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(M, g) = globally hyperbolic spacetime, E — M = vector bundle over M,
section ¢ € CGn, (M, E) represents field configuration on spacetime,

e.g.: real Klein-Gordon field

C* (M, E) smooth sections,

Cmp(M, E) smooth sections with compact support = test sections

equation of motion: wave equation }3(;5 =«
P: C*®(M,E) > C*(M,E) = normally hyperbolic operator
P and « given, ¢ to be found

second order linear differential operator P: C%(M, E) — C*(M, E) normally hyperbolic
if for local coordinates (z!,...,2™) on M and local trivialization of E it writes

2 n

~ n iy 0 0
P=-Y 9@ Aj@) —— + B
”Zﬂg @) 5o + ]; i@ 55 + B@

examples: d'Alembert operator O, square of Dirac operator D2,
dd + dd with exterior derivative d and codifferential §
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o Theorem (in Bir, Ginoux, Pfiffle):
(M, g) globally hyperbolic Lorentzian manifold, metric connection V,
3> © M spacelike Cauchy syrface, n future directed timelike unit normal field along X,
E vector bundle over M, P normally hyperbolic operator acting on sections in E,

then for each ¢o, x0 € Comp(X, F) and each a e CF,,\, (M, E)
exists unique solution ¢ e C* (M, E) of Cauchy problem: ¢ satisfies

ﬁd) =«
Bl = do
(anﬁ)\z = X0

and supp ¢ € JM(K) with K = supp¢o U suppxo U supp« and map sending (o, ¢o, x0)

to unique solution ¢ of Cauchy problem is continuous and linear

Max Dohse (IMUNAM Morelia) QG Seminar 06.10.2008 5/28



@ point in classical phase space P
= test field configuration ¢¢ + test momentum 7y on Cauchy surface %,
assume 7 depends on ¢ only via (V,¢)

@ consider only systems with linear equations of motion
and configuration space C being vector space, thus P = T*C vector space
therefore at « € P can identify T, P with P,
thus symplectic form Qp on P under this identification bilinear map Q2p: PxP — R

@ S space of solutions of wave equation arising from initial data in P,
= vector space because of linear equations of motion

@ by theorem above each point (¢, 7o) € P in phase space
gives rise to unique element in space S of solutions,
thus can identify P and S,
moreover S independent of choice of Cauchy surface ¥

. s
o write ¢|x = ¢
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@ let phase space P be equipped with symplectic structure Qp: P xP — R,
for Klein-Gordon field given by

= = = =
U0y ) (637) = [V (m100 — 7o)
by
o if ¢1 and ¢2 are solutions of the equation of motion,

P = = = . . .
then Qp((¢; , 7 ), (¢4, 7, )) is conserved in time:
yields same value for all Cauchy surfaces ¥ of chosen foliation of spacetime M,

o therefore Qp induces symplectic mapping Qs: S xS — R via

Qs(1,62) = Qp((d1,m1 ), (2,72 )
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fixing (¢Z,7T2) e P can view QP((¢E7WZ), o) as linear function on P
and fundamental Poisson brackets on P then can be expressed as

{2p((@1 70,00 p((62,m2 ), 9)} = ~Qp((d1 1), (6 ,72)

want construct bosonic QFT in which functions Qp(((bz,wz), o) on classical phase space P

. . ~ = P
are irreducibly represented by operators Qp((¢ , 7 ), e)
satisfying commutation relations corresponding to fundamental Poisson brackets:

[p((@) 1 ) 0), Up((da .73 ), 0)] = —ihQp((dy .71 ), (b2 73 )) 1

using correspondence between phase space P and solution space S
equivalently we can look for operators

[Qs(d1,0), Qs(d2,9)] = —ihQs(1,¢2) 1
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introduce compatlble complex structure J on symplect|c vector space (S,Qs):
linear operator J: 8§ 5 8 fulflllmg = -1,

and Qs(¢1,¢2) = QS(J¢1,J¢2) for all 12 €S,

thus defining a positive definite metric 1 on S via u(-,-) = Qs(J -, )

J induces Hermitian complex inner product on solution space S:

1 7

Lo ((F =il )

