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Literature

K. Wilson and J. Kogut: The renormalization group and the ε expansion
(follow sections 4 and 3 of this main reference closely,
also all figures are picked out therefrom)

G. Parisi: Statistical field theory

L. Kadanoff: Statistical physics - statics, dynamics and renormalization
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consider cubic lattice of spatial dimension d and lattice constant a,
site on lattice denoted by n ∈ Zd,
thus dimensionless: [n] = 1 and [a] = length

lattice site n located in space at position xn = an, thus [x] = lengthd

general definition of partition function depending on temperature T
and coupling constants g:

Z(T,g) :=
X̂

states

e−H[state,g]/(kbT )
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Hamiltonian of Gaussian model in configuration space:

HGauss[s,J,B] = −J
X
n

dX
i=1

sn sn+ei
+

B

2

X
n

s2n

Ising model: dimensionless spins s live on discrete lattice and takes discrete values sn = ±1

Gaussian model: s on discrete lattice, but continuous sn ∈ R

redefine constants in order to save writing lots of (kBT )’s: j = J/(kBT ) and b = B/(kBT )

eHGauss[s,j,b] :=
HGauss[s]

kBT
= −j

X
n

dX
i=1

sn sn+ei
+

b

2

X
n

s2n
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Hamiltonian of s4-model in configuration space:

Hs4 [s,J,B,L] = −J
X
n

dX
i=1

sn sn+ei
+

B

2

X
n

s2n| {z }
HGauss[s]

+L
X
n

s4n| {z }
HInt[s]

define l = L/(kBT )

eHs4 [s,j,b,l] :=
Hs4 [s]

kBT
= −j

X
n

dX
i=1

sn sn+ei
+

b

2

X
n

s2n + l
X
n

s4n

s4-model approaches Ising model for l → ∞ and b → −∞
with fixed b/l = −4 if the lattice spins s are properly rescaled

Max Dohse (IMUNAM Morelia) QG Seminar 05.06.2009 8 / 54



Hamiltonian of s4-model in configuration space:

Hs4 [s,J,B,L] = −J
X
n

dX
i=1

sn sn+ei
+

B

2

X
n

s2n| {z }
HGauss[s]

+L
X
n

s4n| {z }
HInt[s]

define l = L/(kBT )

eHs4 [s,j,b,l] :=
Hs4 [s]

kBT
= −j

X
n

dX
i=1

sn sn+ei
+

b

2

X
n

s2n + l
X
n

s4n

s4-model approaches Ising model for l → ∞ and b → −∞
with fixed b/l = −4 if the lattice spins s are properly rescaled

Max Dohse (IMUNAM Morelia) QG Seminar 05.06.2009 8 / 54



partition function becomes

Z(T,J,B,L) = Z(j,b,l) =

ˆ
ds exp

X
n

„ dX
i=1

j sn sn+ei
−

b

2
s2n − ls4n

«
ˆ

ds :=
Y
n

+∞ˆ

−∞

dsn
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introduce dimensionless spatial spin fluctuations σ[q,s]

with fluctuation frequency (wave vector) q
as discrete Fourier transform of lattice spins s:

σ[q,s] :=
X
n

e−iqn sn

frequency has continuous values in first Brillouin zone: q ∈ [− ιπ,+ ιπ]d,

and qj denotes the jth component of q

ˆ
d
d
q :=

dY
j=1

+ ιπˆ

− ιπ

dqj

2 ιπ
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introduce dimensionless spatial spin fluctuations σ[q,s]

with fluctuation frequency (wave vector) q
as discrete Fourier transform of lattice spins s:

σ[q,s] :=
X
n

e−iqn sn

can write Hamiltonian in terms of spin fluctuations with er := b− 2dj:

eHs4 [s,er,j,l] =
1

2

ˆ
d
d
q σ[q,s] σ[−q,s]

„er + j
dX
k=1

˛̨̨
eiqk − 1

˛̨̨2«
+ l

ˆ
d
d
q1

ˆ
d
d
q2

ˆ
d
d
q3

ˆ
d
d
q4 σ[q

1
,s] σ[q

2
,s] σ[q

3
,s] σ[q

4
,s]

