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1 Motivation

Why do we want a Hamiltonian Formulation of GR

We want Quantum Gravity and know how to do cannonical quantization

Central for Wheeler-DeWitt and Geometrodynamics, LQG,...

Deep insights into nature of constraint- and gauge systems.

Numerical GR needs a description in terms of foliations in order to describe the
dynamical evolution of events.

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 3 / 22



1 Motivation

Why do we want a Hamiltonian Formulation of GR

We want Quantum Gravity and know how to do cannonical quantization

Central for Wheeler-DeWitt and Geometrodynamics, LQG,...

Deep insights into nature of constraint- and gauge systems.

Numerical GR needs a description in terms of foliations in order to describe the
dynamical evolution of events.

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 3 / 22



1 Motivation

Why do we want a Hamiltonian Formulation of GR

We want Quantum Gravity and know how to do cannonical quantization

Central for Wheeler-DeWitt and Geometrodynamics, LQG,...

Deep insights into nature of constraint- and gauge systems.

Numerical GR needs a description in terms of foliations in order to describe the
dynamical evolution of events.

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 3 / 22



1 Motivation

Why do we want a Hamiltonian Formulation of GR

We want Quantum Gravity and know how to do cannonical quantization

Central for Wheeler-DeWitt and Geometrodynamics, LQG,...

Deep insights into nature of constraint- and gauge systems.

Numerical GR needs a description in terms of foliations in order to describe the
dynamical evolution of events.

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 3 / 22



2 Foliation of Space –Time

Requirements

Hamiltonian formalism requires a time coordinate, since otherwise p = ∂L/∂q̇
cannot be defined.

Must cast GR in a form where it exhibits a distinguished time.
(does that not break Diff(M)? ⇒ No, to the contrary!)

Definition

A foliation of M is a diffeomorphism X : R× σ →M.

Facts

space – time is a 4-dim globally hyperbolic manifold, and as such admits a foliation
(topological: Geroch ’70 and metrical: Bernal and Sanchez ’03-’06)

foliation fixes space – time topology to be M∼= R× σ
(might have to allow for topology change in quantum gravity)
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2 Foliation of Space –Time

Breaking of Diff(M)?

EH-action is invariant under Diff(M) fixing a coordinate system breaks Diff(M)

specification of X(σ) breaks Diff(M) but if we keep X generall Diff(M) is
preserved.

Define the pulled back action to be equal to the EH-action:

SADM[X∗g] := SEH[g].

⇒ freedom of choice of the foliation is ”equivalent“ to Diff(M)

SEH[φ∗g] ≡ SADM[X∗ ◦ φ∗g] = SADM[(φ ◦X)∗g] = SADM[X ′∗g]
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2 Foliation of Space –Time

Tangent Space of Submanifolds

Let (M, g,∇) be a 4-dim Lorentzian space – time and (σ, h,D) an embedded 3-dim
Riemannian submanifold with the embedding X : R× σ →M

tµ :=
∂Xµ(t, x)

∂t
=N(X)nµ(X)+Nµ(X)

TpM = NpΣτ ⊕ TpΣτ

The fuctions N and Nµ are called lapse function and shift vector respectively

tµ is interpreted as describing the ”flow of time”.

Metrics

(X∗g) on R×σ and gµν on M
hab on σ and hµν on Σt :=Xt(σ)

We have the relations

hab := gµνX
µ
,aX

ν
,b and hµν := gµν − snµnν
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2 Foliation of Space –Time

Dynamic ADM variables

After the foliation, what variables encode the 10 DOF of gµν?

ds2 = gµνdXµ ⊗ dXν = gµν [Ẋµdt+Xµ
,adxa]⊗ [Ẋνdt+Xν

,bdx
b]

= gµν [(Nnµ +Xµ
,aN

a)dt+Xµ
,adxa]⊗ [(Nnν +Xν

,bN
b)dt+Xν

,bdx
b]

= (sN2 + hab)[dt⊗ dt] + habN
b[dxa ⊗ dt+ dt⊗ dxa] + hab[dx

a ⊗ dxb]

We choose (hab, N
a, N) as ADM variables since we can fully reconstruct gµν from

(hab, N
a, N).

Curvature of Submanifolds

We have two different notions of curvature for the submanifolds Σt

Extrinsic curvature (2nd fundamental form)

Kµν := ∇µnν = hαµ∇αnν =
1

2
Lnhµν

measures how much a vector tangent to Στ will fail to be tangent if we parallel
transport it using ∇.

