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Generalities

Scattering Process

One of the most important ways of obtaining information about the structure of
small bodies (for example atomic nuclei) is to bombard them with particles and
measure the number of particles scattered in various directions. The energy and
angular distribution of scattered particles will depend on the shape of the target
and on the nature of the forces between the particles and the target.

Scattering of electromagnetic or acoustic waves is of widespread interest,
because of the enormous number of technological applications.

In radar the radio wave is transmitted toward an object and the scattered wave
received by an antenna reveals the characteristics of the object, such as its
position and motion.

In biomedical applications, microwaves, optical waves, or acoustic waves are
propagated through biological media and the scattering from various portions of a
body is used to identify the objects for diagnostic purposes.
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Classical particle scattering: Scattering cross sections

Consider the case where the target is a fixed, hard (that is, perfectly elastic) sphere of
radius R, and a uniform, parallel beam of particles incident on it.

The force on the particles is an impulse central conservative force. Consequently, the
kinetic energy and the angular momentum are conserved.

Let f be the particle flux in the beam = number of particles crossing unit area normal to
the beam direction per unit time.

The number of particles which strike the target in unit time is

w = fσ, (1)

where σ is the cross-sectional area presented by the target,

σ = πR2. (2)
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Classical particle scattering: Scattering cross sections

Consider one of these particles inci-
dent with velocity v and impact pa-
rameter b.

R: radius of the sphere

α: incident angle

b: impact parameter, b = R sin α

b

z

Θα
α

R

By the axial symmetry of the problem the particle must move in a plane ϕ =constant.
Then the particle will bounce off the sphere at an angle to the normal equal to the
incident angle α.
The particle is deflected through an angle θ = π − 2α, related to the impact parameter
by

b = R cos
θ

2
. (3)
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Classical particle scattering: Scattering cross sections

We can calculate the number of particles scattered in a direction specified by the polar
angles θ, ϕ, within angular ranges dθ, dϕ. The particles scattered through angles
between θ and θ + dθ are those that came in with impact parameters between b and
b + db,

db = −1

2
R sin

θ

2
dθ. (4)

Consider now a cross-section of the incoming beam. The particles we are interested in
are those which cross a small element of area

dσ = b |db| dϕ. (5)

Inserting the values of b and db,

dσ =
1

4
R2 sin θ dθ dϕ. (6)

The rate at which the particles cross this area, and therefore the rate at which they
emerge in the given angular range, is

dw = fdσ. (7)
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Classical particle scattering: Scattering cross sections

To measure this rate we place a detector at a large distance from the target in the
specified direction. We want to express our result in terms of the cross-sectional area
dA of the detector, and its distance L form the target (we assume L � R). The
element of area on a sphere of radius L is

dA = L2 sin θ dθ dϕ. (8)

The solid angle subtended at the origin by the area dA is

dΩ = sin θ dθ dϕ, (9)

so that
dA = L2dΩ. (10)

(The total solid angle subtended by an entire sphere is 4π.) The important quantity is
not the cross-sectional area dσ itself, but rather the ratio dσ/dΩ, which is called the
differential cross-section. The rate dw at which particles enter the detector is

dw = f
dσ

dΩ

dA

L2
. (11)
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Classical particle scattering: Scattering cross sections

It is useful to note an alternative definition of the differential cross-section, which is
applicable even if we cannot follow the trajectory of each individual particle. We define
dσ/dΩ to be the ratio of scattered particles per unit solid angle to the number of
incoming particles per unit area,

dσ

dΩ
=

number of scattered particles per unit solid angle
number of incoming particles per unit area

.

Then the rate at which particles are detected is obtained by multiplying the differential
cross-section by the flux of incoming particles, and by the solid angle subtended at the
target by the detector, as in (11).
In the case of scattering from a hard sphere, the differential cross section is

dσ

dΩ
=

1

4
R2. (12)

It has the special feature of being isotropic, or independent of the scattering angle.
Thus the rate at which particles enter the detector is, in this case, independent of the
direction in which it is placed.

