX" = g, [X"dt + X" dz®] @ [X"dt + X'da’]
G [(Nn# + X% N*)dt + X% dz®] ® [(Nn” 4+ X3 N®)dt + X%dz’]
(SN? + hap)[dt ® dt] + hap NP[dz® ® dt 4 dt ® dz®] + hap|dz® @ dz?]

We choose (hap, N, N) as ADM variables since we can fully reconstruct g,.,, from
(hab, N*, N).

Curvature of Submanifolds

We have two different notions of curvature for the submanifolds X,

@ Extrinsic curvature (2nd fundamental form)
- ® 1
]\uz/ = Vﬂnu = hHVo/nu - §Enhuu

measures how much a vector tangent to ¥, will fail to be tangent if we parallel
transport it using V.
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2 Foliation of Space—Time

Dynamic ADM variables

After the foliation, what variables encode the 10 DOF of g,. 7

ds’ = gudX" ®dX" = g, [X"dt + X" dz®] @ [X"dt + X'da’]
G [(Nn# + X% N*)dt + X% dz®] ® [(Nn” 4+ X3 N®)dt + X%dz’]
(SN? + hap)[dt ® dt] + hap NP[dz® ® dt 4 dt ® dz®] + hap|dz® @ dz?]

We choose (hap, N, N) as ADM variables since we can fully reconstruct g,.,, from
(hab, N*, N).

Curvature of Submanifolds

We have two different notions of curvature for the submanifolds X,

@ Extrinsic curvature (2nd fundamental form)
- ® 1
]\uz/ = Vﬂnu = hHVo/nu - §Enhuu

measures how much a vector tangent to ¥, will fail to be tangent if we parallel
transport it using V.

o Riemannian curvature R of D,f:= hZVVf
R EEEEEEE———————
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2 Foliation of Space—Time — Gauss-Codazzi Equations

Vacuum Einstein Action

SEH = i /M d*z/—g [(4)]%}

with 5 = 87G/c* and A = T},, =0
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2 Foliation of Space—Time — Gauss-Codazzi Equations

Vacuum Einstein Action
1
SEH = 7/ d4x\/—g [(4)]%]
25 S aq

with 5 = 87G/c* and A = T},, =0

@ For foliation we need to reformulate this in terms of ADM variables (hq,, N, N).
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2 Foliation of Space—Time — Gauss-Codazzi Equations

Vacuum Einstein Action
1
SEH = 7/ d4x\/—g [(4)R]
25 S aq
with 5 = 87G/c* and A = T},, =0

@ For foliation we need to reformulate this in terms of ADM variables (hq,, N, N).

Gauss-Codazzi Equations

| .

Gauss equation

ORuvas = 25[KapKup — KavKup] + hohI R, PR ooy
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2 Foliation of Space—Time — Gauss-Codazzi Equations

Vacuum Einstein Action
1
SEH = 7/ d4x\/—g [(4)R]
25 S aq
with 5 = 87G/c* and A = T},, =0

@ For foliation we need to reformulate this in terms of ADM variables (hq,, N, N).

| .

Gauss-Codazzi Equations

Gauss equation
ORuvas = 25[KapKup — KavKup] + hohI R, PR ooy
Codazzi Equation

DuKux — DuKun = hOhSha“Rpoayn”
Wr = OR_ (K. K" — K’ +2sV,[n"V,n" —n'V,n"]
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2 Foliation of Space—Time — Gauss-Codazzi Equations

Vacuum Einstein Action
1
SEH = 7/ d4x\/—g [(4)R]
25 S aq
with 5 = 87G/c* and A = T},, =0

@ For foliation we need to reformulate this in terms of ADM variables (hq,, N, N).

| \

Gauss-Codazzi Equations

Gauss equation
ORuvas = 25[KapKup — KavKup] + hohI R, PR ooy
Codazzi Equation

DuKux — DuKun = hOhSha“Rpoayn”
Wr = OR_ (K. K" — K’ +2sV,[n"V,n" —n'V,n"]

o the last term is a total divergence, which we will omit (assume X, is compact
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2 Foliation of Space—Time First glance at the constraints