(2 ιπ)d δ(d)(q
1
+q

2
+q

3
+q

4
)
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now three changes will be applied in order to simplify our calculations

first: replace
P
k
| exp(iqk)− 1|2 = 2(1−cos qk) by its form for small q, i.e.: by q2,

no essential change of model, because our interest lies in long wavelengths behavior
which comes from small fluctuation frequencies

second: rescale the spins such that j = 1, i.e.: sn → sn/
√
j
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third: limit range of integration from [− ιπ,+ ιπ]d to |q| ∈ [0, 1],
which for the same reason is no essential change in the model and from now on

ˆ
d
d
q :=

ˆ

|q|≤1

dY
k=1

dqk

2 ιπ

however conceptually there is a difficulty:
with the new restricted range we can no longer relate the functional variable σ[q,s]

to the ordinary variables sn,
therefore consider the spin fluctuations as variables σ(q) in their own right
and change the definition of the partition function from ordinary integrals over the sn
to functional integrals over σ(q)
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with r := er/j = b
j
− 2d and u := l/j2 after these three changes we get

eHs4 [σ,r,u] =

eHGauss[σ,r]z }| {
1

2

ˆ
d
d
q
“
q2 + r

”
σ(q)σ(−q)

+ u

ˆ
d
d
q1

ˆ
d
d
q2

ˆ
d
d
q3

ˆ
d
d
q4 σ(q

1
)σ(q

2
)σ(q

3
)σ(q

4
) (2 ιπ)d δ(d)(q

1
+q

2
+q

3
+q

4
)| {z }eHInt[σ,u]

Z(r,u) :=

ˆ
Dσ e−

eH
s4 [σ,r,u]
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now attempt to define new physical system (denoted by a prime),
in which high frequency modes of present system are integrated out,
i.e., statistically averaged out

effective Hamiltonian of new system will be designed as similar as possible to eHs4 [σ,r,u],
this will involve considerable simplifications/approximations

in place of couplings r, u we will find new couplings r′(r,u) and u′(r,u),
one of our aims is to find these recursion relations
relating the new with the original couplings
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construction works as follows:

integrals of spin fluctuations in original system are over frequencies |q| ∈ [0, 1],
new ”primed” system obtained by averaging about high frequency modes |q| ∈ [1

2
, 1]
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write function σ(q) as sum over partition of unity p:

σ(q) = σ<(q) + σ>(q)

σ≶(q) := p≶(q)σ(q)
p≶(q) ∈ [0,1]

p<(q)+p>(q) = 1 ∀q

Wilson chooses discontinuous partition of unity:
Heaviside step functions p≶(q) = θ

`
∓(|q| − 1

2
)
´
, thus

σ<(q) := p<(q)σ(q) = θ
`

1
2 − |q|

´
σ(q) =

(
σ(q) |q| < 1

2

0 |q| > 1
2

σ>(q) := p>(q)σ(q) = θ
`
|q|− 1

2

´
σ(q) =

(
0 |q| < 1

2

σ(q) |q| > 1
2
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in Gaussian Hamiltonian the high and low frequency modes decouple,
there is NO interaction between fluctuations of high and low frequency:

eHGauss[σ,r] =
1

2

ˆ
d
d
q
“
q2 + r

”
σ(q)σ(−q)

=
1

2

 ˆ

|q|<1
2

+

|q|<1ˆ

|q|>1
2

!
d
d
q
“
q2 + r

”»
σ<(q)σ<(−q) +

0z }| {
σ<(q)σ>(−q)

+ σ>(q)σ<(−q)| {z }
0

+σ>(q)σ>(−q)

–

=
1

2

ˆ

|q|<1
2

d
d
q
“
q2 + r

”
σ<(q)σ<(−q)

| {z }eHGauss[σ<,r]

+
1

2

|q|<1ˆ

|q|>1
2

d
d
q
“
q2 + r

”
σ>(q)σ>(−q)

| {z }eHGauss[σ>,r]
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however in σ4-interaction no decoupling occurs,
there IS an interaction between fluctuations of high and low frequencies:
the Hamiltonian

eHInt[σ,u] = u

ˆ
d
d
q1

ˆ
d
d
q2

ˆ
d
d
q3

ˆ
d
d
q4 σ(q

1
) σ(q

2
) σ(q

3
) σ(q

4
) (2 ιπ)d δ(d)(q

1
+q

2
+q

3
+q

4
)

