Algebraic Quantum Field Theory

Max Dohse

Fock quantization in a curved spacetime

2 Algebraic approach to quantization

1 Fock quantization in a curved spacetime

2 Algebraic approach to quantization

- (M,g) = globally hyperbolic spacetime, $E \rightarrow M =$ vector bundle over M, section $\phi \in C^{\infty}_{\text{comp}}(M, E)$ represents field configuration on spacetime, e.g.: real Klein-Gordon field
- $C^\infty(M,E)$ smooth sections, $C^\infty_{\rm comp}(M,E)$ smooth sections with compact support = test sections
- equation of motion: wave equation $\hat{P}\phi = \alpha$ $\hat{P}: C^{\infty}(M, E) \rightarrow C^{\infty}(M, E) = \text{normally hyperbolic operator}$ \hat{P} and α given, ϕ to be found
- second order linear differential operator $\hat{P}: C^{\infty}(M, E) \to C^{\infty}(M, E)$ normally hyperbolic if for local coordinates $(x^1, ..., x^n)$ on M and local trivialization of E it writes

$$\hat{P} \;=\; -\sum_{i,j=1}^n g^{ij}(x)\; \frac{\partial^2}{\partial x^i \,\partial x^j} \;+\; \sum_{j=1}^n A_j(x)\; \frac{\partial}{\partial x^j} \;+\; B(x)$$

examples: d'Alembert operator \Box , square of Dirac operator D^2 , $\delta d+d\delta$ with exterior derivative d and codifferential δ

• Theorem (in Bär, Ginoux, Pfäffle): (M,g) globally hyperbolic Lorentzian manifold, metric connection ∇ , $\Sigma \subset M$ spacelike Cauchy surface, n future directed timelike unit normal field along Σ , E vector bundle over M, \hat{P} normally hyperbolic operator acting on sections in E,

then for each $\phi_0, \chi_0 \in C^\infty_{\text{comp}}(\Sigma, E)$ and each $\alpha \in C^\infty_{\text{comp}}(M, E)$ exists unique solution $\phi \in C^\infty(M, E)$ of **Cauchy problem**: ϕ satisfies

$$\hat{P} \phi = \alpha$$
$$\phi|_{\Sigma} = \phi_0$$
$$\nabla_n \phi)|_{\Sigma} = \chi_0$$

and supp $\phi \subseteq J^M(K)$ with $K = \operatorname{supp} \phi_0 \cup \operatorname{supp} \chi_0 \cup \operatorname{supp} \alpha$ and map sending (α, ϕ_0, χ_0) to unique solution ϕ of Cauchy problem is continuous and linear

- point in classical phase space P

 test field configuration φ₀ + test momentum π₀ on Cauchy surface Σ, assume π depends on φ only via (∇_nφ)
- consider only systems with linear equations of motion and configuration space C being vector space, thus P = T*C vector space therefore at x ∈ P can identify T_xP with P, thus symplectic form Ω_P on P under this identification bilinear map Ω_P: P × P → ℝ
- S space of solutions of wave equation arising from initial data in \mathcal{P} , = vector space because of linear equations of motion
- by theorem above each point $(\phi_0, \pi_0) \in \mathcal{P}$ in phase space gives rise to unique element in space S of solutions, thus can identify \mathcal{P} and S, moreover S independent of choice of Cauchy surface Σ

• write
$$\phi|_{\Sigma} = \phi^{\Sigma}$$

• let phase space \mathcal{P} be equipped with symplectic structure $\Omega_{\mathcal{P}}: \mathcal{P} \times \mathcal{P} \to \mathbb{R}$, for Klein-Gordon field given by

$$\Omega_{\mathcal{P}}((\phi_1^{\Sigma}, \pi_1^{\Sigma}), (\phi_2^{\Sigma}, \pi_2^{\Sigma})) = \int_{\Sigma} dV (\pi_1 \phi_2 - \pi_2 \phi_1)$$