Riemannian curvature (3)R of Dµf := hνµ∇ν f̃
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2 Foliation of Space –Time – Gauss-Codazzi Equations

Vacuum Einstein Action

SEH =
1

2κ

Z
M

d4x
√
−g

h
(4)R
i

with κ = 8πG/c4 and Λ = Tµν = 0

For foliation we need to reformulate this in terms of ADM variables (hab, N
a, N).

Gauss-Codazzi Equations

Gauss equation

(3)Rµναβ = 2s[KαµKνβ −KανKµβ ] + hρµh
σ
νh

λ
αh

γ
β

(4)Rρσλγ

Codazzi Equation

DµKνλ −DνKµλ = hρµh
σ
νh

λ
α

(4)Rρσλγn
γ

(4)R = (3)R− s[KµνK
µν −K2] + 2s∇µ[nν∇νnµ − nµ∇νnν ]

the last term is a total divergence, which we will omit (assume Στ is compact
without boundary)
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2 Foliation of Space –Time – First glance at the constraints

Constraints

The vacuum Einstein equations Gµν = 0 yield

0 = Gµνn
νhµα = Rµνn

νhµα (1)

0 = Gµνn
µnν = Rµνn

µnν +
R

2
(2)

(1)+(Codazzi) gives the spacial diffeomorphism constraint

DµK
µ
ν −DνK = 0

(2)+(Gauss) gives the Hamiltonian constraint

K2 −KµνK
µν +(3)R = 0

Initial Value Problem in GR

(Σ, hµν ,Kµν) are initial data in GR

Diffeomorphism and Hamiltonian constraint are inital value constraints that any
choice of (Σ, hµν ,Kµν) will have to satisfy

If constraints hold on Σ0 and Einstein equations are satisfied everywhere, then the
constraints hold on all later hypersurfaces ΣT .
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2 Foliation of Space –Time – ADM-Lagrangian

ADM-Lagrangian

For the volume element one finds
√
−g = N

√
h

After inserting this and the Codazzi equation into SEH, we pull it back to R× σ and
get

SADM =
1

2κ

Z
R

dt

Z
σ

d3xN
√
h
h
s(K2 −KabK

ab) +(3)R
i

(3)R = (3)R(h, ∂ah) and Kab = 1
2N

[ḣab − (LNah)ab] = Kab(h, ḣ,N
a).

⇒ SADM does not depend on Ṅ , Ṅa

Conjugate Momenta

In order to perform the Legendre transformation we need the conjugate momenta

P ab :=
δSADM

δḣab
=

s

2κ

√
h[habK −Kab]

Π :=
δSADM

δṄ
= 0, Πa :=

δSADM

δṄa
= 0
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3 Constraint Hamiltonian Systems – Singular Systems

Singular Systems

Euler-Lagrange-Equations for a system with N DOF

0 = − d

dt

∂L

∂q̇i
+
∂L

∂qi
= − ∂2L

∂q̇i∂q̇j
q̈j − ∂2L

∂q̇i∂qj
q̇j +

∂L

∂qi
= −Wij(q, q̇)| {z }

Hessian

q̈j + Vi

q̈j = (W−1)ijVi

If det(W ) = 0 accelerations are not uniquely determined by (q, q̇) ⇔ Singular
System. ⇒ Different time evolutions will stem from the same initial conditions
(Dirac’s definition of gauge equivalence)

Generalized Bianchi identities: Gauge theory
:⇒ Singular System

Only if Wij = (∂pi)/(∂q̇
j) is invertible, can this relation be solved for all velocities

in terms of phase space variables q̇ = q̇(q, p). In the other case not all momenta are
independent.
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3 Constraint Hamiltonian Systems – Singular Systems

Primary constraint surface

Let rank(W) = R < N ⇒ ∃ M = (N −R) null-eigenvectors

Y im(q, q̇)Wij(q, q̇) = 0 ⇒ φm(q, q̇) := Y imVi = 0

The func. independent φk = 0 with k ∈ K ≤M are called Lagrange constraints.

The φk define a constraint 2N −K dimensional primary constraint surface Γp.

Call F (q, p) weakly zero F ≈ 0, if F |Γp = 0.