The vacuum Einstein equations G, = 0 yield

0 = Gun”hl =Run"hh (1)
0 = Gun'n”=Run'n" + g 2)
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2 Foliation of Space—Time —  First glance at the constraints

Constraints

The vacuum Einstein equations G, = 0 yield
0 = Gun”hl =Run"hh (1)
0 = Gun'n”=Run"n"+ g 2)
(1)+(Codazzi) gives the spacial diffeomorphism constraint
D.K!—D,K =0
(2)+(Gauss) gives the Hamiltonian constraint

K? - K, K" +®R=0

Initial Value Problem in GR
o (X, h*”, K*¥) are initial data in GR

| .
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0 = Gun'n”=Run"n"+ g 2)
(1)+(Codazzi) gives the spacial diffeomorphism constraint
D.K!—D,K =0
(2)+(Gauss) gives the Hamiltonian constraint

K? - K, K" +®R=0

Initial Value Problem in GR
o (X, h*”, K*¥) are initial data in GR

@ Diffeomorphism and Hamiltonian constraint are inital value constraints that any
choice of (X, h*”, K*¥) will have to satisfy

| .

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 9/22



2 Foliation of Space—Time —  First glance at the constraints

Constraints

The vacuum Einstein equations G, = 0 yield
0 = Gun”hl =Run"hh (1)
0 = Gun'n”=Run"n"+ g 2)
(1)+(Codazzi) gives the spacial diffeomorphism constraint
D.K!—D,K =0
(2)+(Gauss) gives the Hamiltonian constraint

K? - K, K" +®R=0

Initial Value Problem in GR
o (X, h*”, K*¥) are initial data in GR
@ Diffeomorphism and Hamiltonian constraint are inital value constraints that any
choice of (X, h*”, K*¥) will have to satisfy
o If constraints hold on ¥ and Einstein equations are satisfied everywhere, then the
constraints hold on all later hypersurfaces 7.

| \
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2 Foliation of Space—Time ADM-Lagrangian

ADM-Lagrangian

@ For the volume element one finds \/—g = Nvh
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2 Foliation of Space—Time - ADM-Lagrangian

ADM-Lagrangian
@ For the volume element one finds \/—g = Nvh

o After inserting this and the Codazzi equation into Sgm, we pull it back to R x o and
get

Sapm = / dt / d%Nf ( K, K) +(3)R]
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2 Foliation of Space—Time - ADM-Lagrangian

ADM-Lagrangian
For the volume element one finds \/—g = Nvh

o After inserting this and the Codazzi equation into Sgm, we pull it back to R x o and
get

Sapm = / dt / d%Nf ( K, K) +(3)R]

o OR = ®R(h,8,h) and Ko = 55 [ltab — (Lnah)as) = Kap(h, h, N).
= Sapwm does not depend on N, N
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2 Foliation of Space—Time - ADM-Lagrangian

ADM-Lagrangian
For the volume element one finds \/—g = Nvh

o After inserting this and the Codazzi equation into Sgm, we pull it back to R x o and
get

[ / dt / d%Nf ( K“b)+(3)R]

o OR = ®R(h,8,h) and Ko = 55 [ltab — (Lnah)as) = Kap(h, h, N).
@ = Sapwm does not depend on N,N“

Conjugate Momenta

| \

In order to perform the Legendre transformation we need the conjugate momenta

pav . 95abm — 5 VRR®K — K
Shap 2K
Moo= S g Ohew
ON N

v
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3 Constraint Hamiltonian Systems —  Singular Systems
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3 Constraint Hamiltonian Systems —  Singular Systems

Singular Systems

Euler-Lagrange-Equations for a system with N DOF

d oL oL o°L ., ©L , oL ‘
= —— Ty L= —Wii(q,9) & + Vi
0 &og¢ o o¢ogl sgog? T og i(@.d) ¢ +Vi
Hessian
(jj _ (W—l)ij%
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Singular Systems

