(2+1)-dimensional (Quantum) Gravity

Felix Haas

June 6th 2008

Quantum Gravity Seminar

Outline

- Motivation
- Prelude Moduli space
- Introduction
- Gravity as a Chern-Simons Theory
 - First Order Formalism
 - Chern-Simons theory
 - Boundary terms and WZW
- 5 First-Order Path Integrals à la Witten
- Summary
- References

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different, but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different, but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different, but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

- QGr in (3+1) dimensions is hard
- We like playgrounds.
- Playgrounds that hold similar features to the real world (symmetries, black holes and their thermodynamics, ?holography?...).
- Many conceptual problems remain unaltered (problem of time, background independence...)
- Others are solved (nonrenormalizability, implementation of constraints...)
- Can address questions about different approaches to QGr: Do we need topology change? Do we need a TOE? Are there more then one, possibly physically different, but mathematically concise quantum theories of gravity?
- Also mathematically 3-dim gravity and Chern-Simons theory have led to new research fields (TQFT, relation to the Jones polynomial...)

Flat G-connections

Consider a G-gauge theory on a compact, simply connected n-dim manifold M_g of genus g, whos EL-eqn. allow only flat G-connections A.

$$PPS = \mathcal{M} := \{ A \in \mathcal{A} | F_A = 0 \} / G$$

- ullet We can fully encode the connection in parallel transports and holonomies. But parallel transports of a flat connection is trivial, only on a genus zero M_0 manifold!
- If we have g>0 we get nontrivial holonomies by performing parallel transports around loops that enclose the holes.
- \bullet The fundamental group $\pi_1(M_g)$ encodes the curves of distinct homotopy class, and we have the homomorphism

$$H: \pi_1(M_g) = \langle c_1, \dots, c_{2g} \rangle \to G, \qquad H[\gamma] := P \exp[\int_{\gamma} A]$$

Flat G-connections

Consider a G-gauge theory on a compact, simply connected n-dim manifold M_g of genus g, whos EL-eqn. allow only flat G-connections A.

$$PPS = \mathcal{M} := \{ A \in \mathcal{A} | F_A = 0 \} / G$$

- ullet We can fully encode the connection in parallel transports and holonomies. But parallel transports of a flat connection is trivial, only on a genus zero M_0 manifold!
- If we have g>0 we get nontrivial holonomies by performing parallel transports around loops that enclose the holes.
- \bullet The fundamental group $\pi_1(M_g)$ encodes the curves of distinct homotopy class, and we have the homomorphism

$$H: \pi_1(M_g) = \langle c_1, \dots, c_{2g} \rangle \to G, \qquad H[\gamma] := P \exp[\int_{\Omega} A]$$

Flat G-connections

Consider a G-gauge theory on a compact, simply connected n-dim manifold M_g of genus g, whos EL-eqn. allow only flat G-connections A.

$$PPS = \mathcal{M} := \{ A \in \mathcal{A} | F_A = 0 \} / G$$

- We can fully encode the connection in parallel transports and holonomies. But parallel transports of a flat connection is trivial, only on a genus zero M_0 manifold!
- If we have g>0 we get nontrivial holonomies by performing parallel transports around loops that enclose the holes.
- \bullet The fundamental group $\pi_1(M_g)$ encodes the curves of distinct homotopy class, and we have the homomorphism

$$H: \pi_1(M_g) = \langle c_1, \dots, c_{2g} \rangle \to G, \qquad H[\gamma] := P \exp[\int_{\Omega} A]$$

Flat G-connections

Consider a G-gauge theory on a compact, simply connected n-dim manifold M_g of genus g, whos EL-eqn. allow only flat G-connections A.

$$PPS = \mathcal{M} := \{ A \in \mathcal{A} | F_A = 0 \} / G$$

- ullet We can fully encode the connection in parallel transports and holonomies. But parallel transports of a flat connection is trivial, only on a genus zero M_0 manifold!
- ullet If we have g>0 we get nontrivial holonomies by performing parallel transports around loops that enclose the holes.
- \bullet The fundamental group $\pi_1(M_g)$ encodes the curves of distinct homotopy class, and we have the homomorphism

$$H: \pi_1(M_g) = \langle c_1, \dots, c_{2g} \rangle \to G, \qquad H[\gamma] := \mathbb{P} \exp[\int_{\mathbb{R}} A]$$

Flat G-connections

Consider a G-gauge theory on a compact, simply connected n-dim manifold M_g of genus g, whos EL-eqn. allow only flat G-connections A.

$$PPS = \mathcal{M} := \{ A \in \mathcal{A} | F_A = 0 \} / G$$

- ullet We can fully encode the connection in parallel transports and holonomies. But parallel transports of a flat connection is trivial, only on a genus zero M_0 manifold!
- ullet If we have g>0 we get nontrivial holonomies by performing parallel transports around loops that enclose the holes.
- \bullet The fundamental group $\pi_1(M_g)$ encodes the curves of distinct homotopy class, and we have the homomorphism

$$H: \pi_1(M_g) = \langle c_1, \dots, c_{2g} \rangle \to G, \qquad H[\gamma] := \mathbb{P} \exp[\int_{\mathbb{R}} A]$$

Flat G-connections

Consider a G-gauge theory on a compact, simply connected n-dim manifold M_g of genus g, whos EL-eqn. allow only flat G-connections A.

$$PPS = \mathcal{M} := \{ A \in \mathcal{A} | F_A = 0 \} / G$$

- ullet We can fully encode the connection in parallel transports and holonomies. But parallel transports of a flat connection is trivial, only on a genus zero M_0 manifold!
- ullet If we have g>0 we get nontrivial holonomies by performing parallel transports around loops that enclose the holes.
- \bullet The fundamental group $\pi_1(M_g)$ encodes the curves of distinct homotopy class, and we have the homomorphism

$$H: \pi_1(M_g) = \langle c_1, \dots, c_{2g} \rangle \to G, \qquad H[\gamma] := P \exp[\int_{\gamma} A]$$

Dimension of the Moduli Space

$$\mathcal{M} \simeq \operatorname{Hom}(\pi_1(M_g), G)/G$$

- We have a bound for the dimension of $\operatorname{Hom}: \dim(\operatorname{Hom}(\pi_1(M_g),G)) \leq |G|^{2g}$
- The PPS is finite dimensional!
- The PPS depends crucially on the topology of spacetime.
- If g=0, $\pi_1(M_0)=1$ and we have $\dim(\mathcal{M})=0$.

Dimension of the Moduli Space

$$\mathcal{M} \simeq \operatorname{Hom}(\pi_1(M_g), G)/G$$

- We have a bound for the dimension of $\operatorname{Hom}: \dim(\operatorname{Hom}(\pi_1(M_g),G)) \leq |G|^{2g}$
- The PPS is finite dimensional!
- The PPS depends crucially on the topology of spacetime.
- If g=0, $\pi_1(M_0)=1$ and we have $\dim(\mathcal{M})=0$.

Dimension of the Moduli Space

$$\mathcal{M} \simeq \operatorname{Hom}(\pi_1(M_g), G)/G$$

- We have a bound for the dimension of $\operatorname{Hom}: \dim(\operatorname{Hom}(\pi_1(M_g),G)) \leq |G|^{2g}$
- The PPS is finite dimensional!
- The PPS depends crucially on the topology of spacetime.
- If g=0, $\pi_1(M_0)=1$ and we have $\dim(\mathcal{M})=0$.

Dimension of the Moduli Space

$$\mathcal{M} \simeq \operatorname{Hom}(\pi_1(M_g), G)/G$$

- We have a bound for the dimension of Hom: $\dim(\operatorname{Hom}(\pi_1(M_q),G)) \leq |G|^{2g}$
- The PPS is finite dimensional!
- The PPS depends crucially on the topology of spacetime.
- If g=0, $\pi_1(M_0)=1$ and we have $\dim(\mathcal{M})=0$.

Dimension of the Moduli Space

$$\mathcal{M} \simeq \operatorname{Hom}(\pi_1(M_g), G)/G$$

- We have a bound for the dimension of Hom: $\dim(\operatorname{Hom}(\pi_1(M_q),G)) \leq |G|^{2g}$
- The PPS is finite dimensional!
- The PPS depends crucially on the topology of spacetime.
- If g=0, $\pi_1(M_0)=1$ and we have $\dim(\mathcal{M})=0$.

Dimension of the Moduli Space

$$\mathcal{M} \simeq \operatorname{Hom}(\pi_1(M_g), G)/G$$

- ullet We have a bound for the dimension of $\operatorname{Hom}\colon \dim(\operatorname{Hom}(\pi_1(M_g),G))\leq |G|^{2g}$
- The PPS is finite dimensional!
- The PPS depends crucially on the topology of spacetime.
- If g = 0, $\pi_1(M_0) = 1$ and we have $\dim(\mathcal{M}) = 0$.

Dimension of the Moduli Space

$$\mathcal{M} \simeq \operatorname{Hom}(\pi_1(M_g), G)/G$$

- ullet We have a bound for the dimension of $\operatorname{Hom}: \dim(\operatorname{Hom}(\pi_1(M_g),G)) \leq |G|^{2g}$
- The PPS is finite dimensional!
- The PPS depends crucially on the topology of spacetime.
- If g = 0, $\pi_1(M_0) = 1$ and we have $\dim(\mathcal{M}) = 0$.

3 Introduction

Why (2+1)-dim gravity is so simple

$$R_{\alpha\beta\gamma\delta} = [\text{Combination of g's}]^{\mu\nu}_{\alpha\beta\gamma\delta} R_{\mu\nu}$$

- solutions to the vacuum Einstein equations are not only Ricci flat but also flat (Riemann flat).
- The PPS=moduli space is finite dimensional!
- \bullet Our space is locally Minkowski (dS or AdS in the presents of $\Lambda=\pm |\Lambda|),$ and has no local degrees of freedom
- A physicists take: The same follows from a counting argument: h_{ab}, P_{ab} have n(n-1)/2 DOF each. n DOF are eliminated by constraints, n DOF by coordinate choice. \Rightarrow

$$n(n-1) - 2n = n(n-3)$$
 DOF \Rightarrow 0 DOF in $n=3$

$$R_{\alpha\beta\gamma\delta} = [\text{Combination of g's}]^{\mu\nu}_{\alpha\beta\gamma\delta} R_{\mu\nu}$$

- solutions to the vacuum Einstein equations are not only Ricci flat but also flat (Riemann flat).
- The PPS=moduli space is finite dimensional!
- \bullet Our space is locally Minkowski (dS or AdS in the presents of $\Lambda=\pm |\Lambda|$), and has no local degrees of freedom
- A physicists take: The same follows from a counting argument: h_{ab}, P_{ab} have n(n-1)/2 DOF each. n DOF are eliminated by constraints, n DOF by coordinate choice. \Rightarrow

$$n(n-1) - 2n = n(n-3)$$
 DOF \Rightarrow 0 DOF in $n=3$

$$R_{\alpha\beta\gamma\delta} = [\text{Combination of g's}]^{\mu\nu}_{\alpha\beta\gamma\delta} R_{\mu\nu}$$

- ⇒ solutions to the vacuum Einstein equations are not only Ricci flat but also flat (Riemann flat).
- The PPS=moduli space is finite dimensional!
- \bullet Our space is locally Minkowski (dS or AdS in the presents of $\Lambda=\pm |\Lambda|),$ and has no local degrees of freedom
- A physicists take: The same follows from a counting argument: h_{ab}, P_{ab} have n(n-1)/2 DOF each. n DOF are eliminated by constraints, n DOF by coordinate choice. \Rightarrow

$$n(n-1) - 2n = n(n-3)$$
 DOF \Rightarrow 0 DOF in $n = 3$

$$R_{\alpha\beta\gamma\delta} = [\text{Combination of g's}]^{\mu\nu}_{\alpha\beta\gamma\delta} R_{\mu\nu}$$

