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Motivation

Motivation

Hamiltonian formulation of general relativity in terms of the ADM
variables give us a very complicated system of constraints and a
infinite-dimensional configuration space which does not seems a
measureable space.

We can think the connection as an object which give us information
about curvature (by mean of the parallel transport), it suggests to
look for a formulation of general relativity, not in metric variables, but
in connection variables.

Connection variables are fundamentals variables in the gauge theories.
Maybe we could take some tools of gauge theories in understanding
general relativity. As we will see, it will happen.
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The frame fields

The frame fields

On the tangent space in a point x of the spacetime M we can choose a
usual basis of partial derivatives {(∂µ)x} and an orthonormal basis of
tetrads {eI (x)} such that eI (x) = e

µ
I (x)∂µ and e

µ
I eν

J gµν = ηIJ .
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The frame fields

On the tangent space in a point x of the spacetime M we can choose a
usual basis of partial derivatives {(∂µ)x} and an orthonormal basis of
tetrads {eI (x)} such that eI (x) = e

µ
I (x)∂µ and e

µ
I eν

J gµν = ηIJ .
On the cotangent space we have a set of one-forms with values in a
Minkowski space: e I (x) = e I

µ(x)dxµ, and by the orthonormality condition
it will be interpreted as the gravitational field.
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The frame fields

The frame fields

On the tangent space in a point x of the spacetime M we can choose a
usual basis of partial derivatives {(∂µ)x} and an orthonormal basis of
tetrads {eI (x)} such that eI (x) = e

µ
I (x)∂µ and e

µ
I eν

J gµν = ηIJ .
On the cotangent space we have a set of one-forms with values in a
Minkowski space: e I (x) = e I

µ(x)dxµ, and by the orthonormality condition
it will be interpreted as the gravitational field.
It is easy to check that the frame fields (tetrads) transforms, locally, under
the Lorentz group, that is to say, the symmetry of such vectors is SO(4)
(Euclidean case).
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The frame fields

Note that more technically we are dealing with the frame bundle on M
with structure group SO(4) and then we can define an one-form
conncetion ω as:

ωI
J(x) = ωI

J(x) ∈ so(4)
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The frame fields

Note that more technically we are dealing with the frame bundle on M
with structure group SO(4) and then we can define an one-form
conncetion ω as:

ωI
J(x) = ωI

J(x) ∈ so(4)

and the two-form curvature as

R IJ [ω] = dωIJ + ωI
K ∧ ωKJ

A volume element can be written as ǫIJKLe
I ∧ eJ ∧ eK ∧ eL where ǫIJKL is a

totally antisymmetric symbol with ǫ0123 = 1.
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Palatini’s Action

Palatini’s action

Now we have all the elements needed to write the Hilbert-Einstein action
in terms of frame fields. A simple calculation gives us

S [g ] =

∫

d4x
√

gR −→ S [e, ω] =
1

2

∫

ǫIJKLe
I ∧ eJ ∧ R[ω]KL

This is the Palatini’s action.
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Palatini’s action

Now we have all the elements needed to write the Hilbert-Einstein action
in terms of frame fields. A simple calculation gives us

S [g ] =

∫

d4x
√

gR −→ S [e, ω] =
1

2

∫

ǫIJKLe
I ∧ eJ ∧ R[ω]KL

This is the Palatini’s action.
By taking variations of the action we obtain the equations of motion:

ǫIJKLe
J ∧ eK ∧ RKL = 0 −→ Eisntein’s equations

D(e I ∧ eJ) = 0 −→ Free torsion
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Some comments about Palatini’s action

This action splits the degrees of freedom contained in the H-E action
in two sets, the frame fields and the connection!.
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Palatini’s Action

Some comments about Palatini’s action

This action splits the degrees of freedom contained in the H-E action
in two sets, the frame fields and the connection!.

The Palatini’s formalism is a first order formalism.

We can recover the usual Einstein’s equation.