(in addition to the decoupling parts) also contains high-low frequency interactions like

u

ˆ

|q
1
|<1

2

d
d
q1

ˆ

|q
2
|<1

2

d
d
q2

|q
4
|<1ˆ

|q
3
|>1

2

d
d
q3

|q
4
|<1ˆ

|q
4
|>1

2

d
d
q4 σ<(q

1
)σ<(q

2
)σ>(q

3
)σ>(q

4
) (2 ιπ)d δ(d)(q

1
+q

2
+q

3
+q

4
)

and therefore we have eHInt[σ,u] 6= eHInt[σ<,u] + eHInt[σ>,u]
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partition function can now be written as

Z(r,u) :=

ˆ
Dσ e−

eH
s4 [σ,r,u]

=

ˆ
Dσ<

ˆ
Dσ> e−

eH
s4 [σ<+σ>,r,u]

integrating out high frequency modes σ> shall give us

Z(r,u) = Z(r′,u′) =

ˆ
Dσ′ e

− eH′
s4

[σ′,r′,u′]

with new effective couplings r′, u′ and rescaled fluctuations σ′,
however at moment new primed Hamiltonian only expressed in terms of original couplings:

e
− eH′

s4
[σ,r,u]

=

ˆ
Dσ> e−

eH
s4 [σ<+σ>,r,u]

and primed fluctuation modes are related to original long wavelength modes
by scaling relations

σ′(q′ := 2q) = ζ σ<(q) ∀ |q| ∈ [0, 1
2]
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because of eHGauss[σ,r] = eHGauss[σ<,r] + eHGauss[σ>,r], we can write

e
− eH′

s4
[σ,r,u]

=

ˆ
Dσ> e−

eH
s4 [σ,r,u] =

ˆ
Dσ> e−

eHGauss[σ,r]− eHInt[σ,u]

= e−
eHGauss[σ<,r]

ˆ
Dσ> e−

eHGauss[σ>,r]− eHInt[σ,u]

factor exp− eHGauss[σ<,r] easily expressed in primed spin fluctuations:

eHGauss[σ<,r] = 1
2

ˆ

|q|<1
2

d
d
q
“
q2 + r

”
σ<(q)σ<(−q)

= 1
2

“
ζ2/2d+2

” ˆ

|q|′<1

d
d
q ′
“
q′ 2 + 4r

”
σ′(q′)σ′(−q′)
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now perturbative part: assuming coupling u := L/(j2kBT ) to be small: u� 1,
we can work out a precise relation between original and primed Hamiltonian

using this expansion we can now attack the functional integral

ˆ
Dσ> e−

eHGauss[σ>,r]− eHInt[σ,u] =

ˆ
Dσ> e−

eHGauss[σ>,r]
“

1− eHInt[σ,u] + 1
2
eH2

Int[σ,u]− ...

”

Max Dohse (IMUNAM Morelia) QG Seminar 05.06.2009 25 / 54



now perturbative part: assuming coupling u := L/(j2kBT ) to be small: u� 1,
we can work out a precise relation between original and primed Hamiltonian

using this expansion we can now attack the functional integral

ˆ
Dσ> e−

eHGauss[σ>,r]− eHInt[σ,u] =

ˆ
Dσ> e−

eHGauss[σ>,r]
“

1− eHInt[σ,u] + 1
2
eH2

Int[σ,u]− ...

”

Max Dohse (IMUNAM Morelia) QG Seminar 05.06.2009 25 / 54



in order to evaluate this integral, we need to calculate Gaussian integrals of the type

I(r, q
m1

, ..., q
mk

) :=

ˆ
Dσ> e−

eHGauss[σ>,r] σ>(q
m1

) ...σ>(q
mk

)

wherein the indices m1, ..., mk are (not necessarily different) natural numbers

define functional integral

ZGauss(r) :=

ˆ
Dσ> e−

eHGauss[σ>,r]