- ⇒ solutions to the vacuum Einstein equations are not only Ricci flat but also flat (Riemann flat).
- The PPS=moduli space is finite dimensional!
- \bullet Our space is locally Minkowski (dS or AdS in the presents of $\Lambda=\pm |\Lambda|),$ and has no local degrees of freedom
- A physicists take: The same follows from a counting argument: h_{ab}, P_{ab} have n(n-1)/2 DOF each. n DOF are eliminated by constraints, n DOF by coordinate choice. \Rightarrow

$$n(n-1)-2n=n(n-3)$$
 DOF \Rightarrow 0 DOF in $n=3$

$$R_{\alpha\beta\gamma\delta} = [\text{Combination of g's}]^{\mu\nu}_{\alpha\beta\gamma\delta} R_{\mu\nu}$$

- ⇒ solutions to the vacuum Einstein equations are not only Ricci flat but also flat (Riemann flat).
- The PPS=moduli space is finite dimensional!
- \bullet Our space is locally Minkowski (dS or AdS in the presents of $\Lambda=\pm |\Lambda|$), and has no local degrees of freedom
- A physicists take: The same follows from a counting argument: h_{ab}, P_{ab} have n(n-1)/2 DOF each. n DOF are eliminated by constraints, n DOF by coordinate choice. \Rightarrow

$$n(n-1) - 2n = n(n-3)$$
 DOF \Rightarrow 0 DOF in $n = 3$

3 Introduction

Why (2+1)-dim gravity is so simple

$$R_{\alpha\beta\gamma\delta} = [\text{Combination of g's}]^{\mu\nu}_{\alpha\beta\gamma\delta} R_{\mu\nu}$$

- ⇒ solutions to the vacuum Einstein equations are not only Ricci flat but also flat (Riemann flat).
- The PPS=moduli space is finite dimensional!
- \bullet Our space is locally Minkowski (dS or AdS in the presents of $\Lambda=\pm |\Lambda|$), and has no local degrees of freedom
- A physicists take: The same follows from a counting argument: h_{ab} , P_{ab} have n(n-1)/2 DOF each. n DOF are eliminated by constraints, n DOF by coordinate choice. \Rightarrow

$$n(n-1) - 2n = n(n-3)$$
 DOF \Rightarrow 0 DOF in $n=3$

$$g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}, \quad \overline{h}_{\mu\nu}:=h_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}h^{\sigma}_{\sigma}, \quad h_{\mu\nu}=\overline{h}_{\mu\nu}-\frac{1}{n-2}\eta_{\mu\nu}\overline{h}^{\sigma}_{\sigma}$$

ullet The linearized Einstein equations in the gauge $\partial^{\mu}\overline{h}_{\mu\nu}=0$ become

$$-\frac{1}{2}\partial^{\sigma}\partial_{\sigma}\overline{h}_{\mu\nu} = 8\pi G T_{\mu\nu} + \mathcal{O}(h^2).$$

• The Newtonian Limit is obtained by setting $T_{00} pprox
ho,$ all other $T_{\mu\nu} pprox 0$ and $\partial/\partial t = 0$

$$-\frac{1}{4}\nabla^2 \overline{h}_{00} = \nabla^2 \Phi = 4\pi G\rho$$

The geodesic equation reduces to

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} - \frac{1}{2} \partial_i h_{00} = 0, \quad \Leftrightarrow \quad \frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} + \frac{2(n-3)}{(n-2)} \partial_i \Phi = 0$$

In n=3 test particles experience no Newtonian Force

$$g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}, \quad \overline{h}_{\mu\nu}:=h_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}h^{\sigma}_{\sigma}, \quad h_{\mu\nu}=\overline{h}_{\mu\nu}-\frac{1}{n-2}\eta_{\mu\nu}\overline{h}^{\sigma}_{\sigma}$$

 \bullet The linearized Einstein equations in the gauge $\partial^{\mu}\overline{h}_{\mu\nu}=0$ become

$$-\frac{1}{2}\partial^{\sigma}\partial_{\sigma}\overline{h}_{\mu\nu} = 8\pi G T_{\mu\nu} + \mathcal{O}(h^2).$$

• The Newtonian Limit is obtained by setting $T_{00} pprox
ho,$ all other $T_{\mu\nu} pprox 0$ and $\partial/\partial t = 0$

$$-\frac{1}{4}\nabla^2 \overline{h}_{00} = \nabla^2 \Phi = 4\pi G\rho$$

The geodesic equation reduces to

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} - \frac{1}{2}\partial_i h_{00} = 0, \quad \Leftrightarrow \quad \frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} + \frac{2(n-3)}{(n-2)}\partial_i \Phi = 0$$

In n=3 test particles experience no Newtonian Force

$$g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}, \quad \overline{h}_{\mu\nu}:=h_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}h^{\sigma}_{\sigma}, \quad h_{\mu\nu}=\overline{h}_{\mu\nu}-\frac{1}{n-2}\eta_{\mu\nu}\overline{h}^{\sigma}_{\sigma}$$

 \bullet The linearized Einstein equations in the gauge $\partial^{\mu}\overline{h}_{\mu\nu}=0$ become

$$-\frac{1}{2}\partial^{\sigma}\partial_{\sigma}\overline{h}_{\mu\nu} = 8\pi G T_{\mu\nu} + \mathcal{O}(h^2).$$

• The Newtonian Limit is obtained by setting $T_{00} pprox
ho$, all other $T_{\mu\nu} pprox 0$ and $\partial/\partial t = 0$

$$-\frac{1}{4}\nabla^2 \overline{h}_{00} = \nabla^2 \Phi = 4\pi G\rho$$

• The geodesic equation reduces to

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} - \frac{1}{2} \partial_i h_{00} = 0, \quad \Leftrightarrow \quad \frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} + \frac{2(n-3)}{(n-2)} \partial_i \Phi = 0$$

In n=3 test particles experience no Newtonian Force

$$g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu},\quad \overline{h}_{\mu\nu}:=h_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}h^{\sigma}_{\sigma},\quad h_{\mu\nu}=\overline{h}_{\mu\nu}-\frac{1}{n-2}\eta_{\mu\nu}\overline{h}^{\sigma}_{\sigma}$$

 \bullet The linearized Einstein equations in the gauge $\partial^{\mu}\overline{h}_{\mu\nu}=0$ become

$$-\frac{1}{2}\partial^{\sigma}\partial_{\sigma}\overline{h}_{\mu\nu} = 8\pi G T_{\mu\nu} + \mathcal{O}(h^2).$$

• The Newtonian Limit is obtained by setting $T_{00} pprox
ho$, all other $T_{\mu\nu} pprox 0$ and $\partial/\partial t = 0$

$$-\frac{1}{4}\nabla^2 \overline{h}_{00} = \nabla^2 \Phi = 4\pi G\rho$$

The geodesic equation reduces to

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} - \frac{1}{2} \partial_i h_{00} = 0, \quad \Leftrightarrow \quad \frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} + \frac{2(n-3)}{(n-2)} \partial_i \Phi = 0$$

In n=3 test particles experience no Newtonian Force.

First Order Formalism

ullet Independent variables are the Dreibein e_{μ}^{a} and the spin connection ω_{μ}^{ab} .

$$\eta_{ab}e^a_\mu e^b_\nu = g_{\mu\nu}$$

Which introduces an additional SO(2,1)-invariance under $e^a_\mu \to O^a_b e^b_\mu$.

The 3-dimensional Einstein-Hilbert action becomes

$$S_{\rm EH} = 2 \int_M \left[e^a \wedge d\omega_a + \frac{1}{2} \epsilon_{abc} e^a \wedge \omega^b \wedge \omega^c + \frac{\Lambda}{6} \epsilon_{abc} e^a \wedge e^b \wedge e^c \right],$$

with

$$e^a:=e^a_\mu \mathrm{d} x^\mu$$
 and $\omega^a:=rac{1}{2}\epsilon^{abc}\omega_{\mu bc}\mathrm{d} x^\mu.$

The EOM are

$$0 = de_a + \epsilon_{abc}\omega^b \wedge e^c \tag{1}$$

$$0 = d\omega_a + \frac{1}{2}\epsilon_{abc}\omega^b \wedge \omega^c + \frac{\Lambda}{2}\epsilon_{abc}e^b \wedge e^c$$
 (2)

Where (2) is the condition that M has constant curvature

First Order Formalism

 \bullet Independent variables are the Dreibein e^a_μ and the spin connection ω^{ab}_μ .

$$\eta_{ab}e^a_\mu e^b_\nu = g_{\mu\nu}$$

Which introduces an additional SO(2,1)-invariance under $e^a_\mu \to O^a_b e^b_\mu$

The 3-dimensional Einstein-Hilbert action becomes

$$S_{\rm EH} = 2 \int_M \left[e^a \wedge d\omega_a + \frac{1}{2} \epsilon_{abc} e^a \wedge \omega^b \wedge \omega^c + \frac{\Lambda}{6} \epsilon_{abc} e^a \wedge e^b \wedge e^c \right],$$

with

$$e^a:=e^a_\mu \mathrm{d} x^\mu$$
 and $\omega^a:=rac{1}{2}\epsilon^{abc}\omega_{\mu bc}\mathrm{d} x^\mu$

The EOIVI are

$$0 = de_a + \epsilon_{abc}\omega^b \wedge e^c \tag{1}$$

$$0 = d\omega_a + \frac{1}{2}\epsilon_{abc}\omega^b \wedge \omega^c + \frac{\Lambda}{2}\epsilon_{abc}e^b \wedge e^c$$
 (2)

Where (2) is the condition that M has constant curvature.

First Order Formalism

• Independent variables are the Dreibein e^a_μ and the spin connection ω^{ab}_μ .

$$\eta_{ab}e^a_\mu e^b_\nu = g_{\mu\nu}$$

Which introduces an additional SO(2,1)-invariance under $e^a_\mu \to O^a_b e^b_\mu$.

• The 3-dimensional Einstein-Hilbert action becomes

$$S_{\rm EH} = 2 \int_M \left[e^a \wedge d\omega_a + \frac{1}{2} \epsilon_{abc} e^a \wedge \omega^b \wedge \omega^c + \frac{\Lambda}{6} \epsilon_{abc} e^a \wedge e^b \wedge e^c \right],$$

with

$$e^a := e^a_\mu \mathrm{d} x^\mu$$
 and $\omega^a := \frac{1}{2} \epsilon^{abc} \omega_{\mu bc} \mathrm{d} x^\mu$.

The EOM are

$$0 = de_a + \epsilon_{abc}\omega^b \wedge e^c \tag{1}$$

$$0 = d\omega_a + \frac{1}{2}\epsilon_{abc}\omega^b \wedge \omega^c + \frac{\Lambda}{2}\epsilon_{abc}e^b \wedge e^c$$
 (2)

Where (2) is the condition that M has constant curvature.