Euler-Lagrange-Equations for a system with N DOF

d oL oL o°L ., ©L , oL ‘
= —— Ty L= —Wii(q,9) & + Vi
0 &og¢ o o¢ogl sgog? T og i(@.d) ¢ +Vi
Hessian
(jj _ (W—l)ij%

o If det(W) = 0 accelerations are not uniquely determined by (g, ¢) < Singular
System. = Different time evolutions will stem from the same initial conditions
(Dirac’s definition of gauge equivalence)
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= —— Ty L= —Wii(q,9) & + Vi
0 &og¢ o o¢ogl sgog? T og i(@.d) ¢ +Vi
Hessian
(jj _ (W—l)ij%

o If det(W) = 0 accelerations are not uniquely determined by (g, ¢) < Singular
System. = Different time evolutions will stem from the same initial conditions
(Dirac’s definition of gauge equivalence)

o Generalized Bianchi identities: Gauge theory = Singular System
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3 Constraint Hamiltonian Systems —  Singular Systems

Singular Systems

Euler-Lagrange-Equations for a system with N DOF

d oL oL L , &L ., oL |
- T @tog = " 3gi00 T Haiggid = —Wii(,0) & +Vi
0 atog ' ag  ogopl T agogl T ag i(¢,9) & +Vi
Hessian
(jj _ (W_l)ij‘/i

o If det(W) = 0 accelerations are not uniquely determined by (g, ¢) < Singular
System. = Different time evolutions will stem from the same initial conditions
(Dirac’s definition of gauge equivalence)

o Generalized Bianchi identities: Gauge theory = Singular System

e Only if Wi; = (9p:)/(8¢%) is invertible, can this relation be solved for all velocities
in terms of phase space variables ¢ = ¢(q,p). In the other case not all momenta are
independent.
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3 Constraint Hamiltonian Systems —  Singular Systems

Primary constraint surface

Let rank(W) = R < N = 3 M = (N — R) null-eigenvectors

Yo (a,dWii(a,4) =0 = ¢m(q,q) ==Y, Vi=0

@ The func. independent ¢, = 0 with kK € K < M are called Lagrange constraints.
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Let rank(W) = R < N = 3 M = (N — R) null-eigenvectors

Yo (a,dWii(a,4) =0 = ¢m(q,q) ==Y, Vi=0

@ The func. independent ¢, = 0 with kK € K < M are called Lagrange constraints.
@ The ¢y, define a constraint 2N — K dimensional primary constraint surface I'),.
e Call F(q,p) weakly zero F = 0, if F|rp = 0.
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3 Constraint Hamiltonian Systems —  Singular Systems

Primary constraint surface
Let rank(W) = R < N = 3 M = (N — R) null-eigenvectors

Yo (a,dWii(a,4) =0 = ¢m(q,q) ==Y, Vi=0

@ The func. independent ¢, = 0 with kK € K < M are called Lagrange constraints.
@ The ¢y, define a constraint 2N — K dimensional primary constraint surface I'),.
e Call F(q,p) weakly zero F = 0, if F|rp = 0.

v

Theorems for primary constraints

A\
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Primary constraint surface
Let rank(W) = R < N = 3 M = (N — R) null-eigenvectors

Yo (a,dWii(a,4) =0 = ¢m(q,q) ==Y, Vi=0

@ The func. independent ¢, = 0 with kK € K < M are called Lagrange constraints.
@ The ¢y, define a constraint 2N — K dimensional primary constraint surface I'),.
e Call F(q,p) weakly zero F = 0, if F|rp = 0.

v

Theorems for primary constraints

o Theorem 1 If F(q,p)|rp =0, then F' = f*¢, for some f* e C*°
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3 Constraint Hamiltonian Systems —  Singular Systems

Primary constraint surface
Let rank(W) = R < N = 3 M = (N — R) null-eigenvectors

Yo (a,dWii(a,4) =0 = ¢m(q,q) ==Y, Vi=0

@ The func. independent ¢, = 0 with kK € K < M are called Lagrange constraints.
@ The ¢y, define a constraint 2N — K dimensional primary constraint surface I'),.
e Call F(q,p) weakly zero F = 0, if F|rp = 0.

v

Theorems for primary constraints

o Theorem 1 If F(q,p)|rp =0, then F' = f*¢, for some f* e C*°
o Theorem 2 If \;6q" + pu'dp; = 0, then
9¢

k OPk k
Aimut——, and i ™u

dq

Opr

op?
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3 Constraint Hamiltonian Systems Legendre Transformation

Canonical Hamiltonian

Define the canonical Hamiltonian through the Legendre Transformation

H.:=d¢'pi— L
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3 Constraint Hamiltonian Systems — Legendre Transformation

Canonical Hamiltonian

Define the canonical Hamiltonian through the Legendre Transformation
H.:=d¢'pi— L

The following shows that H. is a function of p and ¢ only.