- if ϕ_1 and ϕ_2 are solutions of the equation of motion, then $\Omega_{\mathcal{P}}((\phi_1^{\Sigma}, \pi_1^{\Sigma}), (\phi_2^{\Sigma}, \pi_2^{\Sigma}))$ is conserved in time: yields same value for all Cauchy surfaces Σ_t of chosen foliation of spacetime M,
- therefore $\Omega_{\mathcal{P}}$ induces symplectic mapping $\Omega_{\mathcal{S}}: \mathcal{S} \times \mathcal{S} \to \mathbb{R}$ via

$$\Omega_{\mathcal{S}}(\phi_1,\phi_2) \coloneqq \Omega_{\mathcal{P}}((\phi_1^{\Sigma},\pi_1^{\Sigma}),(\phi_2^{\Sigma},\pi_2^{\Sigma}))$$

• fixing $(\phi^{\Sigma}, \pi^{\Sigma}) \in \mathcal{P}$ can view $\Omega_{\mathcal{P}}((\phi^{\Sigma}, \pi^{\Sigma}), \bullet)$ as linear function on \mathcal{P} and fundamental Poisson brackets on \mathcal{P} then can be expressed as

$$\left\{\Omega_{\mathcal{P}}((\phi_1^{\Sigma}, \pi_1^{\Sigma}), \bullet), \ \Omega_{\mathcal{P}}((\phi_2^{\Sigma}, \pi_2^{\Sigma}), \bullet)\right\} = -\Omega_{\mathcal{P}}((\phi_1^{\Sigma}, \pi_1^{\Sigma}), (\phi_2^{\Sigma}, \pi_2^{\Sigma}))$$

• want construct bosonic QFT in which functions $\Omega_{\mathcal{P}}((\phi^{\Sigma}, \pi^{\Sigma}), \bullet)$ on classical phase space \mathcal{P} are irreducibly represented by operators $\hat{\Omega}_{\mathcal{P}}((\phi^{\Sigma}, \pi^{\Sigma}), \bullet)$ satisfying commutation relations corresponding to fundamental Poisson brackets:

$$[\hat{\Omega}_{\mathcal{P}}((\phi_1^{\Sigma}, \pi_1^{\Sigma}), \bullet), \hat{\Omega}_{\mathcal{P}}((\phi_2^{\Sigma}, \pi_2^{\Sigma}), \bullet)] = -i\hbar \Omega_{\mathcal{P}}((\phi_1^{\Sigma}, \pi_1^{\Sigma}), (\phi_2^{\Sigma}, \pi_2^{\Sigma})) \hat{\mathbb{1}}$$

 \bullet using correspondence between phase space ${\cal P}$ and solution space ${\cal S}$ equivalently we can look for operators

$$\left[\hat{\Omega}_{\mathcal{S}}(\phi_1,\bullet),\ \hat{\Omega}_{\mathcal{S}}(\phi_2,\bullet)\right] = -i\hbar\Omega_{\mathcal{S}}(\phi_1,\phi_2)\ \hat{\mathbb{1}}$$

- introduce compatible complex structure \hat{J} on symplectic vector space (S, Ω_S) : linear operator $\hat{J}: S \to S$ fulfilling $\hat{J}^2 = -\hat{1}$, and $\Omega_S(\phi_1, \phi_2) = \Omega_S(\hat{J}\phi_1, \hat{J}\phi_2)$ for all $\phi_{1,2} \in S$, thus defining a positive definite metric μ on S via $\mu(\cdot, \cdot) = \Omega_S(\hat{J}\cdot, \cdot)$
- \hat{J} induces Hermitian complex inner product on solution space \mathcal{S} :

$$\left\langle \,\cdot\,,\,\,\cdot\,\right\rangle_{\mathcal{S}} \;=\; \frac{1}{2\hbar}\mu(\cdot,\cdot) - \frac{i}{2\hbar}\Omega_{\mathcal{S}}(\cdot,\cdot) \;=\; \frac{1}{2\hbar}\Omega_{\mathcal{S}}\Big((\hat{J}-i\hat{\mathbb{1}})\cdot,\cdot\Big)$$

• \hat{J} naturally splits complexification of solution space $S_{\mathbb{C}} = S \oplus iS$ into positive and negative frequency subspaces:

positive frequency vectors:
$$\phi^+ := \frac{1}{2}(\phi - i\hat{J}\phi) = \overline{\phi^-}$$

negative frequency vectors: $\phi^- := \frac{1}{2}(\phi + i\hat{J}\phi) = \overline{\phi^+}$

