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Why do we want to study (2+41)-dim QGr?
@ QGr in (3+1) dimensions is hard
o We like playgrounds.

@ Playgrounds that hold similar features to the real world (symmetries, black holes and
their thermodynamics, ?holography?...).

@ Many conceptual problems remain unaltered (problem of time, background
independence...)

@ Others are solved (nonrenormalizability, implementation of constraints...)

o Can address questions about different approaches to QGr: Do we need topology
change? Do we need a TOE? Are there more then one, possibly physically different,
but mathematically concise quantum theories of gravity?

@ Also mathematically 3-dim gravity and Chern-Simons theory have led to new
research fields (TQFT, relation to the Jones polynomial...)
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Flat G-connections

Consider a G-gauge theory on a compact, simply connected n-dim manifold M, of genus
g, whos EL-eqn. allow only flat G-connections A.

@ The physical phase space (PPS) of our G-gauge theory under consideration is the so
called moduli space

PPS = M :={A € A|Fx =0}/G
@ We can fully encode the connection in parallel transports and holonomies. But

parallel transports of a flat connection is trivial, only on a genus zero My manifold!

o If we have g > 0 we get nontrivial holonomies by performing parallel transports
around loops that enclose the holes.

@ The fundamental group 7 (1,) encodes the curves of distinct homotopy class, and
we have the homomorphism

Hm(My) = (er,-oven) = G, Hp)i=Pexpl [ 4]

~
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Dimension of the Moduli Space

@ This captures almost all DOF of the theory. We are still free to perform a
G-conjugation at each base point of the generating loops ¢;: H[c;] — g~ H]ci]g.
Modding out gives

M ~ Hom(m (M), G)/G

@ We have a bound for the dimension of Hom: dim(Hom(m(M,),G)) < |G[*
@ The PPS is finite dimensional!

@ The PPS depends crucially on the topology of spacetime.

If g =0, m1(Mo) =1 and we have dim(M) = 0.
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3 Introduction

Why (2+41)-dim gravity is so simple

@ In 3dim the Weyl tensor Cn3,5 vanishes = The Ricci tensor R, determines the
Riemann tensor Rogys:

Rop+s = [Combination of g/s]g';”ﬂ;R,w
@ = solutions to the vacuum Einstein equations are not only Ricci flat but also flat
(Riemann flat).

@ The PPS=moduli space is finite dimensional!

@ Our space is locally Minkowski (dS or AdS in the presents of A = £|A]), and has no
local degrees of freedom

@ A physicists take: The same follows from a counting argument:
hab, Pap have n(n — 1)/2 DOF each.
n DOF are eliminated by constraints, n DOF by coordinate choice. =

n(n—1) —2n=n(n—3) DOF = 0DOFinn=3
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@ The linearized Einstein equations in the gauge 9"h,, = 0 become
1 _
—507 0o hyy = 87GTu + O(h?).
@ The Newtonian Limit is obtained by setting Too ~ p, all other T,,, = 0 and 9/9t =0

—%V%o = V?® = 4nGp
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3 Introduction

The Newtonian Limit in n dimensions

70

_ 1 - = 1
Guv = NMuv + vy hpw = hpw — inuuhm huw = hyuw — mnuuha

@ The linearized Einstein equations in the gauge 9"h,, = 0 become
f%a"&,ﬁw — 87GT,, + O(H?).
@ The Newtonian Limit is obtained by setting Too ~ p, all other T,,, = 0 and 9/9t =0
—iv%o = V?® = 47Gp
@ The geodesic equation reduces to
A%zt 1 d®z*  2(n

_ 3)
ae = §alh00 = 0, = +

az T g 220

In n = 3 test particles experience no Newtonian Force.
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First Order Formalism

@ Independent variables are the Dreibein ej; and the spin connection wzb.
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m

First Order Formalism

ab

@ Independent variables are the Dreibein ej; and the spin connection w;;”.

b
nabezeu = Guv
Which introduces an additional SO(2, 1)-invariance under ef — Ojeb,.