Note that the total cross-section is correctly given by integrating (12) over all solid
angles; in this case, we multiply by the total solid angle 4π.
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Classical particle scattering: Rutherford scattering

Crucial importance in obtaining an understanding of the structure of the atom.

In a classic experiment, performed in 1911, Rutherford bombarded atoms with
α-particles (helium nuclei). Because these particles are much heavier than electrons,
they are deflected only very slightly by the electrons in the atom, and can therefore be
used to study the heavy atomic nucleus. From observations of the angular distribution
of the scattered α-particles, Rutherford was able to show that the law of force between
α-particle and nucleus is the inverse square law down to very small distances. Thus he
concluded that the positive charge is concentrated in a very small nuclear volume
rather than being spread out over the whole volume of the atom.
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Classical particle scattering: Rutherford scattering

Calculation of the differential cross-section for the scattering of a particle of charge q
and mass m by a fixed point charge q′.

We look for the relation between the impact pa-
rameter b and the scattering angle θ = π − 2Θ
(see Figure 3). Change in angle for the particle
of mass m and charge q,

Θ(r) =

ˆ rmax

rmin

J/r2

√

2m
[

E − U(r) − J2

2mr2

]

dr,

where
rmax = ∞ max distance between charges,

rmin min distance between charges, rmin = a +
√

a2 + b2 where a = q q′

4πε0 m v2 ,
it can be derived from the radial energy equation: 1

2
m(ṙ2 + r2Θ̇2) − U(r) = E

the angular momentum J = m r2 Θ̇ = mvb = b
√

2mT0, (conserved quantity)

T0 initial kinetic energy,

E = T0 total energy, (conserved quantity)

U(r) = q q′

4πε0r
Coulomb potential. (at infinity U = 0 ⇒ E = T − U = T0).
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Classical particle scattering: Rutherford scattering

Integrating in dr, we find

b = a cot
θ

2
.

Thus

db = − adθ

2 sin2 θ
2

,

so that, substituting in (5), we obtain

dσ =
a2 cos θ

2
dθ dϕ

2 sin3 θ
2

Dividing by the solid angle (9), we find for the differential cross-section

dσ

dΩ
=

a2

4 sin4 θ
2

. (13)

This is the Rutherford scattering cross-section.
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Classical particle scattering: Rutherford scattering

Comments:

This cross-section is strongly dependent both on the velocity of the incoming
particle and on the scattering angle.

It is independent of the signs of the charges, so that the form of the scattering
distribution is the same for an attractive force as for a repulsive one.

It also increases with increasing charge.

To investigate the structure of the atom at small distances, we must use
high-velocity particles, for which a is small, and examine large-angle scattering,
corresponding to particles with small impact parameter b. The cross-section (13)
is large for small values of the scattering angle, but physically it is the large angle
scattering which is of most interest. For, the fact that particles can be scattered
through large angles is an indication that there are very strong forces acting at
very short distances. If the positive nuclear charge were spread out over a large
volume, the force would be inverse-square-law only down to the radius of the
charge distribution. Beyond that point, it would decrease as we go to even smaller
distances. Consequently, the particles that penetrate to within this distance would
be scattered through smaller angles.
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Classical particle scattering: Rutherford scattering

What about the total cross-section? A peculiar feature of the differential
cross-section (13) is that the corresponding total cross-section is infinite. This is a
consequence of the infinite range of the Coulomb force. However far away from
the nucleus a particle may be, it still experiences some force, and is scattered
through a non zero (though small) angle. Thus the total number of particles
scattered through any angle, however small, is indeed infinite.

We can calculate the number of particles scattered through any angle greater than
some small lower limit θ0. These are particles which had impact parameters b less
than b0 = a cot θ0

2
. The corresponding cross-section is

σ(θ > θ0) = πb2

0 = πa2 cot2
θ0

2
.