• positive and negative frequency subspaces are orthogonal $\langle \phi_1^+, \phi_2^- \rangle_S = 0$ for all $\phi_{1,2} \in S$, and complementary $\phi = \phi^+ + \phi^-$

one-particle Hilbert space H₀ of theory is positive frequency subspace of S_☉ with inner product induced by the one of S:

$$\langle \phi_1, \phi_2 \rangle_{\mathcal{H}_0} = \langle \phi_1, \phi_2 \rangle_{\mathcal{S}} = -\frac{i}{\hbar} \Omega_{\mathcal{S}}(\phi_1^-, \phi_2^+) = -\frac{i}{\hbar} \Omega_{\mathcal{S}}(\overline{\phi_1^+}, \phi_2^+)$$

(respectively its Cauchy-completion with respect to norm induced by inner product)

- map $K: \mathcal{S} \to \mathcal{H}_0$ defined by $K\phi \coloneqq \phi^+$ is linear bijection, image = dense subspace of \mathcal{H}_0
- Hilbert space \mathcal{H} of QFT is symmetric Fock space:

$$\mathcal{F}_{\mathsf{sym}}(\mathcal{H}_0) \ \coloneqq \ \bigoplus_{n \ = \ 0}^{\infty} \left(\bigotimes_{\mathsf{sym}}^n \mathcal{H}_0 \right)$$

symmetrized tensor product ⊗ⁿ_{sym}H₀ of H₀ is subspace of n-fold tensor product consisting of totally symmetric maps

$$\begin{split} \alpha: & \bigoplus_{1}^{n} \overline{\mathcal{H}_{0}} \rightarrow \mathbb{C} \\ & \sum_{j_{1},...,j_{n} = 1}^{n} |\alpha(\overline{e}_{j_{1}},...,\overline{e}_{j_{n}})|^{2} < \infty \\ & \bigotimes_{0}^{0} \mathcal{H}_{0} := \mathbb{C} \end{split}$$

- abstract index notation for Hilbert spaces: given some Hilbert space H
 can construct complex conjugate H
 , dual space H* and complex conjugate dual H*
- denote elements of Hilbert spaces by

$$\begin{array}{cccc} \mathcal{H} & \overline{\mathcal{H}} & \mathcal{H}^* & \overline{\mathcal{H}}^* \\ \phi^A & \phi^{A'} = \overline{\phi}^A & \phi_A & \phi_{A'} = \overline{\phi}_A \end{array}$$

• **Riesz' Lemma**: for every element ϕ_A of \mathcal{H}^* exists unique element $\phi^A \in \mathcal{H}$ with

$$\phi_A(\bullet) = \langle \phi^A, \bullet \rangle_{\mathcal{H}}$$

provides antilinear bijection between Hilbert space and its dual

• by Riesz lemma can identify $\overline{\mathcal{H}}$ with \mathcal{H}^* , i.e. $\phi^{A'} = \overline{\phi}^A$ with ϕ_A , and $\overline{\mathcal{H}^*}$ with \mathcal{H} , i.e. ϕ^A with $\phi_{A'} = \overline{\phi}_A$, therefore do not need primed indices, can write inner product

$$\langle \psi^A, \phi^A \rangle_{\mathcal{H}} = \overline{\psi}_A \phi^A$$

- denote elements of $\otimes^n \mathcal{H}$ as $\phi^{A_1,...,A_n}$ and elements of $\otimes^n \mathcal{H}^*$ as $\psi_{A_1,...,A_n}$
- \bullet elements of $\otimes_{\mathrm{sym}}^n \mathcal{H}$ satisfy $\phi^{A_1,...,A_n} \ = \ \phi^{(A_1,...,A_n)}$
- \bullet vector in symmetric Fock $\mathcal{F}_{\mathsf{sym}}(\mathcal{H}_0)$ space in abstract index notation written as

$$\Psi = (\psi, \psi^{A_1}, \psi^{A_1 A_2}, ..., \psi^{A_1 ... A_n}, ...)$$

norm given by

$$\|\Psi\|^2 \ = \ \langle \Psi,\Psi\rangle \ = \ \overline{\psi}\psi + \overline{\psi}_{A_1}\psi^{A_1} + \overline{\psi}_{A_1A_2}\psi^{A_1A_2} + \ldots < \infty$$