¢y s = () = o

J naturally splits complexification of solution space S¢g = S@iS
into positive and negative frequency subspaces:

1 ~
positive frequency vectors: ¢ = 5(<z>fiJ¢) = ¢

1 -
negative frequency vectors: ¢~ = 5(¢+i]¢>) = ot

positive and negative frequency subspaces are orthogonal (qﬁ{r, ¢y0s = Oforall p12¢ S,

and complementary ¢ = ¢T + ¢~
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one-particle Hilbert space #( of theory is positive frequency subspace of S¢
with inner product induced by the one of S:

@15 620y = D1y 0205 = —7 Os(67,63) = —1 Os(87,63)

(respectively its Cauchy-completion with respect to norm induced by inner product)
map K : S — % defined by K¢ = ¢ is linear bijection, image = dense subspace of
Hilbert space # of QFT is symmetric Fock space:

Feym(#Ho) = é (éﬂo>

n =0 \sym

symmetrized tensor product &g, Ho of #o is subspace of n-fold tensor product
consisting of totally symmetric maps

n
a: @%H@
1

Y e, nEg,)P <o
J1seisin =1

®}[0 = C
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@ abstract index notation for Hilbert spaces: given some Hilbert space # L
can construct complex conjugate %, dual space #* and complex conjugate dual #*

@ denote elements of Hilbert spaces by

H 9 H* e
¢ o =3 ba bar = b4

o Riesz’ Lemma: for every element ¢4 of #* exists unique element ¢4 ¢ # with

da(e) = (6% @)y
provides antilinear bijection between Hilbert space and its dual

o by Riesz lemma can identify 7 with H*, ie. ¢4 = EA with ¢4,
and #* with #, i.e. ¢2 with ¢4/ = b4,
therefore do not need primed indices, can write inner product

@A, 6%y, = Yas?
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o denote elements of @ # as ¢pA14n and elements of @ * as VAL, An
o elements of ®, 7 satisfy pAL A = p(A1seAn)

@ vector in symmetric Fock Fsym(#0) space in abstract index notation written as

U = (At pArdz A An )

norm given by

WP = (0,0 = P + P, 0™ 4 P, 4,02 4 <0

o for element £4 € %y and corresponding E4¢ Ho
define creation &' and annihilation & operators: Feym(#Ho) — Fsym(Ho)

al(e) w = (0, per, vV2ghiyA2) 3eliyAzas) - )
Q)T = (64,0, V28, M2 VBE, pArdzds )

satisfying commutation relations [d(€), af(n)] = €474 1
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@ represent linear classical observables Qs(¢, ®) by operator

Os(0,9) = in(a(K9) —al (K9)) = in(a(e7) —a'(¢™))

then operators are self-adjoint and satisfy desired commutation relations:

[Qs(n,), Qs(€,0)] = —ihQs(n,) 1

@ calculating commutation relations only need general properties of inner product,
which is induced by complex structure J,
thus one gets representation of the CCR for any choice of complex structure,
freedom to choose J is freedom to chose quantum representation of the CCR
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2

F A,
&(E)56)
(o)~ EE@)21Y)

o completely free to choose complex structure f, no naturally preferred f,
complex structure exactly determines Fock space construction,
which defines notion of particles,
thus no natural notion of particles in general, curved spacetime
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o QFT consisting of Hilbert space # with operators @a CH > H
unitary equivalent to quantum theory (4, 0! o)
if exists unitary map U : # — 4’ such that O = U™ IO U

o unitary equivalent QFT are physically equivalent: state U e # in quantum theory (%, @a)
has same physical properties as state UU € #” in QFT (5{’,(’3(;)

o working with relation [Qs(¢1,), Qs(¢2,9)] = —ihQs(¢1,¢2) 1
difficulties arise: operators can be unbounded and thus not everywhere defined,
therefore their composition and commutators need not be well defined

@ more convenient: exponentiated version, write W(¢) = expiQ2s(¢, ) and look for map

turning W (¢) into operator W such that it is unitary, varies continuously with ¢
and as equivalent of commutation relations satisfies Weyl relations:

