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1 s4-model on a lattice

• consider cubic lattice of spatial dimension d and lattice constant a, site on
lattice denoted by n ∈ Zd, thus dimensionless: [n] = 1 and [a] = length

• lattice site n located in space at position xn = an, thus [x] = lengthd

• general definition of partition function depending on temperature T
and coupling constants g:

Z(T,g) :=
∑̂

states

e−H[state,g]/(kbT )

• Hamiltonian of Gaussian model in configuration space:

HGauss[s,J,B] = −J
∑
n

d∑
i=1

sn sn+ei
+

B

2

∑
n

s2n

• Ising model: dimensionless spins s live on discrete lattice and takes
discrete values sn = ±1

• Gaussian model: s on discrete lattice, but continuous sn ∈ R

• redefine constants in order to save writing lots of (kBT )’s: j = J/(kBT )
and b = B/(kBT )

H̃Gauss[s,j,b] :=
HGauss[s]

kBT
= −j

∑
n

d∑
i=1

sn sn+ei
+

b

2

∑
n

s2n

• Hamiltonian of s4-model in configuration space:

Hs4 [s,J,B,L] = −J
∑
n

d∑
i=1

sn sn+ei
+

B

2

∑
n

s2n︸ ︷︷ ︸
HGauss[s]

+L
∑
n

s4n︸ ︷︷ ︸
HInt[s]
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• define l = L/(kBT )

H̃s4 [s,j,b,l] :=
Hs4 [s]

kBT
= −j

∑
n

d∑
i=1

sn sn+ei
+

b

2

∑
n

s2n + l
∑
n

s4n

• s4-model approaches Ising model for l → ∞ and b → −∞ with fixed
b/l = −4 if the lattice spins s are properly rescaled

• partition function becomes

Z(T,J,B,L) = Z(j,b,l) =
ˆ

ds exp
∑
n

( d∑
i=1

j sn sn+ei
− b

2
s2n − ls4n

)
ˆ

ds :=
∏
n

+∞ˆ

−∞

dsn

2 Spatial fluctuation variables

• introduce dimensionless spatial spin fluctuations σ[q,s] with fluctua-
tion frequency (wave vector) q as discrete Fourier transform of lattice
spins s:

σ[q,s] :=
∑
n

e−iqn sn

frequency has continuous values in first Brillouin zone: q ∈ [− ιπ,+ ιπ]d, and
qj denotes the jth component of q

ˆ
d
d

q :=
d∏
j=1

+ ιπˆ

− ιπ

dqj

2 ιπ

• can write Hamiltonian in terms of spin fluctuations with r̃ := b− 2dj:

H̃s4 [s,er,j,l] =
1
2

ˆ
d
d

q σ[q,s] σ[−q,s]

(
r̃ + j

d∑
k=1

∣∣∣eiqk − 1
∣∣∣2)

+ l

ˆ
d
d

q1

ˆ
d
d

q2

ˆ
d
d

q3

ˆ
d
d

q4 σ[q
1
,s] σ[q

2
,s] σ[q

3
,s] σ[q

4
,s] (2 ιπ)d δ(d)

(q
1
+q

2
+q

3
+q

4
)

• now three changes will be applied in order to simplify our calculations
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• first: replace
∑
k

| exp(iqk)− 1|2 = 2(1−cos qk) by its form for small q, i.e.:

by q2, which is no essential change of the model, because our interest lies
in the long wavelengths behavior which comes from the small fluctuation
frequencies

• second: rescale the spins such that j = 1, i.e.: sn → sn/
√
j

• third: limit range of integration from [− ιπ,+ ιπ]d to |q| ∈ [0, 1], which for
the same reason is no essential change in the model and from now on

ˆ
d
d

q :=
ˆ

|q|≤1

d∏
k=1

dqk

2 ιπ

however conceptually there is a difficulty: with the new restricted range we
can no longer relate the functional variable σ[q,s] to the ordinary variables
sn, therefore we are forced to consider the spin fluctuations as variables
σ(q) in their own right and change the definition of the partition function
from ordinary integrals over the sn to functional integrals over σ(q)

• Wilson argues that this is not a problem for our purposes, because the
method of translating the integration variable is valid for functional in-
tegrals as well as for ordinary integrals, because functional integrals are
generally defined as limits of ordinary integrals, and each of these can be
translated

• with r := r̃/j = b
j − 2d and u := l/j2 after these three changes we get

H̃s4 [σ,r,u] =

eHGauss[σ,r]︷ ︸︸ ︷
1
2

ˆ
d
d

q
(
q2 + r

)
σ(q)σ(−q)

+ u

ˆ
d
d

q1

ˆ
d
d

q2

ˆ
d
d

q3

ˆ
d
d

q4 σ(q
1
) σ(q

2
) σ(q

3
) σ(q

4
) (2 ιπ)d δ(d)