First Order Formalism

• Independent variables are the Dreibein e^a_μ and the spin connection ω^{ab}_μ .

$$\eta_{ab}e^a_\mu e^b_\nu = g_{\mu\nu}$$

Which introduces an additional SO(2,1)-invariance under $e^a_\mu o O^a_b e^b_\mu$

• The 3-dimensional Einstein-Hilbert action becomes

$$S_{\rm EH} = 2 \int_M \left[e^a \wedge d\omega_a + \frac{1}{2} \epsilon_{abc} e^a \wedge \omega^b \wedge \omega^c + \frac{\Lambda}{6} \epsilon_{abc} e^a \wedge e^b \wedge e^c \right],$$

with

$$e^a := e^a_\mu \mathrm{d} x^\mu$$
 and $\omega^a := \frac{1}{2} \epsilon^{abc} \omega_{\mu bc} \mathrm{d} x^\mu$.

The EOM are

$$0 = de_a + \epsilon_{abc}\omega^b \wedge e^c \tag{1}$$

$$0 = d\omega_a + \frac{1}{2}\epsilon_{abc}\omega^b \wedge \omega^c + \frac{\Lambda}{2}\epsilon_{abc}e^b \wedge e^c$$
 (2)

Where (2) is the condition that M has constant curvature.

What are the Diffeomorphisms?

• Let $\phi \in \mathrm{Diff}(M)$ and furthermore locally $\phi = F_t^X$ flow of a vector field X.

$$\delta e^{a} = L_{X}e^{a} = \mathrm{d}\rho^{a} + \epsilon_{abc}\rho^{c}\omega^{b} - \epsilon_{abc}\tau^{b}e^{c}$$

$$\delta\omega^{a} = L_{X}\omega^{a} = \mathrm{d}\tau^{a} + \epsilon_{abc}\tau^{c}\omega^{b} - \Lambda\epsilon_{abc}\rho^{c}e^{b}$$

with the field-dependent parameters $ho^a:=e^a(X)$ and $au^a:=\omega^a(X)$

- For the transformation identities above the EOM were used
- The above transformation laws as well as the form of the EH-Lagrangian ($\Lambda=0$) $e \wedge d\omega + e \wedge \omega \wedge \omega$ suggest, to try and link 3-dimensional vacuum gravity with Chern-Simons theory:

$$S_{CS}[A] := \int_{M} \operatorname{tr}\left[A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right]$$

Chern-Simons for $\Lambda = 0$

$$A := \left[e_{\mu}^{a} P_{a} + \omega_{\mu}^{a} J_{a} \right] \mathrm{d}x^{\mu}$$

What are the Diffeomorphisms?

• Let $\phi \in \mathrm{Diff}(M)$ and furthermore locally $\phi = F_t^X$ flow of a vector field X.

$$\delta e^a = L_X e^a = \mathrm{d}\rho^a + \epsilon_{abc}\rho^c \omega^b - \epsilon_{abc}\tau^b e^c$$

$$\delta \omega^a = L_X \omega^a = \mathrm{d}\tau^a + \epsilon_{abc}\tau^c \omega^b - \Lambda \epsilon_{abc}\rho^c e^b,$$

with the field-dependent parameters $\rho^a := e^a(X)$ and $\tau^a := \omega^a(X)$

- For the transformation identities above the EOM were used!
- The above transformation laws as well as the form of the EH-Lagrangian ($\Lambda=0$) $e \wedge d\omega + e \wedge \omega \wedge \omega$ suggest, to try and link 3-dimensional vacuum gravity with Chern-Simons theory:

$$S_{\mathrm{CS}}[A] := \int_{M} \mathrm{tr} \left[A \wedge \mathrm{d}A + \frac{2}{3} A \wedge A \wedge A \right]$$

Chern-Simons for $\Lambda = 0$

$$A := \left[e_{\mu}^{a} P_{a} + \omega_{\mu}^{a} J_{a} \right] \mathrm{d}x^{\mu}$$

What are the Diffeomorphisms?

• Let $\phi \in \mathrm{Diff}(M)$ and furthermore locally $\phi = F_t^X$ flow of a vector field X.

$$\delta e^a = L_X e^a = \mathrm{d}\rho^a + \epsilon_{abc}\rho^c \omega^b - \epsilon_{abc}\tau^b e^c$$

$$\delta \omega^a = L_X \omega^a = \mathrm{d}\tau^a + \epsilon_{abc}\tau^c \omega^b - \Lambda \epsilon_{abc}\rho^c e^b,$$

with the field-dependent parameters $\rho^a := e^a(X)$ and $\tau^a := \omega^a(X)$

- For the transformation identities above the EOM were used!
- The above transformation laws as well as the form of the EH-Lagrangian $(\Lambda=0)$ $e\wedge \mathrm{d}\omega + e\wedge \omega \wedge \omega$ suggest, to try and link 3-dimensional vacuum gravity with Chern-Simons theory:

$$S_{CS}[A] := \int_{M} \operatorname{tr}\left[A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right]$$

Chern-Simons for $\Lambda = 0$

$$A := \left[e^a_\mu P_a + \omega^a_\mu J_a \right] \mathrm{d}x^\mu$$

What are the Diffeomorphisms?

• Let $\phi \in \mathrm{Diff}(M)$ and furthermore locally $\phi = F_t^X$ flow of a vector field X.

$$\delta e^a = L_X e^a = \mathrm{d}\rho^a + \epsilon_{abc}\rho^c \omega^b - \epsilon_{abc}\tau^b e^c$$

$$\delta \omega^a = L_X \omega^a = \mathrm{d}\tau^a + \epsilon_{abc}\tau^c \omega^b - \Lambda \epsilon_{abc}\rho^c e^b,$$

with the field-dependent parameters $\rho^a:=e^a(X)$ and $\tau^a:=\omega^a(X)$

- For the transformation identities above the EOM were used!
- The above transformation laws as well as the form of the EH-Lagrangian $(\Lambda=0)$ $e \wedge \mathrm{d}\omega + e \wedge \omega \wedge \omega$ suggest, to try and link 3-dimensional vacuum gravity with Chern-Simons theory:

$$S_{CS}[A] := \int_{M} \operatorname{tr}\left[A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right]$$

Chern-Simons for $\Lambda=0$

$$A := \left[e_{\mu}^{a} P_{a} + \omega_{\mu}^{a} J_{a} \right] \mathrm{d}x^{\mu}$$

4 Gravity as a Chern-Simons Theory – Chern-Simons theory

Chern-Simons for $\Lambda = 0$

ullet P_a, J_a are generators of the Poincaré group ISO(2,1), with the algebra

$$[J_a, J_b] = \epsilon_{abc} J^c, \qquad [J_a, P_b] = \epsilon_{abc} P^c, \qquad [P_a, P_b] = 0,$$

and the trace identities

$$tr[J_a P_b] = \eta_{ab}, \qquad tr[J_a J_b] = tr[P_a P_b] = 0.$$

• Using these, it is easy to show

$$S_{\rm CS} = \left. S_{\rm EH} \right|_{\Lambda=0}$$
.

• Where an ISO(2,1) gauge transformation by an infinitesimal parameter $u=\rho^aP_a+\tau^aJ_a$ is determined by

$$\begin{split} \delta A_{\mu} &= \delta e_{\mu}^{a} P_{a} + \delta \omega_{\mu}^{a} J_{a} \\ \delta A_{\mu} &= D_{\mu} u = \partial_{\mu} u + [A_{\mu}, u] \\ &= [\partial_{\mu} \rho_{a} - \epsilon_{abc} \tau^{c} e_{\nu}^{b} + \epsilon_{abc} \rho^{c} \omega_{\mu}^{b}] P^{a} + [\partial_{\mu} \tau_{a} + \epsilon_{abc} \tau^{c} \omega_{\mu}^{b}] J^{c} \end{split}$$

4 Gravity as a Chern-Simons Theory – Chern-Simons theory

Chern-Simons for $\Lambda = 0$

ullet P_a, J_a are generators of the Poincaré group ISO(2,1), with the algebra

$$[J_a, J_b] = \epsilon_{abc} J^c, \qquad [J_a, P_b] = \epsilon_{abc} P^c, \qquad [P_a, P_b] = 0,$$

and the trace identities

$$tr[J_a P_b] = \eta_{ab}, \qquad tr[J_a J_b] = tr[P_a P_b] = 0.$$

• Using these, it is easy to show

$$S_{\rm CS} = \left. S_{\rm EH} \right|_{\Lambda=0}$$
.

• Where an ISO(2,1) gauge transformation by an infinitesimal parameter $u=\rho^aP_a+\tau^aJ_a$ is determined by

$$\begin{split} \delta A_{\mu} &= \delta e_{\mu}^{a} P_{a} + \delta \omega_{\mu}^{a} J_{a} \\ \delta A_{\mu} &= D_{\mu} u = \partial_{\mu} u + [A_{\mu}, u] \\ &= [\partial_{\mu} \rho_{a} - \epsilon_{abc} \tau^{c} e_{\mu}^{b} + \epsilon_{abc} \rho^{c} \omega_{\mu}^{b}] P^{a} + [\partial_{\mu} \tau_{a} + \epsilon_{abc} \tau^{c} \omega_{\mu}^{b}] J^{a} \end{split}$$

4 Gravity as a Chern-Simons Theory - Chern-Simons theory

Chern-Simons for $\Lambda = 0$

ullet P_a, J_a are generators of the Poincaré group ISO(2,1), with the algebra

$$[J_a, J_b] = \epsilon_{abc} J^c, \qquad [J_a, P_b] = \epsilon_{abc} P^c, \qquad [P_a, P_b] = 0,$$

and the trace identities

$$tr[J_a P_b] = \eta_{ab}, \qquad tr[J_a J_b] = tr[P_a P_b] = 0.$$

• Using these, it is easy to show

$$S_{\rm CS} = \left. S_{\rm EH} \right|_{\Lambda=0}$$
.

• Where an ISO(2,1) gauge transformation by an infinitesimal parameter $u=\rho^aP_a+\tau^aJ_a$ is determined by

$$\begin{split} \delta A_{\mu} &= \delta e_{\mu}^{a} P_{a} + \delta \omega_{\mu}^{a} J_{a} \\ \delta A_{\mu} &= D_{\mu} u = \partial_{\mu} u + [A_{\mu}, u] \\ &= [\partial_{\mu} \rho_{a} - \epsilon_{abc} \tau^{c} e_{\mu}^{b} + \epsilon_{abc} \rho^{c} \omega_{\mu}^{b}] P^{a} + [\partial_{\mu} \tau_{a} + \epsilon_{abc} \tau^{c} \omega_{\mu}^{b}] J^{a} \end{split}$$