@ The 3-dimensional Einstein-Hilbert action becomes

1 a c 1\ O c
SEH = 2/ {(i" A dwg + écab(.c AN wb ANw + gcabcca AN (zl Ne
M

with e := eldz” and w® := Le**wypedat.
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4 Gravity as a Chern-Simons Theory

First Order Formalism

First Order Formalism

@ Independent variables are the Dreibein ej; and the spin connection wzb.

a b
nabeueu - g;u/
Which introduces an additional SO(2, 1)-invariance under ef — Ojeb,.
@ The 3-dimensional Einstein-Hilbert action becomes

1 a c \ O c
SEH = 2/ {(i" A dwg + §cab(¢c A wb ANw + ‘gcab(;ca AN (il Ne
M

with =

e’ :=epdz” and w® := ay
@ The EOM are

1 c
5€" Wypeda’.

0 = deq+ eapew’ Ae®

1 A
0 = dw,+ §eabcwb AW+ =eapee’ A e°

Where (2) is the condition that A has constant curvature.

(1)
(2)
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What are the Diffeomorphisms?

o Let ¢ € Diff(M) and furthermore locally ¢ = F7* flow of a vector field X.
de” = Lxe"=dp*+ eabcpcwb — eapeT’ES
bw® = Lxw®=dr" + eapemw’ — Aeapep’e’,
with the field-dependent parameters p® := e®(X) and 7% := w®(X)

@ For the transformation identities above the EOM were used!
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o Let ¢ € Diff(M) and furthermore locally ¢ = F7* flow of a vector field X.

b b
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b b
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with the field-dependent parameters p® := e®(X) and 7% := w®(X)
@ For the transformation identities above the EOM were used!

@ The above transformation laws as well as the form of the EH-Lagrangian (A = 0)
e ANdw + e A w A w suggest, to try and link 3-dimensional vacuum gravity with
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What are the Diffeomorphisms?

o Let ¢ € Diff(M) and furthermore locally ¢ = F7* flow of a vector field X.

b b
de® = Lxe" = dpa arF Eabcpcw — €apeT €

b b
dw® = Lxw”=dr% + €wemw” — Aéapepe’,

with the field-dependent parameters p® := e®(X) and 7% := w*(X)
@ For the transformation identities above the EOM were used!

@ The above transformation laws as well as the form of the EH-Lagrangian (A = 0)
e ANdw + e A w A w suggest, to try and link 3-dimensional vacuum gravity with
Chern-Simons theory:

Scs[A] :=/ tr |:A/\dA+§A/\A/\A:|
M

v

Chern-Simons for A =0

@ Gauge Field is Lie algebra valued one-form

A = e Po + w, Jo|dz"

N,
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4 Gravity as a Chern-Simons Theory —  Chern-Simons theory

Chern-Simons for A =0

o P,,J, are generators of the Poincaré group I150(2, 1), with the algebra
(Ja, Jo] = €abe,  [Ja, Po] = €avcP®, [P, P] =0,
and the trace identities

tr[Jan] = Nab, tl“[Jan] e tr[P,le] =0
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4 Gravity as a Chern-Simons Theory -

Chern-Simons theory

Chern-Simons for A =0

o P,,J, are generators of the Poincaré group I150(2, 1), with the algebra
[Ja, Jo] = €abeJ®,  [Ja, Po] = €arcPS,  [Pa, Po] =0,

and the trace identities

tr[Jan] = Nab, tr[Jan] e tr[P,le] =0

@ Using these, it is easy to show

Sas = SeH|y_g -

@ Where an ISO(2, 1) gauge transformation by an infinitesimal parameter
u = p® P, + 7%J, is determined by

0A, = de,Pu+ow,Ja
0A, = Dupu=09duu+[Auu]

[0upa — €aveTCCl + €abep W] P® + [BuTa + €apeTwh] T
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150(2,1), A:=e"Py +wJ,

Chern-Simons for A =0

Chern-Simons for A < 0

| A

50(2,1) x S0(2,1),  A®* .=y +

Ser = Sos[A™)] — Sas[AT))
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4 Gravity as a Chern-Simons Theory —  Chern-Simons theory

Chern-Simons for A =0

150(2,1), A:=e"Py +wJ,

| \

Chern-Simons for A < 0

I .