• for element $\xi^A \in \mathcal{H}_0$ and corresponding $\overline{\xi}_A \in \overline{\mathcal{H}_0}$ define creation \hat{a}^{\dagger} and annihilation \hat{a} operators: $\mathcal{F}_{sym}(\mathcal{H}_0) \rightarrow \mathcal{F}_{sym}(\mathcal{H}_0)$

$$\begin{split} \hat{a}^{\dagger}(\xi) \, \Psi &\coloneqq (0, \, \psi \xi^{A_1}, \, \sqrt{2} \, \xi^{(A_1} \psi^{A_2)}, \, \sqrt{3} \, \xi^{(A_1} \psi^{A_2A_3)}, \, \ldots) \\ \hat{a}(\bar{\xi}) \, \Psi &\coloneqq (\bar{\xi}_{A_1} \psi^{A_1}, \, \sqrt{2} \, \bar{\xi}_{A_1} \psi^{A_1A_2}, \, \sqrt{3} \, \bar{\xi}_{A_1} \psi^{A_1A_2A_3}, \, \ldots) \end{split}$$

satisfying commutation relations $[\hat{a}(\overline{\xi}),\,\hat{a}^{\dagger}(\eta)]\,=\,\overline{\xi}_A\eta^A\;\hat{\mathbb{1}}$

ullet represent linear classical observables $\Omega_{\mathcal{S}}(\phi, ullet)$ by operator

$$\hat{\Omega}_{\mathcal{S}}(\phi, \bullet) := i\hbar \Big(\hat{a}(\overline{K\phi}) - \hat{a}^{\dagger}(K\phi) \Big) = i\hbar \Big(\hat{a}(\overline{\phi^+}) - \hat{a}^{\dagger}(\phi^+) \Big)$$

then operators are self-adjoint and satisfy desired commutation relations:

$$[\hat{\Omega}_{\mathcal{S}}(\eta, \bullet), \hat{\Omega}_{\mathcal{S}}(\xi, \bullet)] = -i\hbar \Omega_{\mathcal{S}}(\eta, \xi) \hat{1}$$

• calculating commutation relations only need general properties of inner product, which is induced by complex structure \hat{J} , thus one gets representation of the CCR for any choice of complex structure, freedom to choose \hat{J} is freedom to chose quantum representation of the CCR

• completely free to choose complex structure \hat{J} , no naturally preferred \hat{J} , complex structure exactly determines Fock space construction, which defines notion of particles, thus no natural notion of particles in general, curved spacetime

- QFT consisting of Hilbert space \mathcal{H} with operators $\hat{\mathcal{O}}_{\alpha} : \mathcal{H} \to \mathcal{H}$ unitary equivalent to quantum theory $(\mathcal{H}', \hat{\mathcal{O}}'_{\alpha})$ if exists unitary map $U : \mathcal{H} \to \mathcal{H}'$ such that $\hat{\mathcal{O}}_{\alpha} = U^{-1} \hat{\mathcal{O}}'_{\alpha} U$
- unitary equivalent QFT are physically equivalent: state $\Psi \in \mathcal{H}$ in quantum theory $(\mathcal{H}, \hat{\mathcal{O}}_{\alpha})$ has same physical properties as state $U\Psi \in \mathcal{H}'$ in QFT $(\mathcal{H}', \hat{\mathcal{O}}'_{\alpha})$
- working with relation $[\hat{\Omega}_{\mathcal{S}}(\phi_1, \bullet), \hat{\Omega}_{\mathcal{S}}(\phi_2, \bullet)] = -i\hbar \Omega_{\mathcal{S}}(\phi_1, \phi_2) \hat{1}$ difficulties arise: operators can be unbounded and thus not everywhere defined, therefore their composition and commutators need not be well defined
- more convenient: exponentiated version, write $W(\phi) = \exp i\Omega_{\mathcal{S}}(\phi, \bullet)$ and look for map turning $W(\phi)$ into operator $\widehat{W(\phi)}$ such that it is unitary, varies continuously with ϕ and as equivalent of commutation relations satisfies **Weyl relations**:

$$\begin{split} \widehat{W(0)} &= \ \mathbb{I} \\ \widehat{W(-\phi)} &= \ \widehat{W(\phi)}^{\dagger} \\ \widehat{W(\phi)} \ \widehat{W(\psi)} &= \ e^{i\omega(\phi,\psi)/2} \ \widehat{W(\varphi+\psi)} \end{split}$$

• Stone-von Neumann Theorem:

If (\mathcal{S}, Ω) is finite-dimensional symplectic vector space and $(\mathcal{H}, \overline{W(\phi)})$ and $(\mathcal{H}', \overline{W'(\phi)})$ are strongly continuous, irreducible, unitary representations of the Weyl relations, then they are unitarily equivalent.