A remarkable fact is that the quantum-mechanical treatment of Coulomb scattering
leads to exactly the same result as does the classical derivation. (Why?)
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Scattering of classical (electromagnetic or acoustic) waves

The scattering and diffraction of waves is universally and ubiquitously observable. It
involves the transfer of energy and information without bulk motion; light, sound and
elastic waves are important to us in natural and technological senses.

At a fundamental level Maxwell’s equations or the scalar wave equation completely
describe all electromagnetic or acoustic phenomena, when supplemented with
appropriate boundary and radiation conditions. A variety of analytical and numerical
techniques have been devised to solve these equations.
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The equations of acoustic waves

Acoustic waves

Acoustics may be described as the theory of the propagation of small
disturbances in fluids, liquid or gaseous. The propagation arises from rarefaction
and compression of the fluid that causes a change in the density.

Wave equation:

∇2ρ =
1

v2

∂2ρ

∂t2
,

where ρ is the density perturbation and v the sound speed.

When the density perturbation ρ varies harmonically in time,

ρ(t, x) = ρ(x)e−iωt,

then the wave equation reduces to the Helmholtz equation

∇2ρ(x) + k2ρ(x) = 0, k =
ω

v
.
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The equations of electromagnetic waves

Electromagnetic waves

The electromagnetic field is described by the Maxwell’s equations

div~D = ρ, curl ~H = ∂ ~D
∂t

+ ~J,

div ~B = 0, curl~E = − ∂ ~B
∂t

.

~J : current density, ρ: charge density
~E, ~H: electric and magnetic field
~B, ~D: magnetic and electric flux density

The macroscopic electromagnetic equations must be supplemented by the
constitutive equations connecting field intensities with flux densities. In isotropic
bodies the constitutive relations are

~D = ε ~E, ~B = µ ~H,

ε is the medium permittivity, µ is the medium permeability
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The equations of electromagnetic waves

For electromagnetic fields varying with time harmonic dependence e−iωt, the
Maxwell’s equations reduce to the wave equations

∇2 ~E + k2 ~E = −iωµ~J +
1

iωε
grad div ~J,

∇2 ~H + k2 ~H = −curl~J,

where k2 = ω2εµ.

Alternative representation in terms of scalar and vector potentials

∇2 ~A + k2 ~A = −µ~J,

∇2φ + k2φ = −ρ/ε.
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Wave scattering theory

We are interest in the interaction of traveling acoustic or electromagnetic waves with
bodies of varying acoustic or electromagnetic properties and of varying shape.

The interaction between waves and obstacles (scatterers) causes disturbances to
incident wave fields → diffraction phenomena.

Different situations depending on the ratio of the characteristic dimension l of a
scatterer and the wavelength λ of the incident wave:

1 λ/l � 1, low-frequency scattering (that is a perturbation of the incident wave)
occurs: known as Rayleigh scattering; it can be studied by various perturbation
methods.

2 λ ∼ l, one or several diffraction phenomena dominate; this region is called
resonance region; there are no suitable approximation methods → need of
rigorous approaches.

3 λ/l � 1, high-frequency region or quasi-optical region; it can be studied by
well-developed high-frequency approximate techniques → geometrical optics.
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Wave scattering theory

Independently of the frequency regime and the specific scattering mechanisms, the
general formulation of the diffraction problem is uniform.

The incident and total field satisfies the Helmholtz equation or Maxwell’s equations as
appropriate, and several conditions must be imposed to ensure that the total field exists
and is unique.
These include:

boundary conditions
Sommerfeld’s radiation conditions
scatterers with sharp edges, boundedness condition on the scattered energy

Daniele Colosi (IMATE) Classical Scattering 27.03.09 19 / 38



Wave scattering theory

1 Fields
The total field is decomposed as a sum of the incident field and the scattered field,

U = U i + Us,

U must be solutions of the appropriate wave equation in the exterior of the
scatterer. Furthermore, U and its partial derivatives are continuous everywhere in
the space exterior to, and onto the surface of the scattered.