4 Gravity as a Chern-Simons Theory – Chern-Simons theory

Chern-Simons for $\Lambda = 0$

$$ISO(2,1), \qquad A := e^a P_a + \omega^a J_a$$

Chern-Simons for $\Lambda < 0$

$$SO(2,1) \times SO(2,1), \qquad A^{(\pm)a} := \omega^a \pm \frac{1}{\sqrt{-\Lambda}}e^{\epsilon'}$$

$$S_{\text{EH}} = S_{\text{CS}}[A^{(+)}] - S_{\text{CS}}[A^{(-)}]$$

Chern-Simons for $\Lambda > 0$

$$SL(2,\mathbb{C}), \qquad A^a := \omega^a + i\sqrt{\Lambda}e^a$$

$$S_{\rm EH} = S_{\rm CS}[A]$$

4 Gravity as a Chern-Simons Theory — Chern-Simons theory

Chern-Simons for $\Lambda = 0$

$$ISO(2,1), \qquad A := e^a P_a + \omega^a J_a$$

Chern-Simons for $\Lambda < 0$

$$SO(2,1) \times SO(2,1), \qquad A^{(\pm)a} := \omega^a \pm \frac{1}{\sqrt{-\Lambda}} e^a$$

$$S_{\text{EH}} = S_{\text{CS}}[A^{(+)}] - S_{\text{CS}}[A^{(-)}]$$

Chern-Simons for $\Lambda > 0$

$$SL(2,\mathbb{C}), \qquad A^a := \omega^a + i\sqrt{\Lambda}e^a$$

$$S_{\rm EH} = S_{\rm CS}[A]$$

4 Gravity as a Chern-Simons Theory – Chern-Simons theory

Chern-Simons for $\Lambda = 0$

$$ISO(2,1), \qquad A := e^a P_a + \omega^a J_a$$

Chern-Simons for $\Lambda < 0$

$$SO(2,1) \times SO(2,1), \qquad A^{(\pm)a} := \omega^a \pm \frac{1}{\sqrt{-\Lambda}} e^a$$

$$S_{\text{EH}} = S_{\text{CS}}[A^{(+)}] - S_{\text{CS}}[A^{(-)}]$$

Chern-Simons for $\Lambda > 0$

$$SL(2,\mathbb{C}), \qquad A^a := \omega^a + i\sqrt{\Lambda}e^a$$

$$S_{\rm EH} = S_{\rm CS}[A]$$

Under the gauge tranformation

$$A^g := g^{-1} \mathrm{d}g + g^{-1} A g$$

the Chern-Simons action transformes as (hint: use $d(g^{-1}g) = 0$):

$$S_{\text{CS}}[A^g] = S_{\text{CS}}[A] - \frac{1}{3} \int_M \text{tr}\left[g^{-1} dg \wedge g^{-1} dg \wedge g^{-1} dg\right] - \int_{\partial M} \text{tr}\left[(dg)g^{-1} \wedge A\right]$$

For closed $M_{\cdot \cdot \cdot}$

- ...the boundary term vanishes.
- ...the pure gauge term is the winding number of g. Adjusting the coupling constant this term is always an integral multiple of 2π , so that $\exp[iS_{\rm CS}]$ indeed is gauge invariant.

Under the gauge tranformation

$$A^g := g^{-1} \mathrm{d}g + g^{-1} A g$$

the Chern-Simons action transformes as (hint: use $d(g^{-1}g) = 0$):

$$S_{\mathrm{CS}}[A^g] = S_{\mathrm{CS}}[A] - \frac{1}{3} \int_M \operatorname{tr}\left[g^{-1} dg \wedge g^{-1} dg \wedge g^{-1} dg\right] - \int_{\partial M} \operatorname{tr}\left[(dg)g^{-1} \wedge A\right]$$

For closed $M_{\cdot \cdot \cdot}$

- ...the boundary term vanishes.
- ...the pure gauge term is the winding number of g. Adjusting the coupling constant this term is always an integral multiple of 2π , so that $\exp[iS_{\rm CS}]$ indeed is gauge invariant.

Under the gauge tranformation

$$A^g := g^{-1} \mathrm{d}g + g^{-1} A g$$

the Chern-Simons action transformes as (hint: use $d(g^{-1}g) = 0$):

$$S_{\mathrm{CS}}[A^g] = S_{\mathrm{CS}}[A] - \frac{1}{3} \int_M \operatorname{tr}\left[g^{-1} dg \wedge g^{-1} dg \wedge g^{-1} dg\right] - \int_{\partial M} \operatorname{tr}\left[(dg)g^{-1} \wedge A\right]$$

For closed M...

- ...the boundary term vanishes.
- ...the pure gauge term is the winding number of g. Adjusting the coupling constant this term is always an integral multiple of 2π , so that $\exp[iS_{\rm CS}]$ indeed is gauge invariant.

Under the gauge tranformation

$$A^g := g^{-1} \mathrm{d}g + g^{-1} A g$$

the Chern-Simons action transformes as (hint: use $d(g^{-1}g) = 0$):

$$S_{\mathrm{CS}}[A^g] = S_{\mathrm{CS}}[A] - \frac{1}{3} \int_M \operatorname{tr}\left[g^{-1} dg \wedge g^{-1} dg \wedge g^{-1} dg\right] - \int_{\partial M} \operatorname{tr}\left[(dg)g^{-1} \wedge A\right]$$

For closed M...

- ...the boundary term vanishes.
- ...the pure gauge term is the winding number of g. Adjusting the coupling constant this term is always an integral multiple of 2π , so that $\exp[iS_{\rm CS}]$ indeed is gauge invariant.

- ...the boundary term does not vanish and the Chern-Simons action is not gauge invariant!
- ... even greater problem arises from the variational principle

$$\delta S_{\rm CS}[A] = 2 \int_M \operatorname{tr}[\delta A \wedge (\underline{dA + A \wedge A})] - \int_{\partial M} \operatorname{tr}[A \wedge \delta A]$$

The surface term does not vanish for either Dirichlet or Neumann conditions.

- CS-theory alone is not a well defined physical theory on closed manifolds.
- Cure: We choose a complex structure on ∂M , fix an appropriate mixed boundary condition A_z or $A_{\overline{z}}$, and add a suitable boundary term $S_{\partial M}[A_z,A_{\overline{z}}]$ that compensates the boundary term above.

- ...the boundary term does not vanish and the Chern-Simons action is not gauge invariant!
- ... even greater problem arises from the variational principle:

$$\delta S_{\rm CS}[A] = 2 \int_M \operatorname{tr}[\delta A \wedge (\underline{dA + A \wedge A})] - \int_{\partial M} \operatorname{tr}[A \wedge \delta A]$$

The surface term does not vanish for either Dirichlet or Neumann conditions

- CS-theory alone is not a well defined physical theory on closed manifolds.
- Cure: We choose a complex structure on ∂M , fix an appropriate mixed boundary condition A_z or $A_{\overline{z}}$, and add a suitable boundary term $S_{\partial M}[A_z,A_{\overline{z}}]$ that compensates the boundary term above.

- ...the boundary term does not vanish and the Chern-Simons action is not gauge invariant!
- ... even greater problem arises from the variational principle:

$$\delta S_{\rm CS}[A] = 2 \int_M \operatorname{tr}[\delta A \wedge (\underline{dA + A \wedge A})] - \int_{\partial M} \operatorname{tr}[A \wedge \delta A]$$

• The surface term does not vanish for either Dirichlet or Neumann conditions.

- CS-theory alone is not a well defined physical theory on closed manifolds.
- Cure: We choose a complex structure on ∂M , fix an appropriate mixed boundary condition A_z or $A_{\overline{z}}$, and add a suitable boundary term $S_{\partial M}[A_z,A_{\overline{z}}]$ that compensates the boundary term above.

- ...the boundary term does not vanish and the Chern-Simons action is not gauge invariant!
- ... even greater problem arises from the variational principle:

$$\delta S_{\rm CS}[A] = 2 \int_M \operatorname{tr}[\delta A \wedge (\underline{dA + A \wedge A})] - \int_{\partial M} \operatorname{tr}[A \wedge \delta A]$$

• The surface term does not vanish for either Dirichlet or Neumann conditions.

- CS-theory alone is not a well defined physical theory on closed manifolds.
- Cure: We choose a complex structure on ∂M , fix an appropriate mixed boundary condition A_z or $A_{\overline{z}}$, and add a suitable boundary term $S_{\partial M}[A_z,A_{\overline{z}}]$ that compensates the boundary term above.

- ...the boundary term does not vanish and the Chern-Simons action is not gauge invariant!
- ... even greater problem arises from the variational principle:

$$\delta S_{\rm CS}[A] = 2 \int_M \operatorname{tr}[\delta A \wedge (\underline{dA + A \wedge A})] - \int_{\partial M} \operatorname{tr}[A \wedge \delta A]$$

• The surface term does not vanish for either Dirichlet or Neumann conditions.

- CS-theory alone is not a well defined physical theory on closed manifolds.
- Cure: We choose a complex structure on ∂M , fix an apropriate mixed boundary condition A_z or $A_{\overline{z}}$, and add a suitable boundary term $S_{\partial M}[A_z,A_{\overline{z}}]$ that compensates the boundary term above.

Introducing a complex structure:

$$\int_{\partial M} A \wedge B =: \int_{\partial M} dz \wedge d\overline{z} [A_z B_{\overline{z}} - A_{\overline{z}} B_z] =: \int_{\partial M} 2d^2 z [A_z B_{\overline{z}} - A_{\overline{z}} B_z],$$

to cancel

$$-\int_{\partial M} \operatorname{tr}[A \wedge \delta A] = -\int_{\partial M} 2d^2 z \operatorname{tr}[A_z \delta A_{\overline{z}} - A_{\overline{z}} \delta A_z]$$

The modified CS-theory then reads

$$A_z, A_{\overline{z}} \text{ fixed } \Rightarrow \quad \tilde{S}_{CS}[A] := S_{CS}[A] \pm 2 \int_{\partial M} d^2 z \text{tr}[A_z A_{\overline{z}}].$$

By construction, we now have $\delta ilde{S}_{\mathrm{CS}}[A] = 0$ on shell.

Introducing a complex structure:

$$\int_{\partial M} A \wedge B =: \int_{\partial M} \mathrm{d}z \wedge \mathrm{d}\overline{z} [A_z B_{\overline{z}} - A_{\overline{z}} B_z] =: \int_{\partial M} 2\mathrm{d}^2 z [A_z B_{\overline{z}} - A_{\overline{z}} B_z],$$

to cancel

$$-\int_{\partial M} \operatorname{tr}[A \wedge \delta A] = -\int_{\partial M} 2d^2 z \operatorname{tr}[A_z \delta A_{\overline{z}} - A_{\overline{z}} \delta A_z].$$

The modified CS-theory then reads

$$A_z, A_{\overline{z}} \text{ fixed } \Rightarrow \quad \tilde{S}_{CS}[A] := S_{CS}[A] \pm 2 \int_{\partial M} d^2 z \text{tr}[A_z A_{\overline{z}}].$$

By construction, we now have $\delta ilde{S}_{\mathrm{CS}}[A] = 0$ on shell

Introducing a complex structure:

$$\int_{\partial M} A \wedge B =: \int_{\partial M} \mathrm{d}z \wedge \mathrm{d}\overline{z} [A_z B_{\overline{z}} - A_{\overline{z}} B_z] =: \int_{\partial M} 2 \mathrm{d}^2 z [A_z B_{\overline{z}} - A_{\overline{z}} B_z],$$

to cancel

$$-\int_{\partial M} \operatorname{tr}[A \wedge \delta A] = -\int_{\partial M} 2d^2 z \operatorname{tr}[A_z \delta A_{\overline{z}} - A_{\overline{z}} \delta A_z].$$

The modified CS-theory then reads:

$$A_z, A_{\overline{z}} \text{ fixed } \Rightarrow \quad \tilde{S}_{CS}[A] := S_{CS}[A] \pm 2 \int_{\partial M} d^2 z \text{tr}[A_z A_{\overline{z}}].$$

By construction, we now have $\delta ilde{S}_{\mathrm{CS}}[A] = 0$ on shell

Introducing a complex structure:

$$\int_{\partial M} A \wedge B =: \int_{\partial M} \mathrm{d}z \wedge \mathrm{d}\overline{z} [A_z B_{\overline{z}} - A_{\overline{z}} B_z] =: \int_{\partial M} 2 \mathrm{d}^2 z [A_z B_{\overline{z}} - A_{\overline{z}} B_z],$$

to cancel

$$-\int_{\partial M} \operatorname{tr}[A \wedge \delta A] = -\int_{\partial M} 2\operatorname{d}^2 z \operatorname{tr}[A_z \delta A_{\overline{z}} - A_{\overline{z}} \delta A_z].$$