; ; ; OL ; OL ; ; OL
0H, = {'0pi+08¢'pi —0¢'—— —0q'=— = ¢"0p; — 6q° ——
G'dpi +4¢'p T g ~ % 5 40P =% 55
; OH, 0H
— 6~’L c 61 c
ani+papi
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3 Constraint Hamiltonian Systems

Canonical Hamiltonian

Define the canonical Hamiltonian through the Legendre Transformation
H.:=d¢'pi— L

The following shows that H. is a function of p and ¢ only.

oL i OL
0H, = q5p1+5qu—5qaz qa = q'op; — o¢’
q"
0H, 0H,
— 62 c 6 c
0g; * ‘ Opi
and thus - - s
: ) o¢’ i) op' =
(3ql 8ql)q+<3pl q)p 0

Legendre Transformation

; OL
82
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3 Constraint Hamiltonian Systems — Legendre Transformation

Canonical Hamiltonian

Define the canonical Hamiltonian through the Legendre Transformation
H.:=d¢'pi— L
The following shows that H. is a function of p and ¢ only.
oL oL oL

Hc = ) i — i —

g q'0pi +64'p 5q81 5qaq =q'ép 5q81
_ g OHe | 5 OHe
- oq; P op:

and thus

OH. OL\ .; (0H. .\ ..
(3qi aqi)5q+<3pl q)5p—0

with Theorem 2 it follows that

q - api v @ Bpi
_y - _4doL_ oL 0H. x99

dt 9¢’ oq’ - q; b 0¢;
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3 Constraint Hamiltonian Systems Dirac-Bergman algorithm

Primary Hamiltonian

This motivates the definition of the primary Hamiltonian H,

H, := H. 4+ u"¢x
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This motivates the definition of the primary Hamiltonian H,
H, := H. 4+ u"¢x
For any phase space function F'(g,p) the time evolution then follows from

F ~{F H,}

| A\

Consistency conditions

We must enforce consistency conditions that ensure that the EOM preserve the
constraints.
(,bm ~ {¢m7 Hc} 4 {@m,-, @n}un = hm aF Cmnun ~ 0
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This motivates the definition of the primary Hamiltonian H,
H, := H. 4+ u"¢x
For any phase space function F'(g,p) the time evolution then follows from

F ~{F H,}

| A\

Consistency conditions

We must enforce consistency conditions that ensure that the EOM preserve the
constraints.

(Z.)m =~ {¢m7 Hc} + {@m,., @n}un =: hm aF Cmnun ~ 0

Distinguish two cases
1.) detC#% 0
u is uniquely fixed to be u" ~ C""™h,, = evolution preserves I';,
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3 Constraint Hamiltonian Systems Dirac-Bergman algorithm

Primary Hamiltonian

This motivates the definition of the primary Hamiltonian H,
H, := H. 4+ u"¢x
For any phase space function F'(g,p) the time evolution then follows from

F ~{F H,}

| A\

Consistency conditions

We must enforce consistency conditions that ensure that the EOM preserve the
constraints. )
(,bm ~ {¢m7 Hc} 4 {@m,-, @n}un = hm aF Cmnun ~ 0

Distinguish two cases

1.) detC#% 0

u is uniquely fixed to be u" ~ C""™h,, = evolution preserves I';,

2.) detC =0 )

u is not fixed and ¢,, =~ 0 leads to a certain number R of secondary constraints

or =0, re{M+1,...M+ R}
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3 Constraint Hamiltonian Systems Dirac-Bergman algorithm

