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1 Motivation

Why do we want to study (2+1)-dim QGr?

QGr in (3+1) dimensions is hard

We like playgrounds.

Playgrounds that hold similar features to the real world (symmetries, black holes and
their thermodynamics, ?holography?...).

Many conceptual problems remain unaltered (problem of time, background
independence...)

Others are solved (nonrenormalizability, implementation of constraints...)

Can address questions about different approaches to QGr: Do we need topology
change? Do we need a TOE? Are there more then one, possibly physically different,
but mathematically concise quantum theories of gravity?

Also mathematically 3-dim gravity and Chern-Simons theory have led to new
research fields (TQFT, relation to the Jones polynomial...)
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2 Prelude - Moduli space

Flat G-connections

Consider a G-gauge theory on a compact, simply connected n-dim manifold Mg of genus
g, whos EL-eqn. allow only flat G-connections A.

The physical phase space (PPS) of our G-gauge theory under consideration is the so
called moduli space

PPS =M := {A ∈ A|FA = 0}/G

We can fully encode the connection in parallel transports and holonomies. But
parallel transports of a flat connection is trivial, only on a genus zero M0 manifold!

If we have g > 0 we get nontrivial holonomies by performing parallel transports
around loops that enclose the holes.

The fundamental group π1(Mg) encodes the curves of distinct homotopy class, and
we have the homomorphism

H : π1(Mg) = 〈c1, . . . , c2g〉 → G, H[γ] := P exp[

Z
γ

A]
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2 Prelude - Moduli space

Dimension of the Moduli Space

This captures almost all DOF of the theory. We are still free to perform a
G-conjugation at each base point of the generating loops ci: H[ci]→ g−1H[ci]g.
Modding out gives

M' Hom(π1(Mg), G)/G

We have a bound for the dimension of Hom: dim(Hom(π1(Mg), G)) ≤ |G|2g

The PPS is finite dimensional!

The PPS depends crucially on the topology of spacetime.

If g = 0, π1(M0) = 1 and we have dim(M) = 0.
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3 Introduction

Why (2+1)-dim gravity is so simple

In 3dim the Weyl tensor Cαβγδ vanishes ⇒ The Ricci tensor Rµν determines the
Riemann tensor Rαβγδ:

Rαβγδ = [Combination of g′s]µναβγδRµν

⇒ solutions to the vacuum Einstein equations are not only Ricci flat but also flat
(Riemann flat).

The PPS=moduli space is finite dimensional!

Our space is locally Minkowski (dS or AdS in the presents of Λ = ±|Λ|), and has no
local degrees of freedom

A physicists take: The same follows from a counting argument:
hab, Pab have n(n− 1)/2 DOF each.
n DOF are eliminated by constraints, n DOF by coordinate choice. ⇒

n(n− 1)− 2n = n(n− 3) DOF ⇒ 0 DOF in n = 3
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3 Introduction

The Newtonian Limit in n dimensions

gµν = ηµν + hµν , hµν := hµν −
1

2
ηµνh

σ
σ, hµν = hµν −

1

n− 2
ηµνh

σ
σ

The linearized Einstein equations in the gauge ∂µhµν = 0 become

−1

2
∂σ∂σhµν = 8πGTµν +O(h2).

The Newtonian Limit is obtained by setting T00 ≈ ρ, all other Tµν ≈ 0 and ∂/∂t = 0

−1

4
∇2h00 = ∇2Φ = 4πGρ

The geodesic equation reduces to

d2xi

dt2
− 1

2
∂ih00 = 0, ⇔ d2xi

dt2
+

2(n− 3)

(n− 2)
∂iΦ = 0

In n = 3 test particles experience no Newtonian Force.
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1

n− 2
ηµνh

σ
σ

The linearized Einstein equations in the gauge ∂µhµν = 0 become
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2
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4 Gravity as a Chern-Simons Theory – First Order Formalism

First Order Formalism

Independent variables are the Dreibein eaµ and the spin connection ωabµ .

ηabe
a
µe
b
ν = gµν

Which introduces an additional SO(2, 1)-invariance under eaµ → Oab e
b
µ.

The 3-dimensional Einstein-Hilbert action becomes

SEH = 2

Z
M

»
ea ∧ dωa +

1

2
εabce

a ∧ ωb ∧ ωc +
Λ

6
εabce

a ∧ eb ∧ ec
–
,

with ea := eaµdxµ and ωa := 1
2
εabcωµbcdx

µ.