The modified CS-theory then reads:

$$A_z, A_{\overline{z}} \text{ fixed } \Rightarrow \quad \tilde{S}_{CS}[A] := S_{CS}[A] \pm 2 \int_{\partial M} d^2 z \operatorname{tr}[A_z A_{\overline{z}}].$$

By construction, we now have $\delta \tilde{S}_{CS}[A] = 0$ on shell.

$$\tilde{S}_{\text{CS}}[A^g] = \tilde{S}_{\text{CS}} + S_{\text{WZW}}^+[g, A_z]$$

where $S^+_{\mathrm{WZW}}[g,A_z]$ is a chiral Wess-Zumino-(Novikov)-Witten action on ∂M :

$$S_{\text{WZW}}^{+}[g, A_z] := \int_{\partial M} \mathrm{d}^2 z \text{tr}[g^{-1}(\partial_z g) g^{-1}(\partial_{\overline{z}} g) - 2g^{-1}(\partial_{\overline{z}} g) A_z] + \frac{1}{3} \int_M \text{tr}[g^{-1} \mathrm{d} g]^3$$

- The number of physical degrees of freedom of a CS-theory depends strongly on whether spacetime has a boundary.
- If M has a boundary, gauge invariance is broken at ∂M and the "would-be pure gauge degrees" g become dynamical on the boundary.
- This adds an infinite-dimensional space of inequivalent solutions.

$$\tilde{S}_{CS}[A^g] = \tilde{S}_{CS} + S_{WZW}^+[g, A_z]$$

where $S^+_{\mathrm{WZW}}[g,A_z]$ is a chiral Wess-Zumino-(Novikov)-Witten action on ∂M :

$$S^+_{\mathrm{WZW}}[g,A_z] := \int_{\partial M} \mathrm{d}^2 z \mathrm{tr}[g^{-1}(\partial_z g)g^{-1}(\partial_{\overline{z}} g) - 2g^{-1}(\partial_{\overline{z}} g)A_z] + \frac{1}{3} \int_M \mathrm{tr}[g^{-1}\mathrm{d} g]^3$$

- The number of physical degrees of freedom of a CS-theory depends strongly on whether spacetime has a boundary.
- If M has a boundary, gauge invariance is broken at ∂M and the "would-be pure gauge degrees" g become dynamical on the boundary.
- This adds an infinite-dimensional space of inequivalent solutions.

$$\tilde{S}_{CS}[A^g] = \tilde{S}_{CS} + S_{WZW}^+[g, A_z]$$

where $S^+_{WZW}[g,A_z]$ is a chiral Wess-Zumino-(Novikov)-Witten action on ∂M :

$$S^+_{\mathrm{WZW}}[g,A_z] := \int_{\partial M} \mathrm{d}^2 z \mathrm{tr}[g^{-1}(\partial_z g)g^{-1}(\partial_{\overline{z}} g) - 2g^{-1}(\partial_{\overline{z}} g)A_z] + \frac{1}{3} \int_M \mathrm{tr}[g^{-1}\mathrm{d} g]^3$$

- The number of physical degrees of freedom of a CS-theory depends strongly on whether spacetime has a boundary.
- ullet If M has a boundary, gauge invariance is broken at ∂M and the "would-be pure gauge degrees" g become dynamical on the boundary.
- This adds an infinite-dimensional space of inequivalent solutions.

$$\tilde{S}_{CS}[A^g] = \tilde{S}_{CS} + S_{WZW}^+[g, A_z]$$

where $S^+_{\mathrm{WZW}}[g,A_z]$ is a chiral Wess-Zumino-(Novikov)-Witten action on ∂M :

$$S^+_{\mathrm{WZW}}[g,A_z] := \int_{\partial M} \mathrm{d}^2 z \mathrm{tr}[g^{-1}(\partial_z g)g^{-1}(\partial_{\overline{z}} g) - 2g^{-1}(\partial_{\overline{z}} g)A_z] + \frac{1}{3} \int_M \mathrm{tr}[g^{-1}\mathrm{d} g]^3$$

- The number of physical degrees of freedom of a CS-theory depends strongly on whether spacetime has a boundary.
- \bullet If M has a boundary, gauge invariance is broken at ∂M and the "would-be pure gauge degrees" g become dynamical on the boundary.
- This adds an infinite-dimensional space of inequivalent solutions.

$$\tilde{S}_{CS}[A^g] = \tilde{S}_{CS} + S_{WZW}^+[g, A_z]$$

where $S^+_{\mathrm{WZW}}[g,A_z]$ is a chiral Wess-Zumino-(Novikov)-Witten action on ∂M :

$$S^+_{\mathrm{WZW}}[g,A_z] := \int_{\partial M} \mathrm{d}^2 z \mathrm{tr}[g^{-1}(\partial_z g)g^{-1}(\partial_{\overline{z}} g) - 2g^{-1}(\partial_{\overline{z}} g)A_z] + \frac{1}{3} \int_M \mathrm{tr}[g^{-1}\mathrm{d} g]^3$$

- The number of physical degrees of freedom of a CS-theory depends strongly on whether spacetime has a boundary.
- If M has a boundary, gauge invariance is broken at ∂M and the "would-be pure gauge degrees" g become dynamical on the boundary.
- This adds an infinite-dimensional space of inequivalent solutions.

Discussion for $\Lambda=0$, following E.Witten, "Topology Changing Amplitudes in (2+1)-Dimensional Gravity,"

Einstein Hilbert and Moduli Spaces

$$\begin{split} S_{\text{EH}} &= \int_{M} \epsilon^{\rho\mu\nu} e_{\rho a} [\partial_{\mu} \omega_{\nu}^{a} - \partial_{\nu} \omega_{\mu}^{a} + [\omega_{\mu}, \omega_{\nu}]^{a}] \\ 0 &= \partial_{\mu} \omega_{\nu}^{a} - \partial_{\nu} \omega_{\mu}^{a} + \epsilon^{abc} \omega_{\mu b} \omega_{\nu c} \\ 0 &= \partial_{\mu} e_{\nu}^{a} - \partial_{\nu} e_{\mu}^{a} + \epsilon^{abc} (\omega_{\mu b} e_{\nu c} - \omega_{\nu b} e_{\mu c}) \end{split}$$

- \bullet ω is a SO(2,1) connection, ${\cal N}$ the moduli space of flat SO(2,1) connections
- (e, ω) is a ISO(2,1) connection, \mathcal{M} the moduli space of flat ISO(2,1) connections Let ω be flat. Condition for a nearby connection $\omega + \delta \omega$ ($\delta \omega \in T_{\omega} \mathcal{N}$) to also be flat is

$$D_{\mu}\delta\omega_{\nu} - D_{\nu}\delta\omega_{\mu} = 0.$$

From the EOM the condition for (e,ω) to be flat is $D_{\mu}e_{\nu}-D_{\nu}e_{\mu}=0$. From their equal transformation property we have $e\in T_{\omega}\mathcal{N}$ and therewith

$$\mathcal{M} = T\mathcal{N}$$
.

Discussion for $\Lambda=0$, following E.Witten, "Topology Changing Amplitudes in (2+1)-Dimensional Gravity,"

Einstein Hilbert and Moduli Spaces

$$S_{\text{EH}} = \int_{M} \epsilon^{\rho\mu\nu} e_{\rho a} [\partial_{\mu}\omega_{\nu}^{a} - \partial_{\nu}\omega_{\mu}^{a} + [\omega_{\mu}, \omega_{\nu}]^{a}]$$

$$0 = \partial_{\mu}\omega_{\nu}^{a} - \partial_{\nu}\omega_{\mu}^{a} + \epsilon^{abc}\omega_{\mu b}\omega_{\nu c}$$

$$0 = \partial_{\mu}e_{\nu}^{a} - \partial_{\nu}e_{\mu}^{a} + \epsilon^{abc}(\omega_{\mu b}e_{\nu c} - \omega_{\nu b}e_{\mu c})$$

• ω is a SO(2,1) connection, $\mathcal N$ the moduli space of flat SO(2,1) connections • (e,ω) is a ISO(2,1) connection, $\mathcal M$ the moduli space of flat ISO(2,1) connections Let ω be flat. Condition for a nearby connection $\omega + \delta \omega$ ($\delta \omega \in T_\omega \mathcal N$) to also be flat is

$$D_{\mu}\delta\omega_{\nu} - D_{\nu}\delta\omega_{\mu} = 0.$$

From the EOM the condition for (e,ω) to be flat is $D_{\mu}e_{\nu}-D_{\nu}e_{\mu}=0$. From their equal transformation property we have $e\in T_{\omega}\mathcal{N}$ and therewith

$$\mathcal{M} = T\mathcal{N}$$
.

Discussion for $\Lambda=0$, following E.Witten, "Topology Changing Amplitudes in (2+1)-Dimensional Gravity,"

Einstein Hilbert and Moduli Spaces

$$S_{\text{EH}} = \int_{M} \epsilon^{\rho\mu\nu} e_{\rho a} [\partial_{\mu}\omega_{\nu}^{a} - \partial_{\nu}\omega_{\mu}^{a} + [\omega_{\mu}, \omega_{\nu}]^{a}]$$

$$0 = \partial_{\mu}\omega_{\nu}^{a} - \partial_{\nu}\omega_{\mu}^{a} + \epsilon^{abc}\omega_{\mu b}\omega_{\nu c}$$

$$0 = \partial_{\mu}e_{\nu}^{a} - \partial_{\nu}e_{\mu}^{a} + \epsilon^{abc}(\omega_{\mu b}e_{\nu c} - \omega_{\nu b}e_{\mu c})$$

- ullet ω is a SO(2,1) connection, ${\cal N}$ the moduli space of flat SO(2,1) connections
- ullet (e,ω) is a ISO(2,1) connection, ${\cal M}$ the moduli space of flat ISO(2,1) connections

Let ω be flat. Condition for a nearby connection $\omega + \delta\omega$ ($\delta\omega \in T_{\omega}\mathcal{N}$) to also be flat is

$$D_{\mu}\delta\omega_{\nu} - D_{\nu}\delta\omega_{\mu} = 0.$$

From the EOM the condition for (e,ω) to be flat is $D_{\mu}e_{\nu}-D_{\nu}e_{\mu}=0$. From their equal transformation property we have $e\in T_{\omega}\mathcal{N}$ and therewith

$$\mathcal{M} = T\mathcal{N}$$
.

Discussion for $\Lambda=0$, following E.Witten, "Topology Changing Amplitudes in (2+1)-Dimensional Gravity,"

Einstein Hilbert and Moduli Spaces

$$\begin{split} S_{\text{EH}} &= \int_{M} \epsilon^{\rho\mu\nu} e_{\rho a} [\partial_{\mu} \omega_{\nu}^{a} - \partial_{\nu} \omega_{\mu}^{a} + [\omega_{\mu}, \omega_{\nu}]^{a}] \\ 0 &= \partial_{\mu} \omega_{\nu}^{a} - \partial_{\nu} \omega_{\mu}^{a} + \epsilon^{abc} \omega_{\mu b} \omega_{\nu c} \\ 0 &= \partial_{\mu} e_{\nu}^{a} - \partial_{\nu} e_{\mu}^{a} + \epsilon^{abc} (\omega_{\mu b} e_{\nu c} - \omega_{\nu b} e_{\mu c}) \end{split}$$

- ullet ω is a SO(2,1) connection, ${\cal N}$ the moduli space of flat SO(2,1) connections
- (e,ω) is a ISO(2,1) connection, $\mathcal M$ the moduli space of flat ISO(2,1) connections Let ω be flat. Condition for a nearby connection $\omega + \delta\omega$ ($\delta\omega \in T_\omega\mathcal N$) to also be flat is

$$D_{\mu}\delta\omega_{\nu} - D_{\nu}\delta\omega_{\mu} = 0.$$

From the EOM the condition for (e,ω) to be flat is $D_{\mu}e_{\nu}-D_{\nu}e_{\mu}=0$. From their equal transformation property we have $e\in T_{\omega}\mathcal{N}$ and therewith

 $\mathcal{M} = T\mathcal{N}$.