As the torsion is defined as T I = De I is easy to check that the
second equation is equivalent to the free torsion condition.
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Self-dual formalism

Self-dual formalism

A little bit of SO(4): The dual operator

Over a four dimensional manifold we define the dual operator ⋆ by acting
on antisymmetric tensors Tµν as

⋆Tµν = ǫ ρσ
µν Tρσ
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Self-dual formalism

Self-dual formalism

A little bit of SO(4): The dual operator

Over a four dimensional manifold we define the dual operator ⋆ by acting
on antisymmetric tensors Tµν as

⋆Tµν = ǫ ρσ
µν Tρσ

If we note that ⋆2 = 1 then the eigenvectors of such operator are:

T+
µν =

1

2
(Tµν + ⋆Tµν)

︸ ︷︷ ︸

self −dual

and T−
µν =

1

2
(Tµν − ⋆Tµν)

︸ ︷︷ ︸

antiself −dual
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Self-dual formalism

Now define Ti = 1
2 (T0i + ⋆T0i ), i = 1, 2, 3 and note that
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Self-dual formalism

Now define Ti = 1
2 (T0i + ⋆T0i ), i = 1, 2, 3 and note that

[

T+
i , T+

j

]

=
3∑

i=1

ǫijkT+
k

[

T−
i , T−

j

]

=
3∑

i=1

ǫijkT−
k

[

T+
i , T−

j

]

= 0.
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Self-dual formalism

Now define Ti = 1
2 (T0i + ⋆T0i ), i = 1, 2, 3 and note that

[

T+
i , T+

j

]

=
3∑

i=1

ǫijkT+
k

[

T−
i , T−

j

]

=
3∑

i=1

ǫijkT−
k

[

T+
i , T−

j

]

= 0.

But the generators of the Lie algebra of SO(4) are precisely antisymmetric
matrices, then all that means, in this context, that

so(4) ∼= so(3) ⊕ so(3)
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Self-dual formalism

The last fact let us to write the connection as

ωI
J(x)

︸ ︷︷ ︸

∈so(4)

= ω+I
J (x)

︸ ︷︷ ︸

∈so(3)

+ ω−I
J (x)

︸ ︷︷ ︸

∈so(3)

.
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Self-dual formalism

The last fact let us to write the connection as

ωI
J(x)

︸ ︷︷ ︸

∈so(4)

= ω+I
J (x)

︸ ︷︷ ︸

∈so(3)

+ ω−I
J (x)

︸ ︷︷ ︸

∈so(3)

.

And then one prove that

R IJ [ω] = R IJ [ω+ + ω−] = R IJ [ω+] + R IJ [ω−],
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Self-dual formalism

The last fact let us to write the connection as

ωI
J(x)

︸ ︷︷ ︸

∈so(4)

= ω+I
J (x)

︸ ︷︷ ︸

∈so(3)

+ ω−I
J (x)

︸ ︷︷ ︸

∈so(3)

.

And then one prove that

R IJ [ω] = R IJ [ω+ + ω−] = R IJ [ω+] + R IJ [ω−],

hence,
S [e, ω] = S [e, ω+]

︸ ︷︷ ︸

S+

+ S [e, ω−]
︸ ︷︷ ︸

S−

.
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Self-dual formalism

The main result: The stationary values of S and S+ are over the same
frame fields.
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Self-dual formalism

The main result: The stationary values of S and S+ are over the same
frame fields.
That means that the equations of motion obtained with S are the same
that the obtained with S+, in other words, we just need the information
contained in the half of the Palatini’s action to describe the dynamics of
the gravitational field!.
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Self-dual formalism

The self-dual action

As in ADM formalism, consider a foliation of spacetime M given by the
diffeomorphism R × Σ, where Σ is a compact, orientable 3-manifold.

St

t+dtS Ndt

e0

e i

M
T(X)
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Self-dual formalism

The self-dual action

As in ADM formalism, consider a foliation of spacetime M given by the
diffeomorphism R × Σ, where Σ is a compact, orientable 3-manifold.

St

t+dtS Ndt

e0

e i

M
T(X)

The foliation vector T (X ) can be written in terms of the shift vector and
lapse function as Ne0 + N iei .
Before to write the action in terms of N and N i it is better for our
proposes to take into account the following relations:
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Self-dual formalism

If qab = δije
i
ae

j
b is the induced metric on Σ then is easy to see that√−g = N

√
q.
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Self-dual formalism

If qab = δije
i
ae

j
b is the induced metric on Σ then is easy to see that√−g = N

√
q.

Define E
µ
I =

√
qe

µ
I .
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Self-dual formalism

If qab = δije
i
ae

j
b is the induced metric on Σ then is easy to see that√−g = N

√
q.

