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Quantization of Gauß constraint

In the classical theory DaE
a
i = 0. This constraint generates SU(2) gauge

transformations.
To quantize we are going to construct the Hilbert space HG ⊂ Hkin of
states SU(2)-gauge invariant. In other words, we need a space of square
integrable functions over the configuration space A.
But, how can we integrate over a space of connections? It is mandatory to
endow this space with a measure.
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Making a measure
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Quantization of constraints Gauß constraint

Making a measure

The key idea is to assign a group element ge ∈ G to each edge e of a
graph embedded into the spatial manifold Σ.
If we achieve to identify A with something like G∞ then we can take the
fact that the infinite product of probability measure spaces is well defined
and because G is a compact group we could obtain DA through the
products of the Haar measure on G , in other words:

DA =
∏

e

dge
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Quantization of constraints Gauß constraint

To make it, define the space Ae by

Ae =
{

F : Pe(0) → Pe(1)|F (xg) = F (x)g
}

.
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Quantization of constraints Gauß constraint

To make it, define the space Ae by

Ae =
{

F : Pe(0) → Pe(1)|F (xg) = F (x)g
}

.

Then, fixing a trivialization of the bundle in the endpoints of the curve e

we may identify Ae with a copy of the group G and hence,

A = Ae1 × · · · × Aen
∼= Gn.
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Quantization of constraints Gauß constraint

With all that we define a space Fun0(A) as the space generated by
functionals ψ(A) of the form

ψ(A) = f

(

P exp

∫

e1

A, . . . ,P exp

∫

en

A

)

.
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Quantization of constraints Gauß constraint

With all that we define a space Fun0(A) as the space generated by
functionals ψ(A) of the form

ψ(A) = f

(

P exp

∫

e1

A, . . . ,P exp

∫

en

A

)

.

And Fun(A) as the completion of Fun0(A) in the sup norm

‖ψ‖∞ = supA∈A|ψ(A)|.
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Quantization of constraints Gauß constraint

Because of the identification A ←→ Gn we can now define a measure on
Fun(A):
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Because of the identification A ←→ Gn we can now define a measure on
Fun(A): If ψ ∈ Fun(A) then we define the measure by

∫

A

ψdµ =

∫

Gn

f (g1, . . . , gn)dg1 · · · dgn
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Fun(A): If ψ ∈ Fun(A) then we define the measure by

∫

A

ψdµ =

∫

Gn

f (g1, . . . , gn)dg1 · · · dgn

Now is time to define the kinematical Hilbert space HKin = L2(A) for our
theory as the completion of Fun(A) with respect to the norm

‖ψ‖2 =
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A

|ψ|2dµ

]1/2
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Quantization of constraints Gauß constraint

Because of the identification A ←→ Gn we can now define a measure on
Fun(A): If ψ ∈ Fun(A) then we define the measure by

∫

A

ψdµ =

∫

Gn

f (g1, . . . , gn)dg1 · · · dgn

Now is time to define the kinematical Hilbert space HKin = L2(A) for our
theory as the completion of Fun(A) with respect to the norm

‖ψ‖2 =

[
∫

A

|ψ|2dµ

]1/2

.

The invariant states under gauge transformations are wave functions Ψ[A]
on the quotient of A by the group G of gauge transformations, namely,
L2(A/G).
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Spin network states
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Quantization of constraints Gauß constraint

Spin network states

Consider an graph Γ embedded in the manifold Σ. Choose an orientation
for each link e in the graph and assign it an irreducible representation ρe

of G . Then, He [A] = ρe

(

P exp
∫

e
A

)

can be seen as a matrix with
components He [A]ij . Now, take the tensor product of all these matrices
and obtain a “big tensor” H(A).
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of G . Then, He [A] = ρe

(

P exp
∫

e
A

)

can be seen as a matrix with
components He [A]ij . Now, take the tensor product of all these matrices
and obtain a “big tensor” H(A).
To each vertex assign a tensor in the tensor product of all representations
incoming and outcoming (an intertwining operator) of the vertex. Another
“big tensor” I is obtained with the tensor product of all the intertwining
operators.
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Spin network states

Consider an graph Γ embedded in the manifold Σ. Choose an orientation
for each link e in the graph and assign it an irreducible representation ρe

of G . Then, He [A] = ρe

(

P exp
∫

e
A

)

can be seen as a matrix with
components He [A]ij . Now, take the tensor product of all these matrices
and obtain a “big tensor” H(A).
To each vertex assign a tensor in the tensor product of all representations
incoming and outcoming (an intertwining operator) of the vertex. Another
“big tensor” I is obtained with the tensor product of all the intertwining
operators.
We get a spin network state by the contraction of all the indices of
H(A)⊗ I .
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Comments about spin network states
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Comments about spin network states

By the transformation rule of He [A] under gauge transformations, it
follows that spin network states are gauge invariant.
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Comments about spin network states

By the transformation rule of He [A] under gauge transformations, it
follows that spin network states are gauge invariant.

By the Peter-Weyl theorem (L2(G ) ∼= ⊕ρ⊗ ρ∗), these states span the
Hilbert space of gauge invariant states in H(kin), namely, they span
L2(A/G)
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Quantization of constraints Gauß constraint

Comments about spin network states

By the transformation rule of He [A] under gauge transformations, it
follows that spin network states are gauge invariant.