2 Boundary conditions
Acoustic case
If the surface of the scattered is acoustically rigid or hard, the fluid velocity vanishes at
the surface (hard boundary condition)

∂U

∂n

∣

∣

∣

∣

∣

S

= 0,

where ~n is the unit normal to the surface S of the scatterer.
If the surface of the scattered is acoustically soft, the pressure vanishes on the surface
(soft boundary condition)

U |S = 0.
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Wave scattering theory

Electromagnetic case
In general the boundary surface S separates two media with different
electromagnetic parameters ε1, µ1 and ε2, µ2; denote the corresponding
electromagnetic fields by ~E1, ~H1 and ~E2, ~H2, respectively. Assume that there are
no charges and currents on S. The boundary conditions are

ε1 ~E1 · ~n = ε2 ~E2 · ~n,

~E1 ∧ ~n = ~E2 ∧ ~n,

µ1
~H1 · ~n = µ2

~H2 · ~n,

~H1 ∧ ~n = ~H2 ∧ ~n.

Tangential components continuous, normal components discontinuous.
If a charge q and a current ~J are presented on S,

~n ∧ ~E1 = 0,

~E1 · ~n = q,

~n ∧ ~H1 = ~J,

~H1 · ~n = 0,
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Wave scattering theory

1 Sommerfeld radiation condition (physically reasonable solutions)
in 3d
For any scattered scalar field Us that satisfies the Helmholtz equation:

|rUs| < K, ∀r,

for some constant K, and

r

(

∂Us

∂r
− ikUs

)

→ 0, as r → ∞.

in 2d
|
√

r Us| < K ∀r,

and
√

r

(

∂Us

∂r
− ikUs

)

→ 0, as r → ∞.

These conditions mean that in 2d (3d) space the scattered field must behave as an
outgoing cylindrical (resp., spherical) wave at very large distances from the scatterer.
The minus sign in both formulae is replaced by a plus sign if the time harmonic
dependence is changed from exp(−iωt) to exp(+iωt).
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Wave scattering theory

The corresponding conditions for the 3d electromagnetic case are

|r ~E| < K, |r ~H| < K,

and
r
(

~E + η0~r ∧ ~H
)

→ 0, r
(

~H − η−1

0 ~r ∧ ~E
)

→ 0,

as r → ∞. η0 =
√

µ0/ε0 is the characteristic impedance of the medium.
In 2d the factor r is replaced by

√
r.
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Cross sections and scattering amplitude

When an object is illuminated by a wave, a part of the incident power is scattered out
and another part is absorbed by the object.

Consider a lin. polarized electromagnetic
plane wave propagating in a medium with
dielectric constant ε0 and permeability µ0

with the electric field given by

~Ei(~r) = êi exp (−ik î · ~r)

Amplitude | ~Ei| chosen to be 1 (volt/m)
k = ω

√
µ0ε0 = (2π)/λ is the wave number,

λ is a wavelength in the medium
î unit vector in the direction of wave prop.
êi unit vector in the direction of its polariz.

ε    , µo o

s

E (r)i

R

ô

î

E (r)

The total field ~E at a distance R from a reference point in the object, in the direction of
a unit vector ô, consists of the incident field ~Ei and the field ~Es scattered by the object.
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Cross sections and scattering amplitude

Within a distance R < D2/λ (where D is a typical dimension of the object, such as
its diameter), the field ~Es has a complicated amplitude and phase variations
because of the interference between contributions from different parts of the object
and the observation point ~r is said to be in the near field of the object.

When R > D2/λ the scattered field ~Es behaves as a spherical wave

~Es(~r) = ~f(ô, î)
e−ikR

R
, for R >

D2

λ

~f (ô, î) represents the amplitude, phase, and polarization of the scattered wave in
the far field in the direction ô when the object is illuminated by a plane wave
propagating in the direction î with unit amplitude.