Discussion for $\Lambda=0$, following E.Witten, "Topology Changing Amplitudes in (2+1)-Dimensional Gravity,"

Einstein Hilbert and Moduli Spaces

$$S_{\text{EH}} = \int_{M} \epsilon^{\rho\mu\nu} e_{\rho a} [\partial_{\mu}\omega_{\nu}^{a} - \partial_{\nu}\omega_{\mu}^{a} + [\omega_{\mu}, \omega_{\nu}]^{a}]$$

$$0 = \partial_{\mu}\omega_{\nu}^{a} - \partial_{\nu}\omega_{\mu}^{a} + \epsilon^{abc}\omega_{\mu b}\omega_{\nu c}$$

$$0 = \partial_{\mu}e_{\nu}^{a} - \partial_{\nu}e_{\mu}^{a} + \epsilon^{abc}(\omega_{\mu b}e_{\nu c} - \omega_{\nu b}e_{\mu c})$$

- ullet ω is a SO(2,1) connection, ${\cal N}$ the moduli space of flat SO(2,1) connections
- (e,ω) is a ISO(2,1) connection, $\mathcal M$ the moduli space of flat ISO(2,1) connections Let ω be flat. Condition for a nearby connection $\omega + \delta \omega$ ($\delta \omega \in T_\omega \mathcal N$) to also be flat is

$$D_{\mu}\delta\omega_{\nu} - D_{\nu}\delta\omega_{\mu} = 0.$$

From the EOM the condition for (e,ω) to be flat is $D_{\mu}e_{\nu}-D_{\nu}e_{\mu}=0$. From their equal transformation property we have $e\in T_{\omega}\mathcal{N}$ and therewith

Discussion for $\Lambda=0$, following E.Witten, "Topology Changing Amplitudes in (2+1)-Dimensional Gravity,"

Einstein Hilbert and Moduli Spaces

$$S_{\text{EH}} = \int_{M} \epsilon^{\rho\mu\nu} e_{\rho a} [\partial_{\mu}\omega_{\nu}^{a} - \partial_{\nu}\omega_{\mu}^{a} + [\omega_{\mu}, \omega_{\nu}]^{a}]$$

$$0 = \partial_{\mu}\omega_{\nu}^{a} - \partial_{\nu}\omega_{\mu}^{a} + \epsilon^{abc}\omega_{\mu b}\omega_{\nu c}$$

$$0 = \partial_{\mu}e_{\nu}^{a} - \partial_{\nu}e_{\mu}^{a} + \epsilon^{abc}(\omega_{\mu b}e_{\nu c} - \omega_{\nu b}e_{\mu c})$$

- ullet ω is a SO(2,1) connection, ${\cal N}$ the moduli space of flat SO(2,1) connections
- (e,ω) is a ISO(2,1) connection, $\mathcal M$ the moduli space of flat ISO(2,1) connections Let ω be flat. Condition for a nearby connection $\omega + \delta \omega$ ($\delta \omega \in T_\omega \mathcal N$) to also be flat is

$$D_{\mu}\delta\omega_{\nu} - D_{\nu}\delta\omega_{\mu} = 0.$$

From the EOM the condition for (e,ω) to be flat is $D_{\mu}e_{\nu}-D_{\nu}e_{\mu}=0$. From their equal transformation property we have $e\in T_{\omega}\mathcal{N}$ and therewith

$$\mathcal{M} = T\mathcal{N}$$
.

Naive Quantization

$$Z(M) = \int \mathcal{D}[e,\omega] \exp[iS_{\rm EH}]$$

Using $\int \mathrm{d}x e^{ixy} = \delta[y]$

$$Z(M) = \int \mathcal{D}[\omega] \prod_{\mu,\nu,a} \delta[F_{\mu\nu}^a]$$

We use the splitting

$$\omega = \overline{\omega} + \Omega, \qquad e = \overline{e} + E$$

$$\int \prod_{j} dx^{j} \delta[f^{j}(x^{i})] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

Naive Quantization

$$Z(M) = \int \mathcal{D}[e,\omega] \exp[iS_{\rm EH}]$$

Using $\int \mathrm{d}x e^{ixy} = \delta[y]$

$$Z(M) = \int \mathcal{D}[\omega] \prod_{\mu,\nu,a} \delta[F_{\mu\nu}^a]$$

We use the splitting

$$\omega = \overline{\omega} + \Omega, \qquad e = \overline{e} + E$$

$$\int \prod_{j} \mathrm{d}x^{j} \delta[f^{j}(x^{i})] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

Naive Quantization

$$Z(M) = \int \mathcal{D}[e, \omega] \exp[iS_{\mathrm{EH}}]$$

Using $\int \mathrm{d}x e^{ixy} = \delta[y]$

$$Z(M) = \int \mathcal{D}[\omega] \prod_{\mu,\nu,a} \delta[F^a_{\mu\nu}]$$

We use the splitting

$$\omega = \overline{\omega} + \Omega, \qquad e = \overline{e} + E$$

$$\int \prod_{j} dx^{j} \delta[f^{j}(x^{i})] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

Naive Quantization

$$Z(M) = \int \mathcal{D}[e, \omega] \exp[iS_{\mathrm{EH}}]$$

Using $\int \mathrm{d}x e^{ixy} = \delta[y]$

$$Z(M) = \int \mathcal{D}[\omega] \prod_{\mu,\nu,a} \delta[F^a_{\mu\nu}]$$

We use the splitting

$$\omega = \overline{\omega} + \Omega, \qquad e = \overline{e} + E$$

$$\int \prod_{j} \mathrm{d}x^{j} \delta[f^{j}(x^{i})] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

Still: Naive Quantization

we find

$$Z(M) = \frac{1}{|\det(\overline{D}_{\mu}\Omega_{\nu} - \overline{D}_{\nu}\Omega_{\mu})|}$$

with the covariant exterior derivative

$$\overline{D}\beta^a := \mathrm{d}\beta^a + \epsilon^{abc}\overline{\omega}_b \wedge \beta_c$$

The above operator has ininitly many zero modes (for which \det^{-1} diverges), of the form $\Omega_{\mu} = \overline{D}_{\mu} \epsilon !$

In the SM we also had problems naively defining the gauge boson propagators...

Still: Naive Quantization

we find

$$Z(M) = \frac{1}{|\det(\overline{D}_{\mu}\Omega_{\nu} - \overline{D}_{\nu}\Omega_{\mu})|}$$

with the covariant exterior derivative

$$\overline{D}\beta^a := \mathrm{d}\beta^a + \epsilon^{abc}\overline{\omega}_b \wedge \beta_c$$

The above operator has ininitly many zero modes (for which \det^{-1} diverges), of the form $\Omega_{\mu} = \overline{D}_{\mu} \epsilon !$

In the SM we also had problems naively defining the gauge boson propagators...

Still: Naive Quantization

we find

$$Z(M) = \frac{1}{|\det(\overline{D}_{\mu}\Omega_{\nu} - \overline{D}_{\nu}\Omega_{\mu})|}$$

with the covariant exterior derivative

$$\overline{D}\beta^a := \mathrm{d}\beta^a + \epsilon^{abc}\overline{\omega}_b \wedge \beta_c$$

The above operator has ininitly many zero modes (for which \det^{-1} diverges), of the form $\Omega_{\mu} = \overline{D}_{\mu} \epsilon !$

In the SM we also had problems naively defining the gauge boson propagators...

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see..

$$\mathcal{L}_{\text{fix}} := -v_a \wedge \star D \star \Omega^a - u_a \wedge \star D \star E^a$$

$$Z_{\text{tot}}[\mathcal{M}] := Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M e \wedge F_\omega + \mathcal{L}_{\text{fix}}\right]$$

$$= Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M E^a \wedge (\overline{\mathcal{D}}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a)\right]$$

$$+ \frac{1}{2}\epsilon_{abc}\overline{e}^a \wedge \Omega^b \wedge \Omega^c - v_a \wedge \star D \star \Omega^a$$

with the pair of three-form Lagrange multipliers u, v. Integral is linear in v and E, solve these integrations first.

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...

$$\mathcal{L}_{\text{fix}} := -v_a \wedge \star D \star \Omega^a - u_a \wedge \star D \star E^a$$

$$Z_{\text{tot}}[\mathcal{M}] := Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M e \wedge F_\omega + \mathcal{L}_{\text{fix}}\right]$$

$$= Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M E^a \wedge (\overline{\mathcal{D}}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a)\right]$$

$$+ \frac{1}{2}\epsilon_{abc}\overline{e}^a \wedge \Omega^b \wedge \Omega^c - v_a \wedge \star D \star \Omega^a$$

with the pair of three-form Lagrange multipliers u,v. Integral is linear in v and E, solve these integrations first. However there is one subtlety here...

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...

$$\mathcal{L}_{\text{fix}} := -v_a \wedge \star D \star \Omega^a - u_a \wedge \star D \star E^a$$

$$Z_{\text{tot}}[\mathcal{M}] := Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M e \wedge F_\omega + \mathcal{L}_{\text{fix}}\right]$$

$$= Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M E^a \wedge (\overline{\mathcal{D}}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a)\right]$$

$$+ \frac{1}{2}\epsilon_{abc}\overline{e}^a \wedge \Omega^b \wedge \Omega^c - v_a \wedge \star D \star \Omega^a$$

with the pair of three-form Lagrange multipliers u,v. Integral is linear in v and E, solve these integrations first. However there is one subtlety here...

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...

$$\mathcal{L}_{\text{fix}} := -v_a \wedge \star D \star \Omega^a - u_a \wedge \star D \star E^a$$

$$Z_{\text{tot}}[\mathcal{M}] := Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M e \wedge F_\omega + \mathcal{L}_{\text{fix}}\right]$$

$$= Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M E^a \wedge (\overline{\mathcal{D}}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a)\right]$$

$$+ \frac{1}{2}\epsilon_{abc}\overline{e}^a \wedge \Omega^b \wedge \Omega^c - v_a \wedge \star D \star \Omega^a$$

with the pair of three-form Lagrange multipliers u,v. Integral is linear in v and E, solve these integrations first. However there is one subtlety here...

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...

$$\mathcal{L}_{\text{fix}} := -v_a \wedge \star D \star \Omega^a - u_a \wedge \star D \star E^a$$

$$Z_{\text{tot}}[\mathcal{M}] := Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M e \wedge F_\omega + \mathcal{L}_{\text{fix}}\right]$$

$$= Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M E^a \wedge (\overline{\mathcal{D}}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a)\right]$$

$$+ \frac{1}{2}\epsilon_{abc}\overline{e}^a \wedge \Omega^b \wedge \Omega^c - v_a \wedge \star D \star \Omega^a$$

with the pair of three-form Lagrange multipliers u,v.

Integral is linear in v and E, solve these integrations first. However there is one subtlety here...

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...

$$\mathcal{L}_{\text{fix}} := -v_a \wedge \star D \star \Omega^a - u_a \wedge \star D \star E^a$$

$$Z_{\text{tot}}[\mathcal{M}] := Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M e \wedge F_\omega + \mathcal{L}_{\text{fix}}\right]$$

$$= Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M E^a \wedge (\overline{\mathcal{D}}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a)\right]$$

$$+ \frac{1}{2}\epsilon_{abc}\overline{e}^a \wedge \Omega^b \wedge \Omega^c - v_a \wedge \star D \star \Omega^a$$

with the pair of three-form Lagrange multipliers u, v.