(q
1
+q

2
+q

3
+q

4
)︸ ︷︷ ︸eHInt[σ,u]

Z(r,u) :=
ˆ
Dσ e− eHs4 [σ,r,u]

3 Averaging out high frequency fluctuations

3.1 Separating high and low frequencies

• now we attempt to define new physical system (denoted by a prime), in
which high frequency modes of present system are integrated out, i.e.,
statistically averaged out

• effective Hamiltonian of new system will be designed as similar as possi-
ble to H̃s4 [σ,r,u], this will involve considerable simplifications/approximations
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• in place of couplings r, u we will find new couplings r′(r,u) and u′(r,u), one
of our aims is to find these recursion relations relating the new with
the original couplings

• construction works as follows:

• integrals of spin fluctuations in original system are over frequencies |q| ∈ [0, 1],
new ”primed” system obtained by averaging about high frequency modes
|q| ∈ [12, 1]

• this in analogy of Kadanoff’s block spins: there one obtains an effective
interaction, which involves only block spins, by averaging over all non-
block-spin variables

• in our case we integrate out the rapid fluctuations (high frequencies), and
the remaining long wavelength fluctuations correspond to the block spins

• write function σ(q) as sum over partition of unity p:

σ(q) = σ<(q) + σ>(q)

σ≶(q) := p≶(q)σ(q)
p≶(q) ∈ [0,1]

p<(q)+p>(q) = 1 ∀q

• Wilson chooses discontinuous partition of unity: Heaviside step functions
p≶(q) = θ

(
∓(|q| − 1

2 )
)
, thus

σ<(q) := p<(q)σ(q) = θ
(

1
2 − |q|

)
σ(q) =

{
σ(q) |q| < 1

2

0 |q| > 1
2

σ>(q) := p>(q)σ(q) = θ
(
|q|− 1

2

)
σ(q) =

{
0 |q| < 1

2

σ(q) |q| > 1
2

• in Gaussian Hamiltonian the high and low frequency modes decouple,
there is NO interaction between fluctuations of high and low frequency:

H̃Gauss[σ,r] =
1
2

ˆ
d
d

q
(
q2 + r

)
σ(q)σ(−q)

=
1
2

( ˆ

|q|<1
2

+

|q|<1ˆ

|q|>1
2

)
d
d

q
(
q2 + r

)[
σ<(q)σ<(−q) +

0︷ ︸︸ ︷
σ<(q)σ>(−q)

+ σ>(q)σ<(−q)︸ ︷︷ ︸
0

+σ>(q)σ>(−q)

]

=
1
2

ˆ

|q|<1
2

d
d

q
(
q2 + r

)
σ<(q)σ<(−q)

︸ ︷︷ ︸eHGauss[σ<,r]

+
1
2

|q|<1ˆ

|q|>1
2

d
d

q
(
q2 + r

)
σ>(q)σ>(−q)

︸ ︷︷ ︸eHGauss[σ>,r]
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• however in σ4-interaction no decoupling occurs, there IS an interaction
between fluctuations of high and low frequencies: the Hamiltonian

H̃Int[σ,u] = u

ˆ
d
d

q1

ˆ
d
d

q2

ˆ
d
d

q3

ˆ
d
d

q4 σ(q
1
) σ(q

2
) σ(q

3
) σ(q

4
) (2 ιπ)d δ(d)

(q
1
+q

2
+q

3
+q

4
)

(in addition to the decoupling parts) also contains high-low frequency
interactions like

u

ˆ

|q
1
|<1

2

d
d

q1

ˆ

|q
2
|<1

2

d
d

q2

|q
4
|<1ˆ

|q
3
|>1

2

d
d

q3

|q
4
|<1ˆ

|q
4
|>1

2

d
d

q4 σ<(q
1
)σ<(q

2
)σ>(q

3
)σ>(q

4
) (2 ιπ)d δ(d)

(q
1
+q

2
+q

3
+q

4
)

and therefore we have H̃Int[σ,u] 6= H̃Int[σ<,u] + H̃Int[σ>,u]

• partition function can now be written as

Z(r,u) :=
ˆ
Dσ e− eHs4 [σ,r,u]

=
ˆ
Dσ<

ˆ
Dσ> e− eHs4 [σ<+σ>,r,u]

• integrating out high frequency modes σ> shall give us

Z(r,u) = Z(r′,u′) =
ˆ
Dσ′ e− eH′

s4 [σ′,r′,u′]

with new effective couplings r′, u′ and rescaled fluctuations σ′, however at
the moment the new primed Hamiltonian can only be expressed in terms
of the original couplings:

e− eH′
s4 [σ,r,u] =

ˆ
Dσ> e− eHs4 [σ<+σ>,r,u]

and the primed fluctuation modes are related to the original long wave-
length modes by the scaling relations