~f (ô, î) is called the scattering amplitude
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Cross sections and scattering amplitude

Consider the scattered power flux density Ss at a distance R in the direction ô, caused
by an incident power flux density Si.

The differential scattering cross-section is

dσs

dΩ
= lim

R→∞

R2Si

Ss
= |~f (ô, î)|2

where Si and Ss are the magnitudes of the incident and the scattering power flux
density vectors

~Si =
1

2
( ~Ei ∧ ~H∗

i ) =
| ~Ei|2
2η0

î, ~Ss =
1

2
( ~Es ∧ ~H∗

s ) =
| ~Es|2
2η0

ô,

η0 is the characteristic impedance of the medium.
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Cross sections and scattering amplitude

Total observed scattered power at all angles surrounding the object: scattering
cross-section,

σs =

ˆ

dσs =

ˆ

|~f(ô, î)|2dΩ

Alternatively, σs can be written as

σs =

´

S0

Re
(

1

2

~Es ∧ ~H∗

s

)

~dA

|~Si|

where S0 is an arbitrary surface enclosing the object and ~dA is the differential surface
area directed outward.
Total power absorbed by the object: absorption cross-section,

σa = −
´

S0

Re
(

1

2

~E ∧ ~H∗

)

~dA

|~Si|

where ~E = ~Ei + ~Es and ~H = ~Hi + ~Hs are the total fields.
Finally the total cross-section is

σ = σs + σa
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Special Relativity

In SR the "length" of a 4-vector is invariant under Lorentz transformation,

xµ = (ct, x, y, z) → xµxµ = c2t2 − x2 − y2 − z2.

The relativistic momentum and the relativistic energy are

~p = γ m~v, E = γ mc2,

where m is the rest mass, and the factor γ is

γ =
1

√

1 − β2
, with β =

v

c
(14)

(Newton γ ∼ 1, elementary particles γ ∼ 104, some cosmic-ray protons γ ∼ 1011)
The relativistic momentum and the relativistic energy are components of the
energy-momentum 4-vector,

P = (E/c, px, py, pz).

We have the following relativistic energy momentum relation,

E2 = m2c4 + p2c2 c=1−→ E2 = m2 + p2.
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Scattering of relativistic particles

Kinematic variables: masses, energies, momenta, angles,...
Not all are independent!

Conservation laws:
Energy and momentum conservation laws (set of 4 eqs valid in all inertial frames)

Physical quantities (like σ) may have simple form in specific reference frames:

Transformations between different coordinate systems (lab and c.o.m.)
Quantities conserved during the transformation (invariant variables)
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2-body → 2-body process

We consider the scattering process of the form A + B → C + D, see Figure 5.

We have two conservation laws:
1 energy conservation,

EA + EB = EC + ED

2 3-momentum conservation,

~pA + ~pB = ~pC + ~pD

Conservation of the 4-momenta:

PA + PB = PC + PD

For I initial particles and F final particles:

I
∑

i=1

Pi =

F
∑

f=1

Pf
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Mandelstam variables

The Mandelstam variables which are invariant under Lorentz transformations, are
defined as

s = (PA + PB)2 = (PC + PD)2

t = (PA − PC)2 = (PB − PD)2 (15)

u = (PA − PD)2 = (PB − PC)2

By adding up the terms on the right-hand side of Eqs. (15), and applying momentum
conservation in the form (PA + PB − PC − PD)2 = 0, we arrive at the relation,

s + t + u = m2

A + m2

B + m2

C + m2

D = constant
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Interpretation of Mandelstam varibles

For any process, s is the square of the total initial 4-momentum. Then in the
center-of-mass frame, defined by ~pA = −~pB (3-vectors), s has the form,

s = (PA + PB)2

= m2

A + m2

B + 2EAEB − 2~pA · ~pB

= E2

A + E2

B + 2EAEB

= (EA + EB)2

= E2

cm

√
s is the total energy in the center-of-mass frame.