Wo) =1
W(o) = W)
W(e) W(p) = < &9/2 W0
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Stone-von Neumann Theorem: o o
If (S, Q) is finite-dimensional symplectic vector space and (%, W (¢)) and (#', W'(¢))
are strongly continuous, irreducible, unitary representations of the Weyl relations,
then they are unitarily equivalent.

if Stone-von Neumann were valid glso for QFT of infinite-dimensional phase space P,
then choice of complex structure J would lead to unitarily equivalent theories
however if P is of infinite dimension, then different choices of J

can yield unitarily inequivalent theories: Stone-von Neumann does not hold here

therefore in order to uniquely define the QFT for a general, curved spacetime R
essential to find preferred unique unitary equivalence class of complex structures J

for general curved spacetimes: no known criterion
to find unique preferred equivalence class of complex structures

problem is circumvented by algebraic approach to QFT N
which does not require specification of preferred unitary equivalence class of J's
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usual approach: first states, then observables acting on these states

algebraic approach reverses roles of states and observables:

first observables constructed as elements of abstract algebra

then states defined as objects acting on observables by assigning real numbers to them
advantage: allows treatment all states, also in unitarily inequivalent QFTs, on equal footing,
thereby possible to define theory without selecting preferred construction

key observation justifying algebraic approach: N
even if (Foym (9}),{Q5(¢, )}) and (Foym(#(2), {Q% (¢, #)}) unitarily inequivalent,
algebraic relations satisfied by observables {Q}S(qb, ¢)} are same as of {ﬁ%(qﬁ, o)}
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o (C-algebra A = vector space over C
with bilinear, associative vector multiplication: A x A — A, (a,b) — ab
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o C*-algebra is C-algebra with complete norm | |: A — RF
and antilinear star map *: A — A, a — a* fulfilling for all a,b e A:

a** = a * is involution (1)
(ab)* = b*a* )
lab] < lal|b] norm is submultiplicative (3)
la*| = lal * i isometry @

la*a| = Ja]? C*-property (%)

o (C'*-subalgebra is subset of C*-algebra closed under all its operations

C*-algebra has at most one unit 1, i.e. al = la = a forallaec A
it fulfills 1* = T and 1] = 1

@ in C'*-algebras all operations continuous on domains of definition

BLop(#) = C*-algebra of bounded linear operators on Hilbert spaces,
star operation here is taking adjoint of operator
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Weyl system (A, W) of symplectic vector space (V,w)
consists of C'*-algebra A with unit 1 and Weyl map W: V — A
such that for all ¢, e V' Weyl relations are fulfilled:

w(0) = 1 (6)
W(—p) = W(p)* @)
W(p) W) = @2 W(p+ ) (8)

W () is unitary for all ¢ e V, {W ()}, e v are linear independent

{W(V)) c A = complex linear span of all elements {W (¢}, e v,
is closed under vector multiplication and star/adjoint,

completing it in norm of C*-algebra A yields C*-subalgebra:

the Weyl algebra Wyy (A) of A with respect to W
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Fope (X3)
{8}

o Weyl map W: S — BLop(Fsym(#0)) yielding unitary operators given by

Wo) = expills(e, o)

o key fact: although symmetric Fock space Fsym(#0) and observables ﬁs(zz), o)
do depend on choice of complex structure J,
the Weyl algebra Wy (BLop(]:sym(}[o))) does not:
even if complex structures jl and fg define unitarily inequivalent QFTs,

induced Weyl algebras W; and Wy are isomorphic
this allows to define fundamental observables for QFT in curved spacetime

as elements of the Weyl algebra W = Wy, (BLop(]—'sym(ﬂ-[o)))

using arbitrary complex structure J
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algebraic state of quantum field defined as linear map Y : W — C satisfying

positivity condition: Y (w*w) =0 Ywe W

normalization: Y1) =1

algebraic state Y called mixed if it can be written as sum of states Y7 # Ya

Y = c1Y1 + Yo c1,2 > 0

else called pure

W contains only fundamental (linear) observables,
there are other physically relevant observables in theory,
thus we should view VW as minimal set of observables, sufficient to formulate theory

to get additional observables: enlarge Weyl algebra and/or restrict abstract notion of state
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@ given any Hilbert space Fsym(#() carrying representation
R: W — Blop(Fsym(#0)) of considered Weyl algebra W,
for any state in Feym(H0o) exists unique density matrix p: Feym(#Ho) — Fsym(Ho)