ZGauss(r) contributes only a σ′(q′)-independent constant factor to exp− eH′
s4

[σ′,r′,u′]

define (lousily LATEXed) contraction |σ> σ>| of high frequency fluctuations as

|σ>(q
ma

)σ>(q
mb

)
| := θ

`
|q
ma
| − 1

2

´
(2 ιπ)d

δ(d)(q
ma

+q
mb

)

q2
ma

+ r
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evaluating Gaussian integrals I(r, q
m1

, ..., q
mk

) one finds result given by ZGauss(r) times

sum of all possible ways of contracting the σ>(q
m1

) ...σ>(q
mk

) in pairs

such that all of them are contained in some contraction:

I(r,q
m1

,...,q
mk

) = ZGauss(r)

X
P (m1,...,mk)

|σ>(q
P (m1)

)σ>(q
P (m2)

)
| · ... ·| σ>(q

P (mk−1)
)σ>(q

P (mk)
)
|

wherein the sum runs over all permutations P of the indices m1, ..., mk

in order to translate this result into diagrams, we remember σ(q) = σ<(q) + σ>(q)

and therefore have to consider two cases for each endpoint:

if spin fluctuation frequency q associated to endpoint has length |q| < 1
2

,
i.e.: σ(q) = σ<(q), then it is within the long wavelength regime,
which we don’t integrate out, thus it’s NOT contracted, just left uncontracted

whereas if |q| > 1
2

, i.e.: σ(q) = σ>(q),
then it IS integrated out, and must be contracted with another endpoint
whose frequency also has length greater than one half
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thus for our functional integral we obtain

order u0

ˆ
Dσ> e−

eHGauss[σ>,r]
“

1
”

=: ZGauss(r)
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order u1:
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order u1:

Max Dohse (IMUNAM Morelia) QG Seminar 05.06.2009 29 / 54



order u2: diagrams shown below, weights include 1
2

in front of eH2
Int

any diagram computes according to following rules:

1. label frequencies/momenta in incoming sense at each vertex

2. external frequencies within |q| < 1
2

, internal within |q| ∈ [ 1
2
, 1]

3. to each internal line connecting frequencies q
1

and q
2

associate propagator (2 ιπ)dδ(d)(q
1
+q

2
)/(q2

1
+ r)

4. to each vertex a factor u(2 ιπ)d times delta function over sum of four incoming frequencies

5. each external leg obtains spin fluctuation variable σ<(q) = ζσ′(2q)

6. integrate over frequencies of internal and external lines according to rule 2.
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now achieved (up to certain order in u): calculate exp− eH′
s4

[σ,r,u] in terms of r, u, σ<

can show: if and only if eH′Int is sum of all connected graphs to all orders in u,

then exp− eH′Int is sum of all connected and disconnected graphs to all orders in u
thus taking logarithm equivalent to removing all disconnected diagrams

only study σ′-dependent terms, thus drop ZGauss(r) and all diagrams without external lines

replacing σ<(q) by σ′(q′) by substituting ζσ′(2q) for external line instead of σ<(q)
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Outline

1 s4-model on a lattice

2 Spatial fluctuation variables

3 Averaging out high frequency fluctuations
Separating high and low frequencies
Perturbative analysis & diagrams
Recovering the original Hamiltonian

4 Calculation of critical exponent ν
Fixed points and critical points
Linearized recursion relations
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changing variables from q to q′ = 2q and using the results obtained up to now

we arrive at our desired primed Hamiltonian eH′
s4

[σ′,r′,u′] in the form

eH′
s4

[σ′,r,u] = 1
2

ˆ
d
d
q u′2(q,r,u) σ′(q)σ′(−q)

+

ˆ
d
d
q1

ˆ
d
d
q2

ˆ
d
d
q3 u′4(q

1
,q

2
,q

3
,r,u) σ′(q

1
)σ′(q

2
)σ′(q

3
)σ′(−q

1
−q

2
−q

3
)

+ terms of order (σ′)6 and higher ...

u′2(q,r,u) = ζ2/2d


1
4 q

2 + r + 12u

ˆ
d
d
p

1

(p2 + r)

− 96u2

ˆ
d
d
p1

ˆ
d
d
p2

1

(p2
1

+ r)

1

(p2
2

+ r)