By the Peter-Weyl theorem (L2(G ) ∼= ⊕ρ⊗ ρ∗), these states span the
Hilbert space of gauge invariant states in H(kin), namely, they span
L2(A/G)

By the later, spin network states are solutions to Gauß constraint!.
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Quantization of diffeomorphism constraint

The spin network states are not diffeomorphism invariant and hence the
solutions of the constraint doesn’t belong to the kinematical Hilbert space
of gauge invariant states.
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Quantization of diffeomorphism constraint

The spin network states are not diffeomorphism invariant and hence the
solutions of the constraint doesn’t belong to the kinematical Hilbert space
of gauge invariant states.
But we have experience with this kind of situations. We seek states in the
space of distributions H∗

kin of the kindematical Hilbert space Hkin which
are diffeomorphism invariant.
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Quantization of constraints Quantization of diffeomorphism constraint

Quantization of diffeomorphism constraint

The spin network states are not diffeomorphism invariant and hence the
solutions of the constraint doesn’t belong to the kinematical Hilbert space
of gauge invariant states.
But we have experience with this kind of situations. We seek states in the
space of distributions H∗

kin of the kindematical Hilbert space Hkin which
are diffeomorphism invariant.
What do we mean when we talk about diffeomorphism invariant states?
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Quantization of constraints Quantization of diffeomorphism constraint

Representation of Diff (Σ) on H∗kin
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Quantization of constraints Quantization of diffeomorphism constraint

Representation of Diff (Σ) on H∗kin

Consider an operator Uφ, φ ∈ Diff (Σ), associated with the diffeomorphism
transformations and such that:

(UφΦ) ΨS = Φ(UφΨS) = Φ
(

Ψφ(S)

)

,

where Φ ∈ H∗
kin and Ψφ(S) is the spin network state which results by

applying φ to each one of his labels S = (Γ, je , in) in a specific manner.

Mauricio Bustamante Londoño (UNAM) The program of Loop Quantum Gravity 02/05/2008 11 / 17



Quantization of constraints Quantization of diffeomorphism constraint

The diffeomorphism invariant states are those which satisfies

UφΨ = Ψ.
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Quantization of constraints Quantization of diffeomorphism constraint

The diffeomorphism invariant states are those which satisfies

UφΨ = Ψ.

And the solutions of this equation are given by states of the form

(ΨS| =
∑

ΨS’∈O(ΨS)

〈ΨS’|

where O(ΨS’) denotes the orbit of ΨS’ under the Diff (Σ)-action.
These states don’t change when Uφ acts on them.
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Quantization of constraints Quantization of diffeomorphism constraint

Now, to conclude the quatization of diffeomorphism constraint, we define
the scalar product between two of such states as

(ΨS|ΨS’) =
∑

ΨS”∈O(ΨS)

〈ΨS”|ΨS’〉 .
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Quantization of constraints Quantization of diffeomorphism constraint

Now, to conclude the quatization of diffeomorphism constraint, we define
the scalar product between two of such states as

(ΨS|ΨS’) =
∑

ΨS”∈O(ΨS)

〈ΨS”|ΨS’〉 .

Hence, the states in H∗
kin which don’t change with the action of Uφ are the

states which solve the diffeomorphism constraint!.
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Quantization of scalar constraint

The geneal idea is to put the constraint in the form

S[N] =

∫

Σ
d3x NǫabcδijF

i
ab

{

Aj
c ,V

}

where V is the volume of Σ.
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Quantization of scalar constraint

The geneal idea is to put the constraint in the form

S[N] =

∫

Σ
d3x NǫabcδijF

i
ab

{

Aj
c ,V

}

where V is the volume of Σ.
Taking into account that for an infinitesimal loop α on a plane, the
curvature and the Poisson bracket above are regulatizated as follow

Hα[A]− H−1
α [A] = ǫ2F i

abτi + O(ǫ4)

H−1
ea
{Hea [A],V } = ǫ

{

Ai
a,V

}

+ O(ǫ2),

the operator becomes:

Ŝ [N] = ĺım
ǫ→0

∑

I

NI ǫ
abctr

[(

Ĥα[A]− Ĥ−1
α [A]

)

Ĥ−1
ea

{

Ĥea [A], V̂
}]
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Quantization of constraints Quantization of scalar constraint

This limit doesn’t exists in general, but does in the Hilbert space of
diffeomorphism invariant states because there, the dependence of ǫ
becomes trivial. The analysis of scalar constraint involves a lot of
subtleties and technical procedures that I am not going to show here (see
the references).
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In loop quantum gravity the geometric operators of area and volume
arise naturally. They can be constructed with different regularization
schemes. One of the main predictions of LQG is that there are quanta
of spacetime, spacetime looks like discrete at Planck scale.
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schemes. One of the main predictions of LQG is that there are quanta
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LQG has motivated new investigations about quantum cosmology.

It has not been possible to recover classical general relativity from the
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Dymamics of the theory is studied through Spin Foam Models...
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Quantization of constraints More issues

More issues

In loop quantum gravity the geometric operators of area and volume
arise naturally. They can be constructed with different regularization
schemes. One of the main predictions of LQG is that there are quanta
of spacetime, spacetime looks like discrete at Planck scale.

LQG has motivated new investigations about quantum cosmology.

It has not been possible to recover classical general relativity from the
quantum theory.

Dymamics of the theory is studied through Spin Foam Models...Let’s
welcome to Max!
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