50(2,1) x S0(2,1),  A®* .=y + Ve

Ser = Sos[A™)] — Sas[AT))

| \

Chern-Simons for A > 0

SL(2,C), A% = w® + iVAe®

Sen = Scs[A4]

A,
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4 Gravity as a Chern-Simons Theory — Boundary terms and WZW

Gauge transformation

Under the gauge tranformation

A% =g 'dg+ g 'Ag
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4 Gravity as a Chern-Simons Theory — Boundary terms and WZW

Gauge transformation

Under the gauge tranformation

A% =g 'dg+ g 'Ag

the Chern-Simons action transformes as (hint: use d(g~'g) = 0):

1 _ _ _ _
Scs[A?] = Scs[A] — g/ tr g YdgAgtdgAg 1dg] - / tr [(dg)g LA Al
M oM
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the Chern-Simons action transformes as (hint: use d(g~'g) = 0):

1 _ _ _ _
Scs[A?] = Scs[A] — g/ tr g YdgAgtdgAg 1dg] - / tr [(dg)g LA Al
M oM

For closed M ...

@ ...the boundary term vanishes.

| A\
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4 Gravity as a Chern-Simons Theory —  Boundary terms and WZW

Gauge transformation

Under the gauge tranformation
A% =g 'dg+ g 'Ag

the Chern-Simons action transformes as (hint: use d(g~'g) = 0):

1 _ _ _ _
Scs[A?] = Scs[A] — g/ tr g YdgAgtdgAg 1dg] - / tr [(dg)g LA Al
M oM

For closed M ...

@ ...the boundary term vanishes.

| A\

@ ...the pure gauge term is the winding number of g. Adjusting the coupling constant
this term is always an integral multiple of 27, so that exp[iScs] indeed is gauge
invariant.
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4 Gravity as a Chern-Simons Theory — Boundary terms and WZW

If M is not closed...

o ...the boundary term does not vanish and the Chern-Simons action is not gauge
invariant!
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o ...the boundary term does not vanish and the Chern-Simons action is not gauge
invariant!

@ ... even greater problem arises from the variational principle:

5Scs[A] = 2 / tr[SA A (dA+ A A A)] / t[A A GA]

oM
EOM
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@ The surface term does not vanish for either Dirichlet or Neumann conditions.
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@ The surface term does not vanish for either Dirichlet or Neumann conditions. )

Making the variational principle work |

@ CS-theory alone is not a well defined physical theory on closed manifolds.

o Cure:
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4 Gravity as a Chern-Simons Theory —  Boundary terms and WZW

If M is not closed...

o ...the boundary term does not vanish and the Chern-Simons action is not gauge
invariant!

@ ... even greater problem arises from the variational principle:

5Scs[A] = 2 / tr[SA A (dA+ A A A)] / t[A A GA]
M EOVM oM

@ The surface term does not vanish for either Dirichlet or Neumann conditions. )

Making the variational principle work |

@ CS-theory alone is not a well defined physical theory on closed manifolds.

@ Cure: We choose a complex structure on 9M, fix an apropriate mixed boundary
condition A. or Az, and add a suitable boundary term San[A-, Az] that
compensates the boundary term above.
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4 Gravity as a Chern-Simons Theory — Boundary terms and WZW

Making the variational principle work Il

Introducing a complex structure:

/ AAB=: / dz Adz[A,Bz — AsB.] =: / 2d°2[A,Bs — AzB.],
oM OM OM
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4 Gravity as a Chern-Simons Theory — Boundary terms and WZW

Making the variational principle work Il

Introducing a complex structure:

/ AAB=: / dz Adz[A,Bz — AsB.] =: / 2d°2[A,Bs — AzB.],
oM OM OM

to cancel

—/ t-I'[A AN 614} = —/ 2d22t1‘[14z6143 — Az(SAz]
oM oM
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4 Gravity as a Chern-Simons Theory —  Boundary terms and WZW