Dirac-Bergman algorithm

@ The primary and secondary constraints ¢;, j =1,..., M + R define the
hypersurface I'y C T,

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 15 / 22



3 Constraint Hamiltonian Systems Dirac-Bergman algorithm

Dirac-Bergman algorithm

@ The primary and secondary constraints ¢;, j =1,..., M + R define the
hypersurface I'y C T,

@ We have to check the consistency for the primary and secondary constranits on I'y:

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 15 / 22



3 Constraint Hamiltonian Systems Dirac-Bergman algorithm

Dirac-Bergman algorithm

@ The primary and secondary constraints ¢;, j =1,..., M + R define the
hypersurface I'y C T,

@ We have to check the consistency for the primary and secondary constranits on I'y:
@ This might lead to tertiary constraints and I's C T';.

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 15 / 22



3 Constraint Hamiltonian Systems Dirac-Bergman algorithm

Dirac-Bergman algorithm

@ The primary and secondary constraints ¢;, j =1,..., M + R define the
hypersurface I'y C T,

@ We have to check the consistency for the primary and secondary constranits on I'y:
@ This might lead to tertiary constraints and I's C T';.

@ This procedure terminates after a finite number of iterationson I' C --- C I'; C T,
with ¢; ~0, j=1,..., M+ K.
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3 Constraint Hamiltonian Systems Dirac-Bergman algorithm

Dirac-Bergman algorithm

@ The primary and secondary constraints ¢;, j =1,..., M + R define the
hypersurface I'y C T,

@ We have to check the consistency for the primary and secondary constranits on I'y:
¢; ~ 0.

@ This might lead to tertiary constraints and I's C T';.

@ This procedure terminates after a finite number of iterationson I' C --- C I'; C T,
with ¢; ~0, j=1,..., M+ K.

@ Note that the primary constraints are merely consequences of the definition of the
momenta, whereas we used the EOM to arrive at the secondary constraints.
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3 Constraint Hamiltonian Systems First and Second Class

First and second class constraints

A function F'(q, p) is called first class, if {F, ¢, } ~ 0 for all (primary and secondary)
constraints ¢;. Otherwise it is called second class.
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constraints ¢;. Otherwise it is called second class.

Fx{F,H,} = ({F H}+{F ¢}u
{Fa HC} + {F7 ’yﬂ}ua ar {Fa Xb}ub

where v, are FCC: {va, 7} = {Va, X6} =0,
and xp are SCC: Agp := {Xa, X6} # 0 and invertible
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Fx{F,H,} = ({F H}+{F ¢}u
{Fa HC} + {F7 ’yﬂ}ua ar {Fa Xb}ub

where v, are FCC: {va, 7} = {Va, X6} =0,
and xp are SCC: Agp := {Xa, X6} # 0 and invertible

The consistence condition 0 & X & {Xa, He} + Aapu’ leads to u® ~ —A**{x,, H.}

FrA{F Hy)} ={F, H.} — {F,xs}A"{Xa, H.} +{F, ya }u"

=:{F,H_.}*Dirac bracket
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3 Constraint Hamiltonian Systems —  First and Second Class

First and second class constraints

A function F(q,p) is called first class, if {F,¢;} ~ 0 for all (primary and secondary)
constraints ¢;. Otherwise it is called second class.

Fr{F Hy} = {FH}+{F ¢}u*
{F,H.} + {F,va}u" + {F, xs}u"

where v, are FCC: {va, 7} = {Va, X6} =0,
and xp are SCC: Agp := {Xa, X6} # 0 and invertible

The consistence condition 0 ~ X ~ {Xa, Hc} + Aapu’ leads to u® ~ —A**{x,, H.}

FrA{F Hy)} ={F, H.} — {F,xs}A"{Xa, H.} +{F, ya }u"

=:{F,H.}*Dirac bracket

Flows of the constraints

| \

o Flows generated by the SCC lead off the constraint surface
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where v, are FCC: {va, 7} = {Va, X6} =0,
and xp are SCC: Agp := {Xa, X6} # 0 and invertible

The consistence condition 0 ~ X ~ {Xa, Hc} + Aapu’ leads to u® ~ —A**{x,, H.}

FrA{F Hy)} ={F, H.} — {F,xs}A"{Xa, H.} +{F, ya }u"

=:{F,H.}*Dirac bracket

Flows of the constraints

| \

o Flows generated by the SCC lead off the constraint surface

o Flows generated by the FCC stay on the constraint surface and are identified with
gauge transformation
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3 Constraint Hamiltonian Systems —  First and Second Class

First and second class constraints

A function F(q,p) is called first class, if {F,¢;} ~ 0 for all (primary and secondary)
constraints ¢;. Otherwise it is called second class.