The EOM are

0 = dea + εabcω
b ∧ ec (1)

0 = dωa +
1

2
εabcω

b ∧ ωc +
Λ

2
εabce

b ∧ ec (2)

Where (2) is the condition that M has constant curvature.
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4 Gravity as a Chern-Simons Theory – First Order Formalism

What are the Diffeomorphisms?

Let φ ∈ Diff(M) and furthermore locally φ = FXt flow of a vector field X.

δea = LXe
a = dρa + εabcρ

cωb − εabcτ bec

δωa = LXω
a = dτa + εabcτ

cωb − Λεabcρ
ceb,

with the field-dependent parameters ρa := ea(X) and τa := ωa(X)

For the transformation identities above the EOM were used!

The above transformation laws as well as the form of the EH-Lagrangian (Λ = 0)
e ∧ dω + e ∧ ω ∧ ω suggest, to try and link 3-dimensional vacuum gravity with
Chern-Simons theory:

SCS[A] :=

Z
M

tr

»
A ∧ dA+

2

3
A ∧A ∧A

–

Chern-Simons for Λ = 0
Gauge Field is Lie algebra valued one-form

A := [eaµPa + ωaµJa]dxµ
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4 Gravity as a Chern-Simons Theory – Chern-Simons theory

Chern-Simons for Λ = 0
Pa, Ja are generators of the Poincaré group ISO(2, 1), with the algebra

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = 0,

and the trace identities

tr[JaPb] = ηab, tr[JaJb] = tr[PaPb] = 0.

Using these, it is easy to show

SCS = SEH|Λ=0 .

Where an ISO(2, 1) gauge transformation by an infinitesimal parameter
u = ρaPa + τaJa is determined by

δAµ = δeaµPa + δωaµJa

δAµ = Dµu = ∂µu+ [Aµ, u]

= [∂µρa − εabcτ cebµ + εabcρ
cωbµ]P a + [∂µτa + εabcτ

cωbµ]Ja
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4 Gravity as a Chern-Simons Theory – Chern-Simons theory

Chern-Simons for Λ = 0

ISO(2, 1), A := eaPa + ωaJa

Chern-Simons for Λ < 0

SO(2, 1)× SO(2, 1), A(±)a := ωa ± 1√
−Λ

ea

SEH = SCS[A(+)]− SCS[A(−)]

Chern-Simons for Λ > 0

SL(2,C), Aa := ωa + i
√

Λea

SEH = SCS[A]
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4 Gravity as a Chern-Simons Theory – Boundary terms and WZW

Gauge transformation

Under the gauge tranformation

Ag := g−1dg + g−1Ag

the Chern-Simons action transformes as (hint: use d(g−1g) = 0):

SCS[Ag] = SCS[A]− 1

3

Z
M

tr
ˆ
g−1dg ∧ g−1dg ∧ g−1dg

˜
−
Z
∂M

tr
ˆ
(dg)g−1 ∧A

˜
For closed M ...

...the boundary term vanishes.

...the pure gauge term is the winding number of g. Adjusting the coupling constant
this term is always an integral multiple of 2π, so that exp[iSCS] indeed is gauge
invariant.
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4 Gravity as a Chern-Simons Theory – Boundary terms and WZW

If M is not closed...

...the boundary term does not vanish and the Chern-Simons action is not gauge
invariant!

... even greater problem arises from the variational principle:

δSCS[A] = 2

Z
M

tr[δA ∧ (dA+A ∧A| {z }
EOM

)]−
Z
∂M

tr[A ∧ δA]

The surface term does not vanish for either Dirichlet or Neumann conditions.

Making the variational principle work I

CS-theory alone is not a well defined physical theory on closed manifolds.

Cure: We choose a complex structure on ∂M , fix an apropriate mixed boundary
condition Az or Az, and add a suitable boundary term S∂M [Az, Az] that
compensates the boundary term above.
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4 Gravity as a Chern-Simons Theory – Boundary terms and WZW

Making the variational principle work II

Introducing a complex structure:Z
∂M

A ∧B =:

Z
∂M

dz ∧ dz[AzBz −AzBz] =:

Z
∂M

2d2z[AzBz −AzBz],

to cancel

−
Z
∂M

tr[A ∧ δA] = −
Z
∂M

2d2ztr[AzδAz −AzδAz].

The modified CS-theory then reads:

Az, Az fixed ⇒ S̃CS[A] := SCS[A]± 2

Z
∂M

d2ztr[AzAz].