1`
(1
2
q − p

1
− p

2
)2 + r

´
+ terms of order u3 and higher ...

ff

u′4(q
1
,q

2
,q

3
,r,u) = ζ4/23d


u− 12u2

ˆ
d
d
p

1

(p2 + r)

1`
(1
2
q
1

+1
2
q
2
− p)2 + r

´
− 2 permutations

+ terms of order u3 and higher ...

ff
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eH′
s4

[σ′,r,u] = 1
2

ˆ
d
d
q u′2(q,r,u) σ′(q)σ′(−q)

+

ˆ
d
d
q1

ˆ
d
d
q2

ˆ
d
d
q3 u′4(q

1
,q

2
,q

3
,r,u) σ′(q

1
)σ′(q

2
)σ′(q

3
)σ′(−q

1
−q

2
−q

3
)

+ terms of order (σ′)6 and higher ...

again make approximations to cast new Hamiltonian eH′
s4

[σ′,r′,u′]

in same form as original Hamiltonian

eHs4 [σ,r,u] =
1

2

ˆ
d
d
q
“
q2 + r

”
σ(q)σ(−q)

+ u

ˆ
d
d
q1

ˆ
d
d
q2

ˆ
d
d
q3 σ(q

1
) σ(q

2
) σ(q

3
) σ(−q

1
−q

2
−q

3
)

Wilson shows: these approximations are good for dimensions near d = 4
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first calculate u′2(q,r,u) only up to linear order in u, set

ζ = 21+d/2
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|p|<1ˆ

|p|>1
2

d
d
p

1

(p2 + r)
≈

1

(1 + r)

=: 4cz }| {
|p|<1ˆ

|p|>1
2

d
d
p
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1
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|p|>1
2

d
d
p

|p|<1ˆ

|p|>1
2

d
d
p

1

(p2 + r)

1`
(1
2
q
1

+1
2
q
2
− p)2 + r

´ ≈ 1

(1 + r)2

|p|<1ˆ

|p|>1
2

d
d
p

| {z }
=: 4c
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then renaming u′4(q
1
,q

2
,q

3
,r,u) by u′ we can write the recursion relations as

r′(r,u) = 4
“
r + 3cu/(1+r)

”
+ higher orders in u

u′(r,u) = 24−d
“
u− 9cu2/(1+r)2

”
+ higher orders in u

repeating many times the process of integrating out the high fluctuation frequencies,
after starting at initial couplings r0 and u0, and using recursion relations

rk+1(rk,uk) = 4
“
rk + 3cuk/(1+rk)

”
uk+1(rk,uk) = 24−d

“
uk − 9cu2

k/(1+rk)2
”

after k steps we get effective Hamiltonian eH(k)

s4

with integrated out all fluctuation frequencies |q| ∈ [2−k, 1],

i.e.: describes behaviour of fluctuations with low frequencies |q| ∈ [0, 2−k]
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rk+1(rk,uk) = 4
“
rk + 3cuk/(1+rk)

”
uk+1(rk,uk) = 24−d

“
uk − 9cu2

k/(1+rk)2
”

after k steps we get effective Hamiltonian eH(k)

s4

with integrated out all fluctuation frequencies |q| ∈ [2−k, 1],

i.e.: describes behaviour of fluctuations with low frequencies |q| ∈ [0, 2−k]
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for temperatures T above but near the critical temperature Tcrit,
the critical exponent ν describes power law behavior of the correlation length ξ(T ):

ξ(T ) = (T − Tcrit| {z }
τ

)−ν =: τ−ν

we had sacrificed for simplicity the connection between spins sn on lattice sites n
and their discrete Fourier transform σ[s,q]

now we would like to have back something similar to the lattice spins,
therefore introduce spin field:

s[σ,x] :=

ˆ

|q|<1

d
d
q eiqx σ(q)
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2-point spin correlation:

Γ(x,r,u) := Z−1
(r,u)

ˆ
Dσ s(x) s(0) e−

eH
s4 [σ,r,u]

which can be written as Fourier transform

Γ(x,r,u) =

ˆ
d
d
q eiqx eΓ(q,r,u)

define:

ξ2(r,u) := −
"

deΓ(q,r,u)/dq2eΓ(q,r,u)