The definitions of t and u appear to be interchangeable (by renaming PC → PD).

t = (PA − PC)2 is the momentum transfer (square difference of the initial and final
4-momenta).
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Collisions of particles with fixed target - Threshold energy

Collision of particles, (m1, E
lab
1 ), with fixed target (m2, E

lab
2 = 0)

In the laboratory system we have,

s = E2

cm,

= m2

1 + m2

2 + 2Elab
1 m2,

= 2Elab
1 m + 2m2, for m1 = m2 = m.

Hence

Elab
1 =

E2

cm

2m
− m.

Threshold energy: minimum energy to create new particles.

P1 + P2 =
∑

Pf

where the final 4-momenta are Pf = (Ef = mf , 0, 0, 0). Squaring

m2

1 + m2

2 + 2m2E
lab
1 =

(

∑

mf

)2

⇒ Elab
1 =

1

2m2

[

(

∑

mf

)2

− m2

1 − m2

2

]
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Collider

Collision of two particles with (m1, E
lab
1 ) and (m2, E

lab
2 )

In the laboratory system we have,

s = m2

1 + m2

2 − 2Elab
1 Elab

2 + 2plab
1 plab

2 ,

= 4(Elab
1 )2, for ~p1 = −~p2, m1 = m2.

Hence

Elab
1 =

Ecm

2
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A+B → C+D

Consider the 2-body → 2-body process in the c.o.m. frame for particles all of mass m.

In the center-of-mass frame we have:
|~pA| = |~pB| = |~pC | = |~pD| = p,
and
EA = EB = EC = ED = E.

The Mandelstam variables are

s = (PA + PB)2 = (2E)2 = E2

cm,

t = (PA − PC)2

= 2m2 − 2E2 + 2p2 cos θ = −2p2(1 − cos θ),

u = (PA − PD)2 = 2m2 − 2E2 + 2p2 cos(π − θ) = −2p2(1 + cos θ).

We see that

because −1 ≤ cos θ ≤ 1 it is t < 0 and u < 0,

t → 0 as θ → 0,

u → 0 as θ → π.

The sum of the Mandelstam variables is: s + t + u = 4E2 − 4p2 = 4m2.
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Rapidity I

The relation between β and γ given in (14) and the ranges 0 ≤ β ≤ 1, 1 ≤ γ ≤ ∞ allow
the alternative parametrization

β = tanh η

and so

γ = cosh η

γβ = sinh η

where η is known as the boost parameter or rapidity.

In term of η the Lorentz transformations between coordinate systems moving with
velocity v along the z direction become

c t′ = c t cosh η − z sinh η, (16)

z′ = −c t sinh η + z cosh η. (17)
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Rapidity II

Suppose that a particle has momentum ~p in a frame K, with transverse momentum ~pT

and a z (beam axis) component pL.

There is a unique Lorentz transformation in the
z direction to a frame K ′ where the particle has
no z component of momentum.
In K′ the particle has momentum and energy

~p ′ = ~pT ,
E′

c
= mT =

√

p2

T + m2c2

In terms of the rapidity parameter, the momentum components and energy of the
particle in the original frame K can be written,

~pT , pL = mT sinh η,
E

c
= mT cosh η

If a particle is at rest in frame K ′, that is ~pT = 0, then the above expressions become

p = m c sinh η, E = m c2 cosh η

and the rapidity can be expressed as

η =
1

2
ln

E/c + pL

E/c − pL
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Rapidity III

The convenience of ~p⊥ and η as kinematic variables is that a Lorentz
transformation in the z direction shifts the rapidity by a constant amount,
η → η − Z, where Z is the rapidity parameter of the transformation.

With these variables, the configuration of particles in a collision process viewed in
the laboratory frame differs only by a trivial shift of the origin of the rapidity from
the same process viewed in the center of mass frame.
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