@ obtain algebraic state Y;: W — C by

Y(w) = tr (p R(w))

thus for each state in each possible Fock construction there is a corresponding algebraic state
@ GNS construction: (Gelfand-Naimark-Segal)

let WW be C*-algebra with unit and astate Y : W — C,

then there exist Hilbert space #f, representation R: W — Blop(#)

and vector |1y ) e # such that

Y(w) = Gy |R(w)[ypy)  VweW

Hilbert space, representation and vector are unique up to unitary equivalence,
additional property: |¢y ) is cyclic: vectors { R(w)|yy )} e w are dense subspace of #
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o sketch of GNS construction: first use state Y to define non-negative, bilinear map

<-, ->W: WxW — C
{v, w>w = Y{(v¥w)

(after factoring out kernel of Y) this defines positive definite inner product
on (quotient space of) Weyl algebra W

o complete (quotient space of) W in norm induced by inner product,
thereby get GNS Hilbert space # = W

o letting (quotient space of) W act upon itself by vector multiplication
and extending this action continuously to 7/ get representation R: W — Blop(#)
by R(w) = w for all w e W

o cyclic vector |¢py) € #H is unit 1 of W

@ GNS construction expresses pure and mixed algebraic states

as pure states in GNS Hilbert space,
however GNS representation of W irreducible iff algebraic state is pure
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@ usual Hilbert space approach: observable represented by self-adjoint operator A: H — Ao,
with real eigenvalues «j and eigenvectors |ag ),
by spectral theorem it has associated family of projection operators f’k  H -V
projecting onto the eigenspace Vj, © # spanned by eigenvectors of eigenvalue oy,

o if system in normalized state |1}, then probability that measurement of A
yields value in interval I — IR is given by | Prlwy |2
where P] is projection operator of A for interval I:

ap €1
Pr= > B
k

@ more general: in Heisenberg representation: state represented by density matrix g,
normalized: tr p = 1, then probability that measurement of self-adjoint observables
A1, ...,An made at times t1 < ... < t,, will yield results lying in intervals I, ..., I, given by

tr (ﬁnﬁl ﬁ ﬁlﬁn)

Py, = projection operator of Ay (¢)) on interval Iy,
equation contains all available information
in standard quantum mechanical measurement theory
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in algebraic approach: for arbitrary normalized state Y probability that measurement of
self-adjoint observables A1, ..., A, made at times t; < ... < t,, will yield results lying in
intervals I1, ..., I, can be defined by

o dim V(@) (A0 (@n)j ()@ () (@1 (An))
{(Qr)j, (A)}j, e N is any sequence of polynomials in Ak

such that polynomials {(Q);,, (=)} are uniformly bounded on spectrum of ﬁk
and converge on spectrum of ﬁk to characteristic function 17, of interval Iy,

1: zel
1r(z) = 0: z¢l

evaluating this definition of probability in GNS representation shows that limit exists
and equals what would be obtained from usual QM formula in GNS representation,
or any other representation of W in which Y realized as density matrix

thus algebraic definition of probability equivalent

to putting observables into any representation and use standard Hilbert space rule
however algebraic definition of measurement probability ensures independence of
representation
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THANKS FOR YOUR ATTENTION!

Max Dohse (IMUNAM Morelia) QG Seminar 06.10.2008 27 / 28



o R. Wald: QFT in curved spacetime and black hole thermodynamics, university of Chicago
Press, 1994

o A. Corichi, J. Cortez, H. Quevedo: Schrddinger and Fock representation for a field theory on
curved spacetime, Annals of Physics 313 (2004) 446-478, [arXiv:hep-th/0202070]

e C. Bar, N. Ginoux, F. Pfaffle: Wave equations on Lorentzian manifolds and Quantization,

EMS Publishing House, 2007
downloadable online [http://users.math.uni-potsdam.de/ baer/homepage.html]

Max Dohse (IMUNAM Morelia) QG Seminar 06.10.2008 28 / 28



	Fock quantization in a curved spacetime
	Algebraic approach to quantization