Integral is linear in v and E, solve these integrations first.

However there is one subtlety here...

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...

$$\mathcal{L}_{\text{fix}} := -v_a \wedge \star D \star \Omega^a - u_a \wedge \star D \star E^a$$

$$Z_{\text{tot}}[\mathcal{M}] := Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M e \wedge F_\omega + \mathcal{L}_{\text{fix}}\right]$$

$$= Z_{\text{FP}} \int \mathcal{D}[\Omega, u, E, v] \exp\left[i \int_M E^a \wedge (\overline{\mathcal{D}}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a)\right]$$

$$+ \frac{1}{2}\epsilon_{abc}\overline{e}^a \wedge \Omega^b \wedge \Omega^c - v_a \wedge \star D \star \Omega^a$$

with the pair of three-form Lagrange multipliers u,v. Integral is linear in v and E, solve these integrations first.

However there is one subtlety here...

A toy model

$$S_{\text{toy}} := \int_M d^3 x \alpha \Delta \beta$$

Expanding α, β in the base of orthonormal modes of Δ :

$$\Delta \phi_n = \lambda_n \phi_n, \quad \alpha = \sum_m a_m \phi_m, \quad \beta = \sum_n b_n \phi_n,$$

we get a sum \sum' over non-zero modes $(\lambda_n \neq 0)$

$$S_{\text{toy}} = \sum_{n,m} \int_{M} d^{3}x \lambda_{n} a_{m} b_{n} \phi_{n} \phi_{m} = \sum_{n} \lambda_{n} a_{n} b_{n} = \sum_{n}' \lambda_{n} a_{n} b_{n}$$

$$Z_{\text{toy}} = \int \mathcal{D}[\beta] \int \mathcal{D}[\alpha] \prod' \exp[\lambda_n a_n b_n]$$
$$= \int \mathcal{D}[\beta] \int \mathcal{D}[\alpha_0] \int \mathcal{D}[\alpha'] \prod' \exp[\lambda_n a_n b_n]$$
$$= \int \mathcal{D}[\beta] \int \mathcal{D}[\alpha_0] \prod' \lambda_n^{-1} \delta[b_n]$$

A toy model

$$S_{\text{toy}} := \int_M d^3 x \alpha \Delta \beta$$

Expanding α, β in the base of orthonormal modes of Δ :

$$\Delta \phi_n = \lambda_n \phi_n, \quad \alpha = \sum_m a_m \phi_m, \quad \beta = \sum_n b_n \phi_n,$$

we get a sum \sum' over non-zero modes $(\lambda_n \neq 0)$:

$$S_{\text{toy}} = \sum_{n,m} \int_{M} d^{3}x \lambda_{n} a_{m} b_{n} \phi_{n} \phi_{m} = \sum_{n} \lambda_{n} a_{n} b_{n} = \sum_{n}' \lambda_{n} a_{n} b_{n}$$

$$Z_{\text{toy}} = \int \mathcal{D}[\beta] \int \mathcal{D}[\alpha] \prod' \exp[\lambda_n a_n b_n]$$
$$= \int \mathcal{D}[\beta] \int \mathcal{D}[\alpha_0] \int \mathcal{D}[\alpha'] \prod' \exp[\lambda_n a_n b_n]$$
$$= \int \mathcal{D}[\beta] \int \mathcal{D}[\alpha_0] \prod' \lambda_n^{-1} \delta[b_n]$$

A toy model

$$S_{\text{toy}} := \int_M d^3 x \alpha \Delta \beta$$

Expanding α, β in the base of orthonormal modes of Δ :

$$\Delta \phi_n = \lambda_n \phi_n, \quad \alpha = \sum_m a_m \phi_m, \quad \beta = \sum_n b_n \phi_n,$$

we get a sum \sum' over non-zero modes $(\lambda_n \neq 0)$:

$$S_{\text{toy}} = \sum_{n,m} \int_{M} d^{3}x \lambda_{n} a_{m} b_{n} \phi_{n} \phi_{m} = \sum_{n} \lambda_{n} a_{n} b_{n} = \sum_{n}' \lambda_{n} a_{n} b_{n}$$

$$Z_{\text{toy}} = \int \mathcal{D}[\beta] \int \mathcal{D}[\alpha] \prod' \exp[\lambda_n a_n b_n]$$

$$= \int \mathcal{D}[\beta] \int \mathcal{D}[\alpha_0] \int \mathcal{D}[\alpha'] \prod' \exp[\lambda_n a_n b_n]$$

$$= \int \mathcal{D}[\beta] \int \mathcal{D}[\alpha_0] \prod' \lambda_n^{-1} \delta[b_n]$$

Solving the Path-Integrals

- In our case $S_{\rm tot}$ linear in E but not in $\Omega.$ Thus a priori not clear what the mode expansion is.
- But: Integration over non-zero modes will give $\delta[\overline{D}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a]$.
- Zeros of δ form a surface $(\tilde{\Omega}, \tilde{u})$ in the space of fields.
- Write $\Omega = \tilde{\Omega} + \delta \Omega$ since only fields infinitesimally close to the surface contribute to the path integral.

With zero modes \tilde{E} of E, we get

$$Z_{\text{tot}}[M] = Z_{\text{FP}} \int \mathcal{D}[\Omega, u, \tilde{E}] \delta[\overline{D}\Omega_a + \frac{1}{2} \epsilon_{abc} \Omega^b \wedge \Omega^c + \star D \star u_a] \delta[\star D \star \Omega_a]$$

Use $\mathcal{D}[\Omega] = \mathcal{D}[\tilde{\Omega}, \delta\Omega]$ and

$$\int dx dy \delta[f^{1}(x,y)] \delta[f^{2}(x,y)] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

we obtain...

Solving the Path-Integrals

- In our case S_{tot} linear in E but not in Ω . Thus a priori not clear what the mode expansion is.
- But: Integration over non-zero modes will give $\delta[\overline{D}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a]$.
- Zeros of δ form a surface $(\tilde{\Omega}, \tilde{u})$ in the space of fields.
- Write $\Omega = \Omega + \delta \Omega$ since only fields infinitesimally close to the surface contribute to

$$Z_{\rm tot}[M] = Z_{\rm FP} \int \mathcal{D}[\Omega, u, \tilde{E}] \delta[\overline{D}\Omega_a + \frac{1}{2} \epsilon_{abc} \Omega^b \wedge \Omega^c + \star D \star u_a] \delta[\star D \star \Omega_a]$$

$$\int dx dy \delta[f^{1}(x,y)] \delta[f^{2}(x,y)] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

Solving the Path-Integrals

- In our case S_{tot} linear in E but not in $\Omega.$ Thus a priori not clear what the mode expansion is.
- But: Integration over non-zero modes will give $\delta[\overline{D}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a]$.
- Zeros of δ form a surface $(\tilde{\Omega}, \tilde{u})$ in the space of fields.
- Write $\Omega = \Omega + \delta \Omega$ since only fields infinitesimally close to the surface contribute to the path integral.

With zero modes \tilde{E} of E, we get

$$Z_{\text{tot}}[M] = Z_{\text{FP}} \int \mathcal{D}[\Omega, u, \tilde{E}] \delta[\overline{D}\Omega_a + \frac{1}{2} \epsilon_{abc} \Omega^b \wedge \Omega^c + \star D \star u_a] \delta[\star D \star \Omega_a]$$

Use $\mathcal{D}[\Omega] = \mathcal{D}[\tilde{\Omega}, \delta\Omega]$ and

$$\int dx dy \delta[f^{1}(x,y)] \delta[f^{2}(x,y)] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

we obtain.

Solving the Path-Integrals

- In our case $S_{\rm tot}$ linear in E but not in Ω . Thus a priori not clear what the mode expansion is.
- But: Integration over non-zero modes will give $\delta[\overline{D}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a].$
- Zeros of δ form a surface $(\tilde{\Omega}, \tilde{u})$ in the space of fields.
- Write $\Omega = \tilde{\Omega} + \delta \Omega$ since only fields infinitesimally close to the surface contribute to the path integral.

With zero modes \tilde{E} of E, we get

$$Z_{\rm tot}[M] = Z_{\rm FP} \int \mathcal{D}[\Omega, u, \tilde{E}] \delta[\overline{D}\Omega_a + \frac{1}{2} \epsilon_{abc} \Omega^b \wedge \Omega^c + \star D \star u_a] \, \delta[\star D \star \Omega_a]$$

Use $\mathcal{D}[\Omega] = \mathcal{D}[\tilde{\Omega}, \delta\Omega]$ and

$$\int dx dy \delta[f^{1}(x,y)] \delta[f^{2}(x,y)] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

we obtain...

Solving the Path-Integrals

- In our case S_{tot} linear in E but not in $\Omega.$ Thus a priori not clear what the mode expansion is.
- But: Integration over non-zero modes will give $\delta[\overline{D}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a]$.
- Zeros of δ form a surface $(\tilde{\Omega}, \tilde{u})$ in the space of fields.
- Write $\Omega = \tilde{\Omega} + \delta \Omega$ since only fields infinitesimally close to the surface contribute to the path integral.

With zero modes \tilde{E} of E, we get

$$Z_{\rm tot}[M] = Z_{\rm FP} \int \mathcal{D}[\Omega, u, \tilde{E}] \delta[\overline{D}\Omega_a + \frac{1}{2} \epsilon_{abc} \Omega^b \wedge \Omega^c + \star D \star u_a] \, \delta[\star D \star \Omega_a]$$

Use $\mathcal{D}[\Omega] = \mathcal{D}[\tilde{\Omega}, \delta\Omega]$ and

$$\int dx dy \delta[f^{1}(x,y)] \delta[f^{2}(x,y)] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

we obtain.

Solving the Path-Integrals

- In our case $S_{\rm tot}$ linear in E but not in Ω . Thus a priori not clear what the mode expansion is.
- But: Integration over non-zero modes will give $\delta[\overline{D}\Omega_a + \frac{1}{2}\epsilon_{abc}\Omega^b \wedge \Omega^c + \star D \star u_a]$.
- \bullet Zeros of δ form a surface $(\tilde{\Omega},\tilde{u})$ in the space of fields.
- Write $\Omega = \tilde{\Omega} + \delta \Omega$ since only fields infinitesimally close to the surface contribute to the path integral.

With zero modes \tilde{E} of E, we get

$$Z_{\rm tot}[M] = Z_{\rm FP} \int \mathcal{D}[\Omega, u, \tilde{E}] \delta[\overline{D}\Omega_a + \frac{1}{2} \epsilon_{abc} \Omega^b \wedge \Omega^c + \star D \star u_a] \, \delta[\star D \star \Omega_a]$$

Use $\mathcal{D}[\Omega]=\mathcal{D}[\tilde{\Omega},\delta\Omega]$ and

$$\int dx dy \delta[f^{1}(x,y)] \delta[f^{2}(x,y)] = \left| \det \left(\frac{\partial f^{j}}{\partial x^{i}} \right) \right|^{-1}$$

we obtain...

we obtain...

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{Z_{\text{FP}}}{|\det' \tilde{L}_{-}|}$$

with $ilde{L}_-:= ilde{D}\star+\star ilde{D}$ which maps a 3-form plus a 1-form to a 1-form plus a 3-form.