Making the variational principle work Il

Introducing a complex structure:

/ AAB=: / dz Adz[A,Bz — AsB.] =: / 2d°2[A,Bs — AzB.],
oM OM OM
to cancel

—/ t-I'[A AN 614} = —/ 2d2ZtI‘[Az6A3 — Az(SAz]
oM oM
The modified CS-theory then reads:

A,, As fixed =  Scs[A] := Scs[A] £ 2 / d?ztr[A, Az].
oM
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4 Gravity as a Chern-Simons Theory —  Boundary terms and WZW

Making the variational principle work Il

Introducing a complex structure:

/ AAB=: / dz Adz[A,Bz — AsB.] =: / 2d°2[A,Bs — AzB.],
oM OM OM
to cancel

—/ t-I'[A AN 614} = —/ 2d2ZtI‘[Az6A3 — Az(SAz]
oM oM
The modified CS-theory then reads:

A,, As fixed =  Scs[A] := Scs[A] £ 2 / d?ztr[A, Az].
oM

By construction, we now have §Scs[A] = 0 on shell.
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4 Gravity as a Chern-Simons Theory — Boundary terms and WZW

Gauge transformation of the modified CS-action

Sos[A%] = Sos + Swzwlg, Az]

where S\, [9, A2] is a chiral Wess-Zumino-(Novikov)-Witten action on 9M:
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Sos[A%] = Sos + Swzwlg, Az]

where S\, [9, A2] is a chiral Wess-Zumino-(Novikov)-Witten action on 9M:

_ _ _ 1 _
Strzwlg, Az] r=/ d*ztr[g~ " (8:9)9 " (9=9) — 29 1(8?9)Az}+§/ trlg”'dg)?
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@ The number of physical degrees of freedom of a CS-theory depends strongly on
whether spacetime has a boundary.
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Gauge transformation of the modified CS-action

Sos[A%) = Scs + Syyawlg, A:]
where S\, [9, A2] is a chiral Wess-Zumino-(Novikov)-Witten action on 9M:

_ _ _ 1 _
Stiawle, A i= [ d%tlg™ (0.9)9 7 (0=9) ~ 29 @) A + 3 [ talg g’
oM M

@ The number of physical degrees of freedom of a CS-theory depends strongly on
whether spacetime has a boundary.

o If M has a boundary, gauge invariance is broken at OM and the "would-be pure
gauge degrees” g become dynamical on the boundary.
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4 Gravity as a Chern-Simons Theory —  Boundary terms and WZW

Gauge transformation of the modified CS-action

Sos[A%) = Scs + Syyawlg, A:]
where S\, [9, A2] is a chiral Wess-Zumino-(Novikov)-Witten action on 9M:

_ _ _ 1 _
Stiawle, A i= [ d%tlg™ (0.9)9 7 (0=9) ~ 29 @) A + 3 [ talg g’
oM M

@ The number of physical degrees of freedom of a CS-theory depends strongly on
whether spacetime has a boundary.

o If M has a boundary, gauge invariance is broken at OM and the "would-be pure
gauge degrees” g become dynamical on the boundary.

@ This adds an infinite-dimensional space of inequivalent solutions.
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5 First-Order Path Integrals a la Witten

Discussion for A = 0,
following E.Witten, “Topology Changing Amplitudes in (2+41)-Dimensional Gravity,”
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Discussion for A = 0,
following E.Witten, “Topology Changing Amplitudes in (2+41)-Dimensional Gravity,”

Einstein Hilbert and Moduli Spaces

_ oz a a a
Sgn = / " epa[Opwy — Opwy + [wy, wu]?]
M
a a abe
0 = Ouwy, — 0w, + € “Wypwuc
a a abe
0 = Ouey —0vey, + € (wWppere — Wibepc)
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@ wis a SO(2,1) connection, N the moduli space of flat SO(2,1) connections
o (e,w) is a ISO(2,1) connection, M the moduli space of flat ISO(2,1) connections
Let w be flat. Condition for a nearby connection w + dw (dw € T, N) to also be flat is

D, éw, — D,ow, = 0.
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M
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@ wis a SO(2,1) connection, N the moduli space of flat SO(2,1) connections
o (e,w) is a ISO(2,1) connection, M the moduli space of flat ISO(2,1) connections
Let w be flat. Condition for a nearby connection w + dw (dw € T, N) to also be flat is

D, éw, — D,ow, = 0.