Fr{F Hy} = {FH}+{F ¢}u*
{F,H.} + {F,va}u" + {F, xs}u"

where v, are FCC: {va, 7} = {Va, X6} =0,
and xp are SCC: Agp := {Xa, X6} # 0 and invertible

The consistence condition 0 ~ X ~ {Xa, Hc} + Aapu’ leads to u® ~ —A**{x,, H.}

FrA{F Hy)} ={F, H.} — {F,xs}A"{Xa, H.} +{F, ya }u"

=:{F,H.}*Dirac bracket

Flows of the constraints

| \

o Flows generated by the SCC lead off the constraint surface

o Flows generated by the FCC stay on the constraint surface and are identified with
gauge transformation

o Dirac conjecture: all FCC generate gauge transformations (exotic counterexamples)
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4 ADM Formalism

canonical ADM-Hamiltonian

We deduced the canonical variables h%®, N, N and their canonical momenta

P = SR - K, =0, =0

Ii2

det(h)

2 K 2 b
= ——7P° KaK* =

ab 2
det(h) [4Pap P = P7]
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4 ADM Formalism

canonical ADM-Hamiltonian

We deduced the canonical variables h%®, N, N and their canonical momenta

P = SR - K, =0, =0

2
2 K 2 ab __ ab 2
=——7P KK AP P*° — P
det(h)” T de t(h)[ b ]
The canonical ADM-Hamiltonian is obtained via a Legendre transformation
HXDM = /dits[Pabilab - £ADM]
3 ab N 748/{2 ab
L aolZ — Py PY — —
/dlf ( Nh) b =+ " \/E b fR
= /dngH + N°H,
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4 ADM Formalism

canonical ADM-Hamiltonian

We deduced the canonical variables h%®, N, N and their canonical momenta

P = SR - K, =0, =0

2
2 K 2 ab __ ab 2
=——"P KoK 4P, P — P
det(h)” T de t(h)[ b ]
The canonical ADM-Hamiltonian is obtained via a Legendre transformation
HXDM = /dits[Pabilab - £ADM]
3 ab N 748/{2 ab
Lnh)apP — PP — —
/dlf ( Nh) b =+ " \/E b fR
= /dngH + N°H,
H, = —2ha.DyP"

H = —<2}; [P P — P—T—\/ER)
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4 ADM Formalism —  Constraints

Secondary Constraints

The primary Hamiltonian is
Hipm = Hapu + vl + ull
The consistancy of the primary constraints Il,, II must be ensured

{HaaHgDM} = H,, {H»HQDM} =H
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Hipm = Hapu + vl + ull
The consistancy of the primary constraints I1,, Il must be ensured

{Hﬂ’HszDM} = H,, {HszDM} =H

@ Following the Dirac-Bergman algorithm, we must impose H, (the spatial
Diffeomorphism constraint) and H (the Hamiltonian constraint) as secondary
constraints.

@ N, and N can be treated as Lagrange multipliers, and are thus arbitrary

@ The Hamilton is a linear combination of constaints and thus vanishes on the physical
phase space. (No true Hamiltonian)

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 18 / 22



4 ADM Formalism —  Constraints

Secondary Constraints

The primary Hamiltonian is
Hipm = Hapu + vl + ull
The consistancy of the primary constraints I1,, Il must be ensured

{Hﬂ’HszDM} = H,, {HszDM} =H

@ Following the Dirac-Bergman algorithm, we must impose H, (the spatial
Diffeomorphism constraint) and H (the Hamiltonian constraint) as secondary
constraints.