Theorems for primary constraints

Theorem 1 If F (q, p)|Γp = 0, then F = fkφk for some fk ∈ C∞

Theorem 2 If λiδq
i + µiδpi = 0, then

λi ≈ uk
∂φk
∂qi

, and µi ≈ uk
∂φk
∂pi

.
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3 Constraint Hamiltonian Systems – Legendre Transformation

Canonical Hamiltonian

Define the canonical Hamiltonian through the Legendre Transformation

Hc := q̇ipi − L

The following shows that Hc is a function of p and q only.

δHc = q̇iδpi + δq̇ipi − δq̇i
∂L

∂q̇i
− δqi ∂L

∂qi
= q̇iδpi − δqi

∂L

∂qi

= δq̇i
∂Hc
∂qi

+ δpi
∂Hc
∂pi

and thus „
∂Hc
∂qi

+
∂L

∂qi

«
δqi +

„
∂Hc
∂pi
− q̇i

«
δpi = 0

with Theorem 2 it follows that

q̇i ≈ ∂Hc
∂pi

+ uk
∂φk
∂pi

−ṗi = − d

dt

∂L

∂q̇i
= − ∂L

∂qi
≈ ∂Hc

∂qi
+ uk

∂φk
∂qi
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3 Constraint Hamiltonian Systems – Dirac-Bergman algorithm

Primary Hamiltonian

This motivates the definition of the primary Hamiltonian Hp

Hp := Hc + ukφk

For any phase space function F (q, p) the time evolution then follows from

Ḟ ≈ {F,Hp}

Consistency conditions

We must enforce consistency conditions that ensure that the EOM preserve the
constraints.

φ̇m ≈ {φm, Hc}+ {φm, φn}un =: hm + Cmnu
n ≈ 0

Distinguish two cases
1.) detC/≈ 0
u is uniquely fixed to be un ≈ Cnmhm ⇒ evolution preserves Γp

2.) detC ≈ 0
u is not fixed and φ̇m ≈ 0 leads to a certain number R of secondary constraints

φr ≈ 0, r ∈ {M + 1, . . .M +R}
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Ḟ ≈ {F,Hp}

Consistency conditions

We must enforce consistency conditions that ensure that the EOM preserve the
constraints.

φ̇m ≈ {φm, Hc}+ {φm, φn}un =: hm + Cmnu
n ≈ 0

Distinguish two cases
1.) detC/≈ 0
u is uniquely fixed to be un ≈ Cnmhm ⇒ evolution preserves Γp

2.) detC ≈ 0
u is not fixed and φ̇m ≈ 0 leads to a certain number R of secondary constraints

φr ≈ 0, r ∈ {M + 1, . . .M +R}
Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 14 / 22



3 Constraint Hamiltonian Systems – Dirac-Bergman algorithm

Primary Hamiltonian

This motivates the definition of the primary Hamiltonian Hp

Hp := Hc + ukφk

For any phase space function F (q, p) the time evolution then follows from
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u is not fixed and φ̇m ≈ 0 leads to a certain number R of secondary constraints

φr ≈ 0, r ∈ {M + 1, . . .M +R}
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3 Constraint Hamiltonian Systems – Dirac-Bergman algorithm

Dirac-Bergman algorithm

The primary and secondary constraints φj , j = 1, . . . ,M +R define the
hypersurface Γ1 ⊆ Γp

We have to check the consistency for the primary and secondary constranits on Γ1:
φ̇j ≈ 0.

This might lead to tertiary constraints and Γ2 ⊆ Γ1.

This procedure terminates after a finite number of iterations on Γ ⊆ · · · ⊆ Γ1 ⊆ Γp
with φj ≈ 0, j = 1, . . . ,M +K.

Note that the primary constraints are merely consequences of the definition of the
momenta, whereas we used the EOM to arrive at the secondary constraints.
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3 Constraint Hamiltonian Systems – First and Second Class

First and second class constraints

A function F (q, p) is called first class, if {F, φj} ≈ 0 for all (primary and secondary)
constraints φj . Otherwise it is called second class.