- if Stone-von Neumann were valid also for QFT of infinite-dimensional phase space $\mathcal{P},$ then choice of complex structure \hat{J} would lead to unitarily equivalent theories
- however if \mathcal{P} is of infinite dimension, then different choices of \hat{J} can yield unitarily inequivalent theories: Stone-von Neumann does not hold here
- therefore in order to uniquely define the QFT for a general, curved spacetime essential to find preferred unique unitary equivalence class of complex structures \hat{J}
- for general curved spacetimes: no known criterion to find unique preferred equivalence class of complex structures
- problem is circumvented by algebraic approach to QFT which does not require specification of preferred unitary equivalence class of \hat{J} 's

Fock quantization in a curved spacetime

2 Algebraic approach to quantization

- usual approach: first states, then observables acting on these states
- algebraic approach reverses roles of states and observables: first observables constructed as elements of abstract algebra then states defined as objects acting on observables by assigning real numbers to them
- advantage: allows treatment all states, also in unitarily inequivalent QFTs, on equal footing, thereby possible to define theory without selecting preferred construction
- key observation justifying algebraic approach: even if $(\mathcal{F}_{sym}(\mathcal{H}_0^1), \{\hat{\Omega}_S^1(\phi, \bullet)\})$ and $(\mathcal{F}_{sym}(\mathcal{H}_0^2), \{\hat{\Omega}_S^2(\phi, \bullet)\})$ unitarily inequivalent, algebraic relations satisfied by observables $\{\hat{\Omega}_S^1(\phi, \bullet)\}$ are same as of $\{\hat{\Omega}_S^2(\phi, \bullet)\}$

• \mathbb{C} -algebra $\mathcal{A} =$ vector space over \mathbb{C} with bilinear, associative vector multiplication: $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$, $(a, b) \mapsto ab$ • C^* -algebra is \mathbb{C} -algebra with complete norm $\| \| : \mathcal{A} \to \mathbb{R}^+_0$ and antilinear star map $* : \mathcal{A} \to \mathcal{A}, \quad a \mapsto a^*$ fulfilling for all $a, b \in \mathcal{A}$:

$$a^{**} = a$$
 * is involution
 (1)

 $(ab)^* = b^*a^*$
 (2)

 $\|ab\| \le \|a\| \|b\|$
 norm is submultiplicative
 (3)

 $\|a^*\| = \|a\|$
 * is isometry
 (4)

 $|a^*a\| = \|a\|^2$
 C^* -property
 (5)

- $\bullet\ C^*\mbox{-subalgebra}$ is subset of $C^*\mbox{-algebra}$ closed under all its operations
- C*-algebra has at most one unit 1, i.e. a1 = 1a = a for all a ∈ A it fulfills 1* = 1 and ||1 || = 1
- $\bullet\,$ in $C^*\mbox{-algebras}$ all operations continuous on domains of definition
- BLop(H) = C*-algebra of bounded linear operators on Hilbert spaceH, star operation here is taking adjoint of operator

• Weyl system (\mathcal{A}, W) of symplectic vector space (V, ω) consists of C^* -algebra \mathcal{A} with unit 1 and Weyl map $W: V \to \mathcal{A}$ such that for all $\varphi, \psi \in V$ Weyl relations are fulfilled:

$$W(0) = 1 \tag{6}$$

$$W(-\varphi) = W(\varphi)^* \tag{7}$$

$$W(\varphi) W(\psi) = e^{i\omega(\varphi,\psi)/2} W(\varphi+\psi)$$
(8)

 $W(\varphi)$ is unitary for all $\varphi \in V$, $\{W(\varphi)\}_{\varphi \in V}$ are linear independent