Define E
µ
I =

√
qe

µ
I .

Define Ñ = N/
√

q.
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Self-dual formalism

If qab = δije
i
ae

j
b is the induced metric on Σ then is easy to see that√−g = N

√
q.

Define E
µ
I =

√
qe

µ
I .

Define Ñ = N/
√

q.

Putting all together in the Palatini’s action we get:

S =

∫

dx0

∫

d3xÑR IJ
µνE

µ
I E ν

J ,
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Self-dual formalism

If qab = δije
i
ae

j
b is the induced metric on Σ then is easy to see that√−g = N

√
q.

Define E
µ
I =

√
qe

µ
I .

Define Ñ = N/
√

q.

Putting all together in the Palatini’s action we get:

S =

∫

dx0

∫

d3xÑR IJ
µνE

µ
I E ν

J ,

or

S =

∫

dx0

∫

d3x
(

ÑR
ij

abE
a
i Eb

j − 2NaR0i
abE

b
i + 2R0i

0aE
a
i

)
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Self-dual formalism

We have two options: Going on as in the ADM formalism (calculating
momenta and all that), or using what we know about self-duality.
Obviously we choose the second.
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Self-dual formalism

We have two options: Going on as in the ADM formalism (calculating
momenta and all that), or using what we know about self-duality.
Obviously we choose the second. Since 1

2ǫi jkR+jk = R+0k , the last action
becomes (without tildes and plus signs)

S =

∫

dx0

∫

d3x
(

ÑR
ij

abE
a
i Eb

j − 2NaR0i
abE

b
i + 2R0i

0aE
a
i

)

,
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Self-dual formalism

We have two options: Going on as in the ADM formalism (calculating
momenta and all that), or using what we know about self-duality.
Obviously we choose the second. Since 1

2ǫi jkR+jk = R+0k , the last action
becomes (without tildes and plus signs)

S =

∫

dx0

∫

d3x
(

ÑR
ij

abE
a
i Eb

j − 2NaR0i
abE

b
i + 2R0i

0aE
a
i

)

,

and let’s “make-up” her a little:
Define a su(2)- valued one form connection as Ai

a = 2ωi
a and note that the

two-form curvature associated with this connection is

F i
ab =

(
dAi

)

ab
+ [A, A]iab = 2R0i

ab
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Self-dual formalism

We have two options: Going on as in the ADM formalism (calculating
momenta and all that), or using what we know about self-duality.
Obviously we choose the second. Since 1

2ǫi jkR+jk = R+0k , the last action
becomes (without tildes and plus signs)

S =

∫

dx0

∫

d3x
(

ÑR
ij

abE
a
i Eb

j − 2NaR0i
abE

b
i + 2R0i

0aE
a
i

)

,

and let’s “make-up” her a little:
Define a su(2)- valued one form connection as Ai

a = 2ωi
a and note that the

two-form curvature associated with this connection is

F i
ab =

(
dAi

)

ab
+ [A, A]iab = 2R0i

ab

Also 2R0i
0a = ∂0A

i
a + Daλ

i , where λi = −2ωi
0.
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Self-dual formalism

Finally, the action for general general relativity in terms of connection
variables or Ashtekar variables is

S =

∫

dt

∫

d3x

[
(
∂0A

i
a

)
E a

i −
(

NaF k
abE

b
k + λiDaE

a
i − 1

2
NF

ij
abE

a
i Eb

j

)]

.
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Self-dual formalism

Finally, the action for general general relativity in terms of connection
variables or Ashtekar variables is

S =

∫

dt

∫

d3x

[
(
∂0A

i
a

)
E a

i −
(

NaF k
abE

b
k + λiDaE

a
i − 1

2
NF

ij
abE

a
i Eb

j

)]

.

and the Hamiltonian of the theory is

H =

∫

Σ
d3x




NaF i

abE
b
i

︸ ︷︷ ︸

D[Na]

+ λiDaE
a
i

︸ ︷︷ ︸

G[λi ]

−1

2
NF

ij
abE

a
i Eb

j
︸ ︷︷ ︸

S[N]





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Constraints in terms of the new variables

Gauss constraint

Variations on λ produce the Gauss constraint

DaE
a
i = 0.
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Constraints in terms of the new variables

Gauss constraint

Variations on λ produce the Gauss constraint

DaE
a
i = 0.