From the EOM the condition for (e,w) to be flat is D, e, — Dye, = 0.
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5 First-Order Path Integrals a la Witten

Discussion for A = 0,
following E.Witten, “Topology Changing Amplitudes in (2+41)-Dimensional Gravity,”

Einstein Hilbert and Moduli Spaces

_ pPUYV a a a
Sen = [ e eplOuf - O+ )]
M
a a abe
0 = Ouwy, — 0w, + € “Wypwuc
a a abe
0 = Ouey —0vey, + € (wWppere — Wibepc)

@ wis a SO(2,1) connection, N the moduli space of flat SO(2,1) connections
o (e,w) is a ISO(2,1) connection, M the moduli space of flat ISO(2,1) connections
Let w be flat. Condition for a nearby connection w + dw (dw € T, N) to also be flat is
D, éw, — D,ow, = 0.

From the EOM the condition for (e,w) to be flat is D, e, — Dye, = 0.
From their equal transformation property we have e € T, and therewith

M=TN.
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5 First-Order Path Integrals a la Witten

Naive Quantization

Z(M) = /D[e,w] exp[iSemn]|
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Naive Quantization

Z(M) = /D[e,w] exp[iSemn]|
Using [ dze™ = §[y]

Z(M) = /D[w] 11 o7

wv,a
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5 First-Order Path Integrals a la Witten

Naive Quantization

Z(M) = /D[e,w] exp[iSemn]|

Using [ dze™ = §[y]

Z(M) = /D[w] 11 o7

wv,a

We use the splitting

w=w+Q, e=¢e+FE

where @ and € are flat, and applying

[T awsir ) -

Felix Haas (UNAM Morelia, Mexico) (2+1)-dimensional (Quantum) Gravity June 6th 2008



5 First-Order Path Integrals a la Witten

Still: Naive Quantization

we find

1

Z(M) = — —
() | det(D Q0 — D,QL)|

with the covariant exterior derivative

ﬁﬂa - dﬁu +€abcwb /\BC
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5 First-Order Path Integrals a la Witten

Still: Naive Quantization

we find

1
| det(D,Q, — D,Q,)|

Z(M)
with the covariant exterior derivative
DB* :=dB* + ¢**°wy, A Be

The above operator has ininitly many zero modes (for which det™" diverges), of the form
Oy = E#e!
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5 First-Order Path Integrals a la Witten

Still: Naive Quantization

we find

1
| det(D,Q, — D,Q,)|

Z(M)
with the covariant exterior derivative
ﬁﬂa - dﬁu +€abcwb /\BC
The above operator has ininitly many zero modes (for which det™" diverges), of the form

Qu = Dyel
In the SM we also had problems naively defining the gauge boson propagators...
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5 First-Order Path Integrals a la Witten

Quantization, a little less naive
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5 First-Order Path Integrals a la Witten

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...
Lix = —Va A*xD*Q% —u, AxD x E*
Ziot[M] = Zpp /D[Q, u, B, v] exp {z/ eNF, + Lﬁx:|
M
= Zrp /D[Q, u, B, v] exp {z/ E* A (DQq + %eachb A Q4+ %D % ugq)
M
—i—%eabcéu AQPAQE —va AD % Q“]

with the pair of three-form Lagrange multipliers u, v.
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Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...
Lix = —Va A*xD*Q% —u, AxD x E*
Ziot[M] = Zpp /D[Q, u, B, v] exp {z/ eNF, + Lﬁx:|
M
= Zrp /D[Q, u, B, v] exp {z/ E* A (DQq + %eachb A Q4+ %D % ugq)
M
—i—%eabcéu AQPAQE —va AD % Q“]

with the pair of three-form Lagrange multipliers u, v.
Integral is linear in v and E, solve these integrations first.
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5 First-Order Path Integrals a la Witten