#
q=0

call so defined ξ effective range of correlation
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integrating out high frequencies we obtain a new 2-point spin correlation, which is related to
the original one by the scaling relation

eΓ′(q′=2q,r′,u′) = 2d/ζ2 eΓ(q,r,u) = 1
4
eΓ(q,r,u)

the scaling relation for effective correlation ranges is

ξ′(r′,u′) = 1
2 ξ(r,u)
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at a fixed point of the recursion relations we will have

rk+1(rk,uk) = rk

uk+1(rk,uk) = uk

which implies for the effective correlation range ξk+1(rk+1,uk+1) = ξk(rk,uk)

together with ξk+1 = 1
2
ξk this implies

that at fixed points we have either vanishing or infinite effective correlation range,
but the vanishing case can be ruled out,
thus fixpoints correspond to critical points of the system
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rk+1(rk,uk) = 4
“
rk + 3cuk/(1+rk)

”
uk+1(rk,uk) = 24−d

“
uk − 9cu2

k/(1+rk)2
”

as in Gaussian model, recursion relations always have one trivial fixpoint
r∗ = u∗ = 0, also called Gaussian fixpoint
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as in Gaussian model, recursion relations always have one trivial fixpoint
r∗ = u∗ = 0, also called Gaussian fixpoint

thus for d ≥ 4 recursion relations only have Gaussian fixpoint r∗ = u∗ = 0
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rk+1(rk,uk) = 4
“
rk + 3cuk/(1+rk)

”
uk+1(rk,uk) = 24−d

“
uk − 9cu2

k/(1+rk)2
”

d < 4: choose u0 small, with increasing iterations uk will increase
until the second term in its recursion relation becomes comparable to the first,
and a new non-Gaussian fixpoint is approximately given by

u∗ ≈
24−d − 1

9c

r∗ ≈ −4c u∗ = −
4

9
(24−d − 1)
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u∗ ≈
24−d − 1

9c

r∗ ≈ −4c u∗ = −
4

9
(24−d − 1)

defining

ε := 4− d

and expanding in ε we find for small, positive ε that fixpoint is given by

u∗ ≈
ε ln 2

9c
> 0

r∗ ≈ −
4

9
ε ln 2 < 0
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recall definitions (after rescaling j to 1) of temperature-dependent couplings

r ≡ r0 :=
b

j
− 2d =

B

kbT
− 2d

u ≡ u0 := l/j2 = L/(kbT )

in non-Gaussian case u 6= 0 we can be at a critical temperature
without having r0 and u0 at fixed point values,
because for being at Tcrit one only needs to adjust one parameter,
but for being at fixed point one has to adjust two parameters

study theory for temperatures near Tcrit to calculate critical exponent ν

first step: study sequence {(rk(T ), uk(T ))} generated by repeatedly iterating
recursion relations starting from (r0(T ), u0(T ))

expect rk(Tcrit)
k →∞−→ r∗ and uk(Tcrit)

k →∞−→ u∗ as on line A in figure 4.5
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because recursion relations analytic, expect linear behavior for fixed k and T near Tcrit:

rk(T ) = rk(Tcrit) + ρk(

τz }| {
T − Tcrit)

uk(T ) = uk(Tcrit) + µk(T − Tcrit| {z }
τ

)

now if k is sufficiently large, then

rk(Tcrit) ≈ r∗ ⇒ rk(T ) ≈ r∗

uk(Tcrit) ≈ u∗ ⇒ uk(T ) ≈ u∗
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in matrix form this reads

„
rk+1 − r∗
uk+1 − u∗

«
≈M

„
rk − r∗
uk − u∗

«

M =

0@4− 12cu∗

(1+r∗)2
12c

(1+r∗)

2ε18cu∗
2

(1+r∗)3
2ε − 2ε18cu∗

(1+r∗)2

1A

by diagonalizing M explicit form of Mn neglecting eigenvalue 1 can be obtained:

Mn = λn
„

1 v
w vw

«
(1)

λ = 4
`
1− 1

3 ε ln 2
´

v = +4c
`
1 + 5

9 ε ln 2
´

w = −4c
`
1 + 5

9 ε ln 2
´
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„
rk+1 − r∗
uk+1 − u∗