⟨W(V)⟩ ⊂ A = complex linear span of all elements {W(φ}_{φ∈V}, is closed under vector multiplication and star/adjoint, completing it in norm of C*-algebra A yields C*-subalgebra: the Weyl algebra W_W(A) of A with respect to W

• Weyl map $W: \mathcal{S} \to \mathsf{BLop}(\mathcal{F}_{\mathsf{sym}}(\mathcal{H}_0))$ yielding unitary operators given by

$$\widehat{W(\phi)} = \exp i \widehat{\Omega}_{\mathcal{S}}(\phi, \bullet)$$

• key fact: although symmetric Fock space $\mathcal{F}_{sym}(\mathcal{H}_0)$ and observables $\hat{\Omega}_{\mathcal{S}}(\phi, \bullet)$ do depend on choice of complex structure \hat{J} , the Weyl algebra $\mathcal{W}_W\left(\mathsf{BLop}(\mathcal{F}_{\mathsf{sym}}(\mathcal{H}_0))\right)$ does not: even if complex structures \hat{J}_1 and \hat{J}_2 define unitarily inequivalent QFTs, induced Weyl algebras \mathcal{W}_1 and \mathcal{W}_2 are isomorphic

• this allows to define fundamental observables for QFT in curved spacetime as elements of the Weyl algebra $\mathcal{W} = \mathcal{W}_W \Big(\mathsf{BLop}(\mathcal{F}_{\mathsf{sym}}(\mathcal{H}_0)) \Big)$

using arbitrary complex structure \hat{J}

• algebraic state of quantum field defined as linear map $Y: \mathcal{W} \to \mathbb{C}$ satisfying

positivity condition:
$$Y(w^*w) \ge 0 \quad \forall w \in \mathcal{W}$$

normalization: $Y(\mathbb{1}) = 1$

• algebraic state Y called **mixed** if it can be written as sum of states $Y_1 \neq Y_2$

$$Y = c_1 Y_1 + c_2 Y_2 \qquad c_{1,2} > 0$$

else called pure

- W contains only fundamental (linear) observables, there are other physically relevant observables in theory, thus we should view W as minimal set of observables, sufficient to formulate theory
- to get additional observables: enlarge Weyl algebra and/or restrict abstract notion of state

- given any Hilbert space $\mathcal{F}_{sym}(\mathcal{H}_0)$ carrying representation $R: \mathcal{W} \rightarrow \mathsf{BLop}(\mathcal{F}_{sym}(\mathcal{H}_0))$ of considered Weyl algebra \mathcal{W} , for any state in $\mathcal{F}_{sym}(\mathcal{H}_0)$ exists unique density matrix $\hat{\rho}: \mathcal{F}_{sym}(\mathcal{H}_0) \rightarrow \mathcal{F}_{sym}(\mathcal{H}_0)$
- obtain algebraic state $Y_{\hat{\rho}}$: $\mathcal{W} \to \mathbb{C}$ by

$$Y_{\hat{
ho}}(w) \coloneqq \mathsf{tr} \left(\hat{
ho} \, R(w)
ight)$$

thus for each state in each possible Fock construction there is a corresponding algebraic state

• **GNS construction:** (Gelfand-Naimark-Segal) let \mathcal{W} be C^* -algebra with unit and a state $Y: \mathcal{W} \to \mathbb{C}$, then there exist Hilbert space \mathcal{H} , representation $R: \mathcal{W} \to \mathsf{BLop}(\mathcal{H})$ and vector $|\psi_Y\rangle \in \mathcal{H}$ such that

$$Y(w) = \langle \psi_Y | R(w) | \psi_Y \rangle \qquad \forall w \in \mathcal{W}$$

Hilbert space, representation and vector are unique up to unitary equivalence, additional property: $|\psi_Y\rangle$ is cyclic: vectors $\{R(w)|\psi_Y\rangle\}_{w \in \mathcal{W}}$ are dense subspace of \mathcal{H}

• sketch of GNS construction: first use state Y to define non-negative, bilinear map

$$ig\langle \cdot , \cdot ig
angle_{\mathcal{W}} : \ \mathcal{W} imes \mathcal{W} o \mathbb{C}$$

 $ig\langle v, w ig
angle_{\mathcal{W}} \coloneqq Y(v^*w)$

(after factoring out kernel of Y) this defines positive definite inner product on (quotient space of) Weyl algebra ${\cal W}$