By construction, we now have δS̃CS[A] = 0 on shell.
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4 Gravity as a Chern-Simons Theory – Boundary terms and WZW

Gauge transformation of the modified CS-action

S̃CS[Ag] = S̃CS + S+
WZW[g,Az]

where S+
WZW[g,Az] is a chiral Wess-Zumino-(Novikov)-Witten action on ∂M :

S+
WZW[g,Az] :=

Z
∂M

d2ztr[g−1(∂zg)g−1(∂zg)− 2g−1(∂zg)Az] +
1

3

Z
M

tr[g−1dg]3

The number of physical degrees of freedom of a CS-theory depends strongly on
whether spacetime has a boundary.

If M has a boundary, gauge invariance is broken at ∂M and the ”would-be pure
gauge degrees” g become dynamical on the boundary.

This adds an infinite-dimensional space of inequivalent solutions.
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5 First-Order Path Integrals à la Witten

Discussion for Λ = 0,
following E.Witten, “Topology Changing Amplitudes in (2+1)-Dimensional Gravity,”

Einstein Hilbert and Moduli Spaces

SEH =

Z
M

ερµνeρa[∂µω
a
ν − ∂νωaµ + [ωµ, ων ]a]

0 = ∂µω
a
ν − ∂νωaµ + εabcωµbωνc

0 = ∂µe
a
ν − ∂νeaµ + εabc(ωµbeνc − ωνbeµc)

ω is a SO(2,1) connection, N the moduli space of flat SO(2,1) connections

(e, ω) is a ISO(2,1) connection, M the moduli space of flat ISO(2,1) connections

Let ω be flat. Condition for a nearby connection ω + δω (δω ∈ TωN ) to also be flat is

Dµδων −Dνδωµ = 0.

From the EOM the condition for (e, ω) to be flat is Dµeν −Dνeµ = 0.
From their equal transformation property we have e ∈ TωN and therewith

M = TN .
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5 First-Order Path Integrals à la Witten

Naive Quantization

Z(M) =

Z
D[e, ω] exp[iSEH]

Using
R

dxeixy = δ[y]

Z(M) =

Z
D[ω]

Y
µ,ν,a

δ[F aµν ]

We use the splitting

ω = ω + Ω, e = e+ E

where ω and e are flat, and applyingZ Y
j

dxjδ[f j(xi)] =

˛̨̨̨
det

„
∂f j

∂xi

«˛̨̨̨−1
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Naive Quantization

Z(M) =

Z
D[e, ω] exp[iSEH]

Using
R

dxeixy = δ[y]

Z(M) =

Z
D[ω]

Y
µ,ν,a

δ[F aµν ]

We use the splitting

ω = ω + Ω, e = e+ E

where ω and e are flat, and applyingZ Y
j

dxjδ[f j(xi)] =

˛̨̨̨
det

„
∂f j

∂xi

«˛̨̨̨−1

Felix Haas (UNAM Morelia, Mexico) (2+1)-dimensional (Quantum) Gravity June 6th 2008 17 / 24



5 First-Order Path Integrals à la Witten

Still: Naive Quantization

we find

Z(M) =
1

| det(DµΩν −DνΩµ)|

with the covariant exterior derivative

Dβa := dβa + εabcωb ∧ βc

The above operator has ininitly many zero modes (for which det−1 diverges), of the form
Ωµ = Dµε!
In the SM we also had problems naively defining the gauge boson propagators...
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5 First-Order Path Integrals à la Witten

Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...

Lfix := −va ∧ ?D ? Ωa − ua ∧ ?D ? Ea

Ztot[M] := ZFP

Z
D[Ω, u, E, v] exp

»
i

Z
M

e ∧ Fω + Lfix

–
= ZFP

Z
D[Ω, u, E, v] exp

»
i

Z
M

Ea ∧ (DΩa +
1

2
εabcΩ

b ∧ Ωc + ?D ? ua)

+
1

2
εabce

a ∧ Ωb ∧ Ωc − va ∧ ?D ? Ωa
–

with the pair of three-form Lagrange multipliers u, v.
Integral is linear in v and E, solve these integrations first.
However there is one subtlety here...
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Quantization, a little less naive

Solution: Add Gauge fixing term! Does this not break Diffeo? We shall see...

Lfix := −va ∧ ?D ? Ωa − ua ∧ ?D ? Ea

Ztot[M] := ZFP

Z
D[Ω, u, E, v] exp

»
i

Z
M

e ∧ Fω + Lfix

–
= ZFP

Z
D[Ω, u, E, v] exp

»
i

Z
M

Ea ∧ (DΩa +
1

2
εabcΩ

b ∧ Ωc + ?D ? ua)

+
1

2
εabce

a ∧ Ωb ∧ Ωc − va ∧ ?D ? Ωa
–

with the pair of three-form Lagrange multipliers u, v.
Integral is linear in v and E, solve these integrations first.
However there is one subtlety here...