Following the Dirac’s prespription to deal with constraints systems, we
may interpret the Gauss constraint in terms of gauge symmetries. To do
that we calculate the Poisson brackets of the constraint with each one of
the phase space variables (Ai

a, E
a
i ):
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Constraints in terms of the new variables

Gauss constraint

Variations on λ produce the Gauss constraint

DaE
a
i = 0.

Following the Dirac’s prespription to deal with constraints systems, we
may interpret the Gauss constraint in terms of gauge symmetries. To do
that we calculate the Poisson brackets of the constraint with each one of
the phase space variables (Ai

a, E
a
i ):

Taking into account that
{

Ai
a(x), Eb

j (y)
}

= δi
jδ

b
a δ3(x , y) we have

{
Ai

a(x),G[λj ]
}

= −Daλ
i

{
E a

i (x),G[λj ]
}

= ǫ k
ij λj(x)E a

k (x)

Mauricio Bustamante Londoño (UNAM) Connection Variables in General Relativity 28/06/2008 16 / 20



Constraints in terms of the new variables

Gauss constraint

Variations on λ produce the Gauss constraint

DaE
a
i = 0.

Following the Dirac’s prespription to deal with constraints systems, we
may interpret the Gauss constraint in terms of gauge symmetries. To do
that we calculate the Poisson brackets of the constraint with each one of
the phase space variables (Ai

a, E
a
i ):

Taking into account that
{

Ai
a(x), Eb

j (y)
}

= δi
jδ

b
a δ3(x , y) we have

{
Ai

a(x),G[λj ]
}

= −Daλ
i

{
E a

i (x),G[λj ]
}

= ǫ k
ij λj(x)E a

k (x)

Gauss constraint generate SU(2) gauge transformations. General relativity
looks like a Yang-Mills theory!.
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Constraints in terms of the new variables

Diffeomorphisms constraint

Variations on Na produce the diffeomorphisms constraint

F i
abE

b
i = 0.

Defining D̃[Nb] = D[Nb] − G[NbA
j
b], we find

{

Ai
a, D̃[Nb]

}

= LNbAi
a

{

E a
i , D̃[Nb]

}

= LNbE a
i
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Constraints in terms of the new variables

Diffeomorphisms constraint

Variations on Na produce the diffeomorphisms constraint

F i
abE

b
i = 0.

Defining D̃[Nb] = D[Nb] − G[NbA
j
b], we find

{

Ai
a, D̃[Nb]

}

= LNbAi
a

{

E a
i , D̃[Nb]

}

= LNbE a
i

This constraint generate the diffeomorphisms on the 3-manifold Σ.
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Constraints in terms of the new variables

Scalar constraint

Variations on N produce the Scalar constraint

NF
ij
abE

a
i Eb

j = 0.

Its Poisson brackets with the phase space variables is:

{
Ai

a(x),S[N]
}

= Nǫij kF k
ab(x)Eb

j (x)

{E a
i (x),S[N]} = Db

(

NǫjkiE
b
j E a

k

)

.
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Constraints in terms of the new variables

Scalar constraint

Variations on N produce the Scalar constraint

NF
ij
abE

a
i Eb

j = 0.

Its Poisson brackets with the phase space variables is:

{
Ai

a(x),S[N]
}

= Nǫij kF k
ab(x)Eb

j (x)

{E a
i (x),S[N]} = Db

(

NǫjkiE
b
j E a

k

)

.

Although is not evident, this constraint generate transverse moves of Σ
and together with the last constraint we obtain the diffeomorphisms on M.
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Constraints in terms of the new variables

Some comments about constraints
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Constraints in terms of the new variables

Some comments about constraints

The phase space of general relativity is now coordinated by the
connection A and the gravitational field E .
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Constraints in terms of the new variables

Some comments about constraints

The phase space of general relativity is now coordinated by the
connection A and the gravitational field E .

The constraints are in polynomial form.

In the Dirac’s terminology the set of constraints is a set of first class
constraints (I will not prove it here).
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Constraints in terms of the new variables

Some comments about constraints

The phase space of general relativity is now coordinated by the
connection A and the gravitational field E .

The constraints are in polynomial form.

In the Dirac’s terminology the set of constraints is a set of first class
constraints (I will not prove it here).

Now let’s go to the quantization...
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