Ḟ ≈ {F,Hp} = {F,Hc}+ {F, φk}uk

= {F,Hc}+ {F, γa}ua + {F, χb}ub

where γa are FCC: {γa, γb} = {γa, χb} = 0,
and χb are SCC: ∆ab := {χa, χb} 6= 0 and invertible

The consistence condition 0 ≈ χ̇ ≈ {χa, Hc}+ ∆abu
b leads to ub ≈ −∆ba{χa, Hc}

Ḟ ≈ {F,Hp} = {F,Hc} − {F, χb}∆ba{χa, Hc}| {z }
=:{F,Hc}∗Dirac bracket

+{F, γa}ua

Flows of the constraints

Flows generated by the SCC lead off the constraint surface

Flows generated by the FCC stay on the constraint surface and are identified with
gauge transformation

Dirac conjecture: all FCC generate gauge transformations (exotic counterexamples)
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Ḟ ≈ {F,Hp} = {F,Hc} − {F, χb}∆ba{χa, Hc}| {z }
=:{F,Hc}∗Dirac bracket

+{F, γa}ua

Flows of the constraints

Flows generated by the SCC lead off the constraint surface

Flows generated by the FCC stay on the constraint surface and are identified with
gauge transformation

Dirac conjecture: all FCC generate gauge transformations (exotic counterexamples)
Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 16 / 22



4 ADM Formalism

canonical ADM-Hamiltonian

We deduced the canonical variables hab, Na, N and their canonical momenta

P ab =
s

2κ

√
h[habK −Kab], Π = 0, Πa = 0

K2 =
κ2

det(h)
P 2, KabK

ab =
κ2

det(h)
[4PabP

ab − P 2]

The canonical ADM-Hamiltonian is obtained via a Legendre transformation

Hc
ADM :=

Z
dx3[P abḣab − LADM]

=

Z
dx3(LNh)abP

ab +
N

2κ

„
−4sκ2

√
h

»
PabP

ab − P 2

2

–
−
√
hR

«
=:

Z
dx3NH +NaHa

Ha := −2hacDbP
bc

H := −
„

2sκ√
h

»
PabP

ab − P 2

2

–
−
√
hR

«
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4 ADM Formalism – Constraints

Secondary Constraints

The primary Hamiltonian is

Hp
ADM := Hc

ADM + uaΠa + uΠ

The consistancy of the primary constraints Πa,Π must be ensured

{Πa, H
p
ADM} = Ha, {Π, Hp

ADM} = H

Following the Dirac-Bergman algorithm, we must impose Ha (the spatial
Diffeomorphism constraint) and H (the Hamiltonian constraint) as secondary
constraints.

Na and N can be treated as Lagrange multipliers, and are thus arbitrary

The Hamilton is a linear combination of constaints and thus vanishes on the physical
phase space. (No true Hamiltonian)

No tertiary constraints have to be imposed.

Ha and H are FCC and thus generate gauge transformations
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4 ADM Formalism – Constraints

Geometrical Interpretation of Constraints

We want to know what the Hamiltonian flow of the physical phase space variables Pab
and qab with respect to the constraints is.

{H(N), P ab} = [0]Γ,Gµν=0 + LNnP
ab

{H(N), qab} = [0]Γ,Gµν=0 + LNnq
ab

{ ~H( ~N), P ab} = L ~NP
ab

{ ~H( ~N), qab} = L ~Nq
ab

spacial Diffeomorphism constraint generates diffeomorphisms that preserve Σt.

Hamiltonian constraint generates diffeomorphisms of M orthogonal to Σt.

However, their algebra is not a Lie algebra (Bergman-Komar ”group”)
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4 ADM Formalism

EOM

The ADM-EOM are

Ṗ ab = {P ab, Hp
ADM}, q̇ab = {qab, Hp

ADM}

Time evolution well defined

Further topics

Matter can be coupled and leads to a variation of the constraints, e.g.
Ha → Ha +

√
hJa (Ja Poynting vector)

For fermions the vierbein is decomposed, rather then the 4-metric

Higher derivative Gravity can be handled
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Ṗ ab = {P ab, Hp
ADM}, q̇ab = {qab, Hp

ADM}

Time evolution well defined

Further topics

Matter can be coupled and leads to a variation of the constraints, e.g.
Ha → Ha +

√
hJa (Ja Poynting vector)

For fermions the vierbein is decomposed, rather then the 4-metric

Higher derivative Gravity can be handled

Felix Haas (UNAM Morelia, Mexico) Arnowitt-Deser-Misner Formalism April 11th 2008 20 / 22



4 ADM Formalism

EOM

The ADM-EOM are
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5 Conclusions

Gravity can be cast into Hamiltonian form, the physical variables are the 3-metric
and its momentum

Lapse function and shift vector turn out to be Lagrange multipliers

Diffeomorphism invariance is preserved

Gauge theories are singular and thus constraint Hamiltonian systems

Consistency of the primary constraints yield spacial Diffeomorphism- and
Hamiltonian constraint that generate Diffeomorphisms

Let the Canonical Quantization begin...
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