Felix Haas (UNAM Morelia, Mexico) (2+1)-dimensional (Quantum) Gravity June 6th 2008 19 / 24



5 First-Order Path Integrals à la Witten
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5 First-Order Path Integrals à la Witten

A toy model

Stoy :=

Z
M

d3xα∆β

Expanding α, β in the base of orthonormal modes of ∆:

∆φn = λnφn, α =
X
m

amφm, β =
X
n

bnφn,

we get a sum
P′ over non-zero modes (λn 6= 0):

Stoy =
X
n,m

Z
M

d3xλnambnφnφm =
X
n

λnanbn =
X
n

′
λnanbn

Ztoy =

Z
D[β]

Z
D[α]

Y′
exp[λnanbn]

=

Z
D[β]

Z
D[α0]

Z
D[α′]

Y′
exp[λnanbn]

=

Z
D[β]

Z
D[α0]

Y′
λ−1
n δ[bn]
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5 First-Order Path Integrals à la Witten

Solving the Path-Integrals

In our case Stot linear in E but not in Ω. Thus a priori not clear what the mode
expansion is.

But: Integration over non-zero modes will give δ[DΩa + 1
2
εabcΩ

b ∧ Ωc + ?D ? ua].

Zeros of δ form a surface (Ω̃, ũ) in the space of fields.

Write Ω = Ω̃ + δΩ since only fields infinitesimally close to the surface contribute to
the path integral.

With zero modes Ẽ of E, we get

Ztot[M ] = ZFP

Z
D[Ω, u, Ẽ]δ[DΩa +

1

2
εabcΩ

b ∧ Ωc + ?D ? ua] δ[?D ? Ωa]

Use D[Ω] = D[Ω̃, δΩ] andZ
dxdyδ[f1(x, y)]δ[f2(x, y)] =

˛̨̨̨
det

„
∂f j

∂xi

«˛̨̨̨−1

we obtain...
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Ztot[M ] = ZFP

Z
D[Ω, u, Ẽ]δ[DΩa +
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Solving the Path-Integrals

In our case Stot linear in E but not in Ω. Thus a priori not clear what the mode
expansion is.

But: Integration over non-zero modes will give δ[DΩa + 1
2
εabcΩ

b ∧ Ωc + ?D ? ua].

Zeros of δ form a surface (Ω̃, ũ) in the space of fields.
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5 First-Order Path Integrals à la Witten

we obtain...

Ztot[M ] =

Z
D[Ω̃, Ẽ]

ZFP

| det′ L̃−|

with L̃− := D̃ ?+ ? D̃ which maps a 3-form plus a 1-form to a 1-form plus a 3-form.

Ztot[M ] =

Z
D[Ω̃, Ẽ]

(det′ ∆̃)2

| det′ L̃−|
=

Z
D[Ω̃, Ẽ]T [Ω̃]

with ∆̃ := D̃ ? D̃ ?+ ? D̃ ? D̃.

T [Ω] is the so called Ray-Singer torsion which is identical to the Reidemeister
torsion.

It is a topological invariant independet of the metric used in its deduction. Witten
therefore argues that the quantization preserves diffeo invariance (anomaly freedom).

If zero modes are present, the integral over the Ẽ’s will always diverge at large Ẽ,
since T [Ω̃] does not depend on Ẽ.

Witten: ”I regard its occurrence as the most exciting result of this paper.”

Witten: ”What we are witnessing, in this infrared divergence, is the birth of
macroscopic space-time, starting from a microscopic quantum theory.”
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ZFP

| det′ L̃−|

with L̃− := D̃ ?+ ? D̃ which maps a 3-form plus a 1-form to a 1-form plus a 3-form.

Ztot[M ] =

Z
D[Ω̃, Ẽ]
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(det′ ∆̃)2

| det′ L̃−|
=

Z
D[Ω̃, Ẽ]T [Ω̃]
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6 Summary

What have we learned?

In (2+1)-dim the PPS=moduli space of gravity becomes finite dimensional, we have
no local degrees of freedom.

(2+1)-dim gravity is Chern-Simons theory with the gauge group depending on Λ

For manifolds with boundary the action principle of CS-theory is not well defined.

By defining a complex structure on the boundary and adding the right boundary
terms and conditions the modified CS-theory can be made well defined.

The ”would-be pure gauge degrees” become dynamical on the boundary of the
modified theory. They are described by a chiral WZW term which adds an
infinite-dim space of solutions.

First order (2+1)-dim gravity was quantized using path integrals by Witten in ’89.
Despite gauge fixing, the partition function was found to be a topological invariant,
thus preserving diffeo.
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