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{(\det' \tilde{\Delta})^2}{|\det' \tilde{L}_-|} = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] T[\tilde{\Omega}]$$

- \bullet $T[\Omega]$ is the so called Ray-Singer torsion which is identical to the Reidemeister torsion.
- It is a topological invariant independet of the metric used in its deduction. Witten therefore argues that the quantization preserves diffeo invariance (anomaly freedom)
- If zero modes are present, the integral over the E's will always diverge at large E, since $T[\tilde{\Omega}]$ does not depend on \tilde{E} .
- Witten: "I regard its occurrence as the most exciting result of this paper."
- Witten: "What we are witnessing, in this infrared divergence, is the birth of macroscopic space-time, starting from a microscopic quantum theory."

we obtain...

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{Z_{\text{FP}}}{|\det' \tilde{L}_{-}|}$$

with $\tilde{L}_-:=\tilde{D}\star +\star \tilde{D}$ which maps a 3-form plus a 1-form to a 1-form plus a 3-form.

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{(\det' \tilde{\Delta})^2}{|\det' \tilde{L}_-|} = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] T[\tilde{\Omega}]$$

- \bullet $T[\Omega]$ is the so called Ray-Singer torsion which is identical to the Reidemeister torsion.
- It is a topological invariant independet of the metric used in its deduction. Witten therefore argues that the quantization preserves diffeo invariance (anomaly freedom
- If zero modes are present, the integral over the E's will always diverge at large E, since $T[\tilde{\Omega}]$ does not depend on \tilde{E} .
- Witten: "I regard its occurrence as the most exciting result of this paper."
- Witten: "What we are witnessing, in this infrared divergence, is the birth of macroscopic space-time, starting from a microscopic quantum theory."

we obtain...

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{Z_{\text{FP}}}{|\det' \tilde{L}_{-}|}$$

with $ilde{L}_-:= ilde{D}\star +\star ar{D}$ which maps a 3-form plus a 1-form to a 1-form plus a 3-form.

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{(\det' \tilde{\Delta})^2}{|\det' \tilde{L}_-|} = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] T[\tilde{\Omega}]$$

- \bullet $T[\Omega]$ is the so called Ray-Singer torsion which is identical to the Reidemeister torsion.
- It is a topological invariant independet of the metric used in its deduction. Witten therefore argues that the quantization preserves diffeo invariance (anomaly freedom).
- If zero modes are present, the integral over the E's will always diverge at large E, since $T[\tilde{\Omega}]$ does not depend on \tilde{E} .
- Witten: "I regard its occurrence as the most exciting result of this paper."
- Witten: "What we are witnessing, in this infrared divergence, is the birth of macroscopic space-time, starting from a microscopic quantum theory."

we obtain...

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{Z_{\text{FP}}}{|\det' \tilde{L}_{-}|}$$

with $ilde{L}_-:= ilde{D}\star +\star ilde{D}$ which maps a 3-form plus a 1-form to a 1-form plus a 3-form.

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{(\det' \tilde{\Delta})^2}{|\det' \tilde{L}_-|} = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] T[\tilde{\Omega}]$$

- \bullet $T[\Omega]$ is the so called Ray-Singer torsion which is identical to the Reidemeister torsion.
- It is a topological invariant independet of the metric used in its deduction. Witten therefore argues that the quantization preserves diffeo invariance (anomaly freedom).
- If zero modes are present, the integral over the \tilde{E} 's will always diverge at large \tilde{E} , since $T[\tilde{\Omega}]$ does not depend on \tilde{E} .
- Witten: "I regard its occurrence as the most exciting result of this paper."
- Witten: "What we are witnessing, in this infrared divergence, is the birth of macroscopic space-time, starting from a microscopic quantum theory."

we obtain...

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{Z_{\text{FP}}}{|\det' \tilde{L}_{-}|}$$

with $\tilde{L}_-:=\tilde{D}\star +\star \tilde{D}$ which maps a 3-form plus a 1-form to a 1-form plus a 3-form.

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{(\det' \tilde{\Delta})^2}{|\det' \tilde{L}_-|} = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] T[\tilde{\Omega}]$$

- \bullet $T[\Omega]$ is the so called Ray-Singer torsion which is identical to the Reidemeister torsion.
- It is a topological invariant independet of the metric used in its deduction. Witten therefore argues that the quantization preserves diffeo invariance (anomaly freedom).
- If zero modes are present, the integral over the \tilde{E} 's will always diverge at large \tilde{E} , since $T[\tilde{\Omega}]$ does not depend on \tilde{E} .
- Witten: "I regard its occurrence as the most exciting result of this paper."
- Witten: "What we are witnessing, in this infrared divergence, is the birth of macroscopic space-time, starting from a microscopic quantum theory."

we obtain...

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{Z_{\text{FP}}}{|\det' \tilde{L}_{-}|}$$

with $\tilde{L}_-:=\tilde{D}\star +\star \tilde{D}$ which maps a 3-form plus a 1-form to a 1-form plus a 3-form.

$$Z_{\text{tot}}[M] = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] \frac{(\det' \tilde{\Delta})^2}{|\det' \tilde{L}_-|} = \int \mathcal{D}[\tilde{\Omega}, \tilde{E}] T[\tilde{\Omega}]$$

- \bullet $T[\Omega]$ is the so called Ray-Singer torsion which is identical to the Reidemeister torsion.
- It is a topological invariant independet of the metric used in its deduction. Witten therefore argues that the quantization preserves diffeo invariance (anomaly freedom).
- If zero modes are present, the integral over the \tilde{E} 's will always diverge at large \tilde{E} , since $T[\tilde{\Omega}]$ does not depend on \tilde{E} .
- Witten: "I regard its occurrence as the most exciting result of this paper."
- Witten: "What we are witnessing, in this infrared divergence, is the birth of macroscopic space-time, starting from a microscopic quantum theory."

- In (2+1)-dim the PPS=moduli space of gravity becomes finite dimensional, we have no local degrees of freedom.
- ullet (2+1)-dim gravity is Chern-Simons theory with the gauge group depending on Λ
- For manifolds with boundary the action principle of CS-theory is not well defined.
- By defining a complex structure on the boundary and adding the right boundary terms and conditions the modified CS-theory can be made well defined.
- The "would-be pure gauge degrees" become dynamical on the boundary of the modified theory. They are described by a chiral WZW term which adds an infinite-dim space of solutions.
- First order (2+1)-dim gravity was quantized using path integrals by Witten in '89. Despite gauge fixing, the partition function was found to be a topological invariant, thus preserving diffeo.

- In (2+1)-dim the PPS=moduli space of gravity becomes finite dimensional, we have no local degrees of freedom.
- ullet (2+1)-dim gravity is Chern-Simons theory with the gauge group depending on Λ
- For manifolds with boundary the action principle of CS-theory is not well defined
- By defining a complex structure on the boundary and adding the right boundary terms and conditions the modified CS-theory can be made well defined.
- The "would-be pure gauge degrees" become dynamical on the boundary of the modified theory. They are described by a chiral WZW term which adds an infinite-dim space of solutions.
- First order (2+1)-dim gravity was quantized using path integrals by Witten in '89. Despite gauge fixing, the partition function was found to be a topological invariant, thus preserving diffeo.

- In (2+1)-dim the PPS=moduli space of gravity becomes finite dimensional, we have no local degrees of freedom.
- \bullet (2+1)-dim gravity is Chern-Simons theory with the gauge group depending on Λ
- For manifolds with boundary the action principle of CS-theory is not well defined
- By defining a complex structure on the boundary and adding the right boundary terms and conditions the modified CS-theory can be made well defined.
- The "would-be pure gauge degrees" become dynamical on the boundary of the modified theory. They are described by a chiral WZW term which adds an infinite-dim space of solutions.
- First order (2+1)-dim gravity was quantized using path integrals by Witten in '89. Despite gauge fixing, the partition function was found to be a topological invariant, thus preserving diffeo.

- In (2+1)-dim the PPS=moduli space of gravity becomes finite dimensional, we have no local degrees of freedom.
- ullet (2+1)-dim gravity is Chern-Simons theory with the gauge group depending on Λ
- For manifolds with boundary the action principle of CS-theory is not well defined.
- By defining a complex structure on the boundary and adding the right boundary terms and conditions the modified CS-theory can be made well defined.
- The "would-be pure gauge degrees" become dynamical on the boundary of the modified theory. They are described by a chiral WZW term which adds an infinite-dim space of solutions.
- First order (2+1)-dim gravity was quantized using path integrals by Witten in '89. Despite gauge fixing, the partition function was found to be a topological invariant, thus preserving diffeo.

- In (2+1)-dim the PPS=moduli space of gravity becomes finite dimensional, we have no local degrees of freedom.
- \bullet (2+1)-dim gravity is Chern-Simons theory with the gauge group depending on Λ
- For manifolds with boundary the action principle of CS-theory is not well defined.
- By defining a complex structure on the boundary and adding the right boundary terms and conditions the modified CS-theory can be made well defined.
- The "would-be pure gauge degrees" become dynamical on the boundary of the modified theory. They are described by a chiral WZW term which adds an infinite-dim space of solutions.
- First order (2+1)-dim gravity was quantized using path integrals by Witten in '89. Despite gauge fixing, the partition function was found to be a topological invariant, thus preserving diffeo.

- In (2+1)-dim the PPS=moduli space of gravity becomes finite dimensional, we have no local degrees of freedom.
- ullet (2+1)-dim gravity is Chern-Simons theory with the gauge group depending on Λ
- For manifolds with boundary the action principle of CS-theory is not well defined.
- By defining a complex structure on the boundary and adding the right boundary terms and conditions the modified CS-theory can be made well defined.
- The "would-be pure gauge degrees" become dynamical on the boundary of the modified theory. They are described by a chiral WZW term which adds an infinite-dim space of solutions.
- First order (2+1)-dim gravity was quantized using path integrals by Witten in '89. Despite gauge fixing, the partition function was found to be a topological invariant, thus preserving diffeo.

- In (2+1)-dim the PPS=moduli space of gravity becomes finite dimensional, we have no local degrees of freedom.
- ullet (2+1)-dim gravity is Chern-Simons theory with the gauge group depending on Λ
- For manifolds with boundary the action principle of CS-theory is not well defined.
- By defining a complex structure on the boundary and adding the right boundary terms and conditions the modified CS-theory can be made well defined.
- The "would-be pure gauge degrees" become dynamical on the boundary of the modified theory. They are described by a chiral WZW term which adds an infinite-dim space of solutions.
- First order (2+1)-dim gravity was quantized using path integrals by Witten in '89. Despite gauge fixing, the partition function was found to be a topological invariant, thus preserving diffeo.

7 References

- S. Carlip, "Quantum gravity in 2+1 dimensions," Cambridge, UK: Univ. Pr. (1998) 276 p
- S. Carlip, "Quantum gravity in 2+1 dimensions: The case of a closed universe," Living Rev. Rel. 8 (2005) 1 [arXiv:gr-qc/0409039].
- S. Carlip, "Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole," Class. Quant. Grav. 22 (2005) R85 [arXiv:gr-qc/0503022].
- S. Carlip and R. Cosgrove, "Topology change in (2+1)-dimensional gravity," J. Math. Phys. 35 (1994) 5477 [arXiv:gr-qc/9406006].
- E. Witten, "(2+1)-Dimensional Gravity as an Exactly Soluble System,"
 Nucl. Phys. B 311 (1988) 46.
- E. Witten, "Quantum field theory and the Jones polynomial," Commun. Math. Phys. **121** (1989) 351.
- E. Witten, "Topology Changing Amplitudes in (2+1)-Dimensional Gravity," Nucl. Phys. B 323 (1989) 113.

24 / 24