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...
Lix = —0a A*xD*xQ% —us AxD x E®

Ziot[M] = ZFP/D[Q,u,E,v] exp {z/ e/\Fw—i—ﬁﬁx]
M
= Zrp /D[Q,u, E,v]exp {z/ E* A (DQq + %eachb A Q4+ %D % ugq)
M

1
+5€abcE” A Q°AQ° —vg AxD % Q“]
with the pair of three-form Lagrange multipliers u, v.

Integral is linear in v and E, solve these integrations first.

However there is one subtlety here...
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5 First-Order Path Integrals a la Witten

A toy model

Stoy ::/ dzanj
M

Expanding «, B in the base of orthonormal modes of A:

A¢n :)\n¢n7 azzam¢m7 Bzzbnﬁbna
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5 First-Order Path Integrals a la Witten

A toy model

Stoy = / dzanj
M
Expanding «, B in the base of orthonormal modes of A:
Adp = Andpn, a= Zam¢ma B = an¢na

we get a sum >’ over non-zero modes (\,, # 0):

Sty =Y /M CaXnambadndm = 3 Ananbn = 3 Annbn
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5 First-Order Path Integrals a la Witten

A toy model

Stoy ::/ dzanj
M

Expanding «, B in the base of orthonormal modes of A:

A¢n :)\n¢n7 azzam¢m7 6:an¢n,
we get a sum >’ over non-zero modes (\,, # 0):

Sty =Y /M CaXnambadndm = 3 Ananbn = 3 Annbn

Zioy = [ D18] [ DlaI]] explrnanta
[ 261 [ Pla) [ DT explrnantul

= [ D3] [ Dlao][] A= 6lbn]
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5 First-Order Path Integrals a la Witten

Solving the Path-Integrals

@ In our case Siot linear in E but not in 2. Thus a priori not clear what the mode
expansion is.
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Solving the Path-Integrals

@ In our case Siot linear in E but not in 2. Thus a priori not clear what the mode
expansion is.

o But: Integration over non-zero modes will give 6[DQa + €abcQ” A Q° + %D * ug).
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5 First-Order Path Integrals a la Witten

Solving the Path-Integrals

@ In our case Siot linear in E but not in 2. Thus a priori not clear what the mode
expansion is.
o But: Integration over non-zero modes will give 6[DQa + €abcQ” A Q° + %D * ug).

@ Zeros of & form a surface (€, ) in the space of fields.

o Write Q = Q + 59 since only fields infinitesimally close to the surface contribute to
the path integral.
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5 First-Order Path Integrals a la Witten

Solving the Path-Integrals

@ In our case Siot linear in E but not in 2. Thus a priori not clear what the mode
expansion is.

o But: Integration over non-zero modes will give 6[DQ + 2€apcQ° A Q° + %D * ua).

o Zeros of & form a surface (Q, @) in the space of fields.
o Write Q = Q + 69 since only fields infinitesimally close to the surface contribute to
the path integral.

With zero modes E of E, we get

Zis[M] = Zep / DIQ, u, E5[D + %eachb AQE + %D % ua] 8]k D * Qa]
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5 First-Order Path Integrals a la Witten

Solving the Path-Integrals

@ In our case Siot linear in E but not in 2. Thus a priori not clear what the mode
expansion is.

o But: Integration over non-zero modes will give 6[DQ + 2€apcQ° A Q° + %D * ua).
o Zeros of & form a surface (Q, @) in the space of fields.

o Write Q = Q + 69 since only fields infinitesimally close to the surface contribute to
the path integral.

With zero modes E of E, we get
Zis[M] = Zep / DIQ, u, E5[D + %eachb AQE + %D % ua] 8]k D * Qa]

Use D[Q] = D[Q, 9] and

ari |
det (Bxl)

/dxdy5[fl(x,y)]5[f2(%y)] =

we obtain...