- complete (quotient space of) ${\cal W}$ in norm induced by inner product, thereby get GNS Hilbert space ${\cal H}=\overline{\cal W}$
- letting (quotient space of) \mathcal{W} act upon itself by vector multiplication and extending this action continuously to \mathcal{H} get representation $R: \mathcal{W} \to \mathsf{BLop}(\mathcal{H})$ by R(w) = w for all $w \in \overline{\mathcal{W}}$
- cyclic vector $|\psi_Y\rangle \in \mathcal{H}$ is unit $\mathbbm{1}$ of \mathcal{W}
- GNS construction expresses pure and mixed algebraic states as pure states in GNS Hilbert space, however GNS representation of W irreducible iff algebraic state is pure

- usual Hilbert space approach: observable represented by self-adjoint operator $\hat{A}: \mathcal{H} \to \mathcal{H}$, with real eigenvalues α_k and eigenvectors $|a_k\rangle$, by spectral theorem it has associated family of projection operators $\hat{P}_k: \mathcal{H} \to V_k$ projecting onto the eigenspace $V_k \subset \mathcal{H}$ spanned by eigenvectors of eigenvalue α_k
- if system in normalized state $|\psi\rangle$, then probability that measurement of \hat{A} yields value in interval $I \subset \mathbb{R}$ is given by $\|\hat{P}_I|\psi\rangle\|^2$ where \hat{P}_I is projection operator of \hat{A} for interval I:

$$\hat{P}_I = \sum_{k}^{\alpha_k \in I} \hat{P}_k$$

• more general: in Heisenberg representation: state represented by density matrix $\hat{\rho}$, normalized: tr $\hat{\rho} = 1$, then probability that measurement of self-adjoint observables $\hat{A}_1, ..., \hat{A}_n$ made at times $t_1 < ... < t_n$ will yield results lying in intervals $I_1, ..., I_n$ given by

tr
$$(\hat{P}_n...\hat{P}_1 \ \hat{\rho} \ \hat{P}_1...\hat{P}_n)$$

 \hat{P}_k = projection operator of $\hat{A}_k(t_k)$ on interval I_k , equation contains all available information in standard quantum mechanical measurement theory

• in algebraic approach: for arbitrary normalized state Y probability that measurement of self-adjoint observables $\hat{A}_1, ..., \hat{A}_n$ made at times $t_1 < ... < t_n$ will yield results lying in intervals $I_1, ..., I_n$ can be defined by

$$\lim_{j_1,...,j_n \to \infty} Y \Big((Q_1)_{j_1}(\hat{A}_1) ... (Q_n)_{j_n}(\hat{A}_n) (Q_n)_{j_n}(\hat{A}_n) ... (Q_1)_{j_1}(\hat{A}_1) \Big)$$

 $\{(Q_k)_{j_k}(\hat{A}_k)\}_{j_k \in \mathbb{N}}$ is any sequence of polynomials in \hat{A}_k such that polynomials $\{(Q_k)_{j_k}(x)\}$ are uniformly bounded on spectrum of \hat{A}_k and converge on spectrum of \hat{A}_k to characteristic function 1_{I_k} of interval I_k

$$1_I(x) \ = \ \begin{cases} 1 : & x \in I \\ 0 : & x \notin I \end{cases}$$

- evaluating this definition of probability in GNS representation shows that limit exists and equals what would be obtained from usual QM formula in GNS representation, or any other representation of $\mathcal W$ in which Y realized as density matrix
- thus algebraic definition of probability equivalent to putting observables into any representation and use standard Hilbert space rule
- however algebraic definition of measurement probability ensures independence of representation

THANKS FOR YOUR ATTENTION!

- R. Wald: QFT in curved spacetime and black hole thermodynamics, university of Chicago Press, 1994
- A. Corichi, J. Cortez, H. Quevedo: Schrödinger and Fock representation for a field theory on curved spacetime, Annals of Physics 313 (2004) 446-478, [arXiv:hep-th/0202070]
- C. Bär, N. Ginoux, F. Pfäffle: Wave equations on Lorentzian manifolds and Quantization, EMS Publishing House, 2007 downloadable online [http://users.math.uni-potsdam.de/ baer/homepage.html]