@ N, and N can be treated as Lagrange multipliers, and are thus arbitrary

@ The Hamilton is a linear combination of constaints and thus vanishes on the physical
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o No tertiary constraints have to be imposed.
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4 ADM Formalism —  Constraints

Secondary Constraints

The primary Hamiltonian is

Hipm = Hapu + vl + ull
The consistancy of the primary constraints I1,, Il must be ensured

{Hﬂ’HszDM} = H,, {HszDM} =H

@ Following the Dirac-Bergman algorithm, we must impose H, (the spatial
Diffeomorphism constraint) and H (the Hamiltonian constraint) as secondary
constraints.

@ N, and N can be treated as Lagrange multipliers, and are thus arbitrary

@ The Hamilton is a linear combination of constaints and thus vanishes on the physical
phase space. (No true Hamiltonian)

o No tertiary constraints have to be imposed.

@ H, and H are FCC and thus generate gauge transformations
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4 ADM Formalism —  Constraints

Geometrical Interpretation of Constraints

We want to know what the Hamiltonian flow of the physical phase space variables Py
and gq» with respect to the constraints is.
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4 ADM Formalism —  Constraints

Geometrical Interpretation of Constraints

We want to know what the Hamiltonian flow of the physical phase space variables Py

and gq» with respect to the constraints is.

{H(N), P} =

,A,
]
=
2=
s
(=
Q
o
S
|

[0]r, G, =0 + LnnP®

[0]r, G, =0 + Lng®™
ab

LgP

ab
Lﬁq
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4 ADM Formalism —  Constraints

Geometrical Interpretation of Constraints

We want to know what the Hamiltonian flow of the physical phase space variables Py
and gq» with respect to the constraints is.

{H(N),P*} = [0r,G. =0+ LnnP®
{H(N),q"} = [0r.Gu=o+ Lyng™
)P = LgP®

b

,A,
]
=

2 =
s
(]

Q

o
.-

|

Lﬁqa

@ spacial Diffeomorphism constraint generates diffeomorphisms that preserve ;.

@ Hamiltonian constraint generates diffeomorphisms of M orthogonal to ;.
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4 ADM Formalism —  Constraints

Geometrical Interpretation of Constraints

We want to know what the Hamiltonian flow of the physical phase space variables Py
and gq» with respect to the constraints is.

{H(N),P*} = [0r,G. =0+ LnnP®
{H(N),q"} = [0r.Gu=o+ Lyng™
)P = LgP®

b

,A,
]
=

2 =
s
(]

Q

o
.-

|

Lﬁqa

@ spacial Diffeomorphism constraint generates diffeomorphisms that preserve ;.

@ Hamiltonian constraint generates diffeomorphisms of M orthogonal to ;.

@ However, their algebra is not a Lie algebra (Bergman-Komar " group”)
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4 ADM Formalism

The ADM-EOM are

P = {PabaHgDML qab = {qava}iDM}

Time evolution well defined
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| A

Further topics

@ Matter can be coupled and leads to a variation of the constraints, e.g.
H, — H, + v/hJ, (J, Poynting vector)

N
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4 ADM Formalism

The ADM-EOM are
P = {PabaH/ﬁDML ‘jab = {qavaﬁDM}

Time evolution well defined

| A\

Further topics

@ Matter can be coupled and leads to a variation of the constraints, e.g.
H, — H, + v/hJ, (J, Poynting vector)

@ For fermions the vierbein is decomposed, rather then the 4-metric

o Higher derivative Gravity can be handled
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5 Conclusions

@ Gravity can be cast into Hamiltonian form, the physical variables are the 3-metric
and its momentum
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@ Gauge theories are singular and thus constraint Hamiltonian systems
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5 Conclusions

@ Gravity can be cast into Hamiltonian form, the physical variables are the 3-metric
and its momentum

@ Lapse function and shift vector turn out to be Lagrange multipliers
@ Diffeomorphism invariance is preserved
@ Gauge theories are singular and thus constraint Hamiltonian systems

@ Consistency of the primary constraints yield spacial Diffeomorphism- and
Hamiltonian constraint that generate Diffeomorphisms

o Let the Canonical Quantization begin...
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