Felix Haas (UNAM Morelia, Mexico) (2+1)-dimensional (Quantum) Gravity June 6th 2008 21 /24



5 First-Order Path Integrals a la Witten

Zrp
| det’ L_|

Ziot[M] = / D[Q, E]

with L_ := D x + x D which maps a 3-form plus a 1-form to a 1-form plus a 3-form.
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5 First-Order Path Integrals a la Witten

Zoon[M] = / D[, B]—2F°
|det’ L_|
with L_ := D x + x D which maps a 3-form plus a 1-form to a 1-form plus a 3-form.
Zoor[M] = / pia, 5l 4)° / DI, BT[]
|det L| .

with A:=DxDx+xDxD.
e T[Q)] is the so called Ray-Singer torsion which is identical to the Reidemeister
torsion.
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Zoon[M] = / D[, B]—2F°
|det’ L_|
with L_ := D x + x D which maps a 3-form plus a 1-form to a 1-form plus a 3-form.
Zoor[M] = / pia, 5l 4)° / DI, BT[]
|det L| .

with A:=DxDx+xDxD.
e T[Q)] is the so called Ray-Singer torsion which is identical to the Reidemeister

torsion.

@ It is a topological invariant independet of the metric used in its deduction. Witten
therefore argues that the quantization preserves diffeo invariance (anomaly freedom).
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Zoon[M] = / D[, B]—2F°
|det’ L_|
with L_ := D x + x D which maps a 3-form plus a 1-form to a 1-form plus a 3-form.
Zoor[M] = /D jltst £y /D[Q.E}T{Q]
|det L_| .

with A:=D*xDx+xD % D.

e T[Q)] is the so called Ray-Singer torsion which is identical to the Reidemeister
torsion.

@ It is a topological invariant independet of the metric used in its deduction. Witten
therefore argues that the quantization preserves diffeo invariance (anomaly freedom).

o If zero modes are present, the integral over the E's will always diverge at large E,
since T'[Q2] does not depend on E.
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e T[Q)] is the so called Ray-Singer torsion which is identical to the Reidemeister

torsion.

@ It is a topological invariant independet of the metric used in its deduction. Witten
therefore argues that the quantization preserves diffeo invariance (anomaly freedom).

o If zero modes are present, the integral over the E's will always diverge at large E,
since T'[Q2] does not depend on E.

o Witten: "I regard its occurrence as the most exciting result of this paper.”
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5 First-Order Path Integrals a la Witten

Zoon[M] = / D[, B]—2F°
|det’ L_|
with L_ := D x + x D which maps a 3-form plus a 1-form to a 1-form plus a 3-form.
Zyot[M] = /D det Ay /D €, BT[]
|det L_|

with A:=DxDx+xDxD.
e T[Q)] is the so called Ray-Singer torsion which is identical to the Reidemeister

torsion.

@ It is a topological invariant independet of the metric used in its deduction. Witten
therefore argues that the quantization preserves diffeo invariance (anomaly freedom).

o If zero modes are present, the integral over the E's will always diverge at large E,
since T'[Q2] does not depend on E.

o Witten: "I regard its occurrence as the most exciting result of this paper.”

o Witten: "What we are witnessing, in this infrared divergence, is the birth of
macroscopic space-time, starting from a microscopic quantum theory.”
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@ In (24+1)-dim the PPS=moduli space of gravity becomes finite dimensional, we have
no local degrees of freedom.

@ (2+1)-dim gravity is Chern-Simons theory with the gauge group depending on A

@ For manifolds with boundary the action principle of CS-theory is not well defined.

@ By defining a complex structure on the boundary and adding the right boundary
terms and conditions the modified CS-theory can be made well defined.

@ The "would-be pure gauge degrees’ become dynamical on the boundary of the
modified theory. They are described by a chiral WZW term which adds an
infinite-dim space of solutions.

o First order (2+1)-dim gravity was quantized using path integrals by Witten in '89.
Despite gauge fixing, the partition function was found to be a topological invariant,
thus preserving diffeo.
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