«
≈M

„
rk − r∗
uk − u∗

«
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because we are considering T ≈ Tcrit, for fixed k we have

rk(T )− rk(Tcrit) ∼ (T − Tcrit) = τ

uk(T )− uk(Tcrit) ∼ (T − Tcrit) = τ

so that for sufficiently large k

(rk(T )− r∗) + v(uk(T )− u∗) = ck(T − Tcrit) = ck τ

and thus from the matrix equation (1) we deduce

rk+n − r∗ = λn ck (T − Tcrit) (2)

uk+n − u∗ = λn w ck (T − Tcrit)

Max Dohse (IMUNAM Morelia) QG Seminar 05.06.2009 51 / 54



because we are considering T ≈ Tcrit, for fixed k we have

rk(T )− rk(Tcrit) ∼ (T − Tcrit) = τ

uk(T )− uk(Tcrit) ∼ (T − Tcrit) = τ

so that for sufficiently large k

(rk(T )− r∗) + v(uk(T )− u∗) = ck(T − Tcrit) = ck τ

and thus from the matrix equation (1) we deduce

rk+n − r∗ = λn ck (T − Tcrit) (2)

uk+n − u∗ = λn w ck (T − Tcrit)

Max Dohse (IMUNAM Morelia) QG Seminar 05.06.2009 51 / 54



because we are considering T ≈ Tcrit, for fixed k we have

rk(T )− rk(Tcrit) ∼ (T − Tcrit) = τ

uk(T )− uk(Tcrit) ∼ (T − Tcrit) = τ

so that for sufficiently large k

(rk(T )− r∗) + v(uk(T )− u∗) = ck(T − Tcrit) = ck τ

and thus from the matrix equation (1) we deduce

rk+n − r∗ = λn ck (T − Tcrit) (2)

uk+n − u∗ = λn w ck (T − Tcrit)

Max Dohse (IMUNAM Morelia) QG Seminar 05.06.2009 51 / 54



now we can calculate ν, we had seen above that ξ(r,u) defined for any r, u,
since these depend on T we have ξ = ξ(T )

we had also seen the scaling relation

ξ(rk+n,uk+n) = 2−(k+n) ξ(r0,u0)
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from (2) we read off the following:

h
rk+n+1(T )− r∗

i
T−Tcrit = τ/λ

=
h
rk+n(T )− r∗

i
T−Tcrit = τh

uk+n+1(T )− u∗
i
T−Tcrit = τ/λ

=
h
uk+n(T )− u∗

i
T−Tcrit = τ
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or written more clearly

rk+n+1(Tcrit+τ/λ) = rk+n(Tcrit+τ)

uk+n+1(Tcrit+τ/λ) = uk+n(Tcrit+τ)
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thus

ξ(rk+n+1,uk+n+1)T=Tcrit+τ/λ
= ξ(rk+n,uk+n)T=Tcrit+τ

which with the scaling relation implies

2−(k+n+1)ξ(Tcrit+τ/λ) = 2−(k+n)ξ(Tcrit+τ) (3)
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which with the scaling relation implies

2−(k+n+1)ξ(Tcrit+τ/λ) = 2−(k+n)ξ(Tcrit+τ) (3)

thus assuming power law behavior for the effective correlation range

ξ(Tcrit+τ) ∼ τ−ν

(3) for arbitrarily small τ gives us

(τ/λ)−ν = 2τ−ν
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thus assuming power law behavior for the effective correlation range

ξ(Tcrit+τ) ∼ τ−ν

(3) for arbitrarily small τ gives us

(τ/λ)−ν = 2τ−ν

thus

ν =
ln 2

lnλ
=

1

2− ε/3
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ν =
ln 2

lnλ
=

1

2− ε/3

up to linear order in ε this writes

ν ≈ 1
2 + 1

12 ε

for nonzero ε our ν differs from value 1
2

obtained in Gaussian and mean field model,
experimentally (d=3) ν ≈ 0.6...0.7,
in 3-dim. (2-dim.) Ising model one has ν = 0.64 (1.0),
here obtained for (d = 3), (ε = 1) that ν ≈ 0.58,
for (d = 2), (ε = 2) that ν ≈ 2

3
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