σ′(q′ := 2q) = ζ σ<(q) ∀ |q| ∈ [0, 1
2]

i.e., the primed fluctuations are renormalized by the constant scaling fac-
tor ζ, which remains to be determined, and depend on rescaled frequencies
q′ := 2q ∈ [0, 1]
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• because of H̃Gauss[σ,r] = H̃Gauss[σ<,r] + H̃Gauss[σ>,r] we can write

e− eH′
s4 [σ,r,u] =

ˆ
Dσ> e− eHs4 [σ,r,u] =

ˆ
Dσ> e− eHGauss[σ,r]− eHInt[σ,u]

= e− eHGauss[σ<,r]

ˆ
Dσ> e− eHGauss[σ>,r]− eHInt[σ,u]

• the factor exp−H̃Gauss[σ<,r] can be easily expressed in the primed spin
fluctuations:

H̃Gauss[σ<,r] = 1
2

ˆ

|q|<1
2

d
d

q
(
q2 + r

)
σ<(q)σ<(−q)

= 1
2

(
ζ2/2d+2

) ˆ

|q|′<1

d
d

q ′
(
q′ 2 + 4r

)
σ′(q′)σ′(−q′)

3.2 Perturbative analysis & diagrams

• now comes the perturbative part: assuming our coupling u := L/(j2kBT )
to be small: u� 1, we can work out a precise relation between the original
and the primed Hamiltonian

• because of the high-low frequency fluctuation interactions, the nontrivial
physics is contained in terms depending on u, now in order to obtain these
terms exploit assumption of small u and expand exp−H̃Int[σ,u] in powers of
u, we denote H̃Int[σ,u] by a cross (vertex), with each of the four endpoints
representing one of the four σ’s in H̃Int, and can write in diagrammatic
notation

• using this expansion we can now attack the functional integral

ˆ
Dσ> e− eHGauss[σ>,r]− eHInt[σ,u] =

ˆ
Dσ> e− eHGauss[σ>,r]

(
1− H̃Int[σ,u] + 1

2 H̃2
Int[σ,u]− ...

)
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• in order to evaluate this integral, we need to calculate Gaussian integrals
of the type

I(r, q
m1
, ..., q

mk
) :=

ˆ
Dσ> e− eHGauss[σ>,r] σ>(q

m1
) ...σ>(q

mk
)

wherein the indices m1, ..., mk are (not necessarily different) natural num-
bers

• define functional integral

ZGauss(r) :=
ˆ
Dσ> e− eHGauss[σ>,r]

ZGauss(r) contributes only a σ′(q′)-independent constant factor to exp−H̃′s4 [σ,r,u]

• define contraction σ> σ> of high frequency fluctuations as

σ>(q
ma

)σ>(q
mb

) := θ
(
|q
ma
| − 1

2

)
(2 ιπ)d

δ(d)
(q
ma

+q
mb

)

q2
ma

+ r

• evaluating Gaussian integrals of type I(r, q
m1
, ..., q

mk
) one finds their value

is given by ZGauss(r) times the sum of all possible ways of contracting the
σ>(q

m1
) ...σ>(q

mk
) in pairs such that all of them are contained in some

contraction:

I(r, q
m1
, ..., q

mk
) = ZGauss(r)

∑
P (m1,...,mk)

σ>(q
P (m1)

)σ>(q
P (m2)

) · ... · σ>(q
P (mk−1)

)σ>(q
P (mk)

)

wherein the sum runs over all permutations P of the indices m1, ..., mk

• in order to translate this result into diagrams, we remember σ(q) = σ<(q)+
σ>(q) and therefore have to consider two cases for each endpoint:

if the spin fluctuation frequency q associated to the endpoint has length
|q| < 1

2 , i.e.: σ(q) = σ<(q), then it is within the long wavelength regime,
which we do not integrate out, thus it is NOT contracted and just left
uncontracted as it is

whereas if |q| > 1
2 , i.e.: σ(q) = σ>(q), then it IS integrated out, and

must be contracted with another endpoint whose frequency also has length
greater than one half

• in diagrams we symbolize contractions by drawing a line between the cor-
responding endpoints, this line is called propagator and in our case rep-
resents the function (q2 + r)−1
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• call q internal line/frequency/momentum if it is sitting on a line con-
necting two vertices or one vertex with itself, and external line/frequency/momentum
if it sits on a line attached to one vertex only

• thus for our functional integral we obtain

• order u0

ˆ
Dσ> e− eHGauss[σ>,r]

(
1
)

=: ZGauss(r)

• order u1: functional integral over σ> is obtained graphically by consid-
ering all ways of contracting some endpoints pairwise and leaving some
endpoints uncontracted, we divide all graphs in classes according to their
topology, and represent each topology class by one graph with the cardi-
nality of the class as a weight factor (multiplicity)
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in the first integral we integrate over all frequencies fullfilling

|q
1
|, |q

2
|, |q

3
|, | − q

1
− q

2
− q

3
| < 1

2

in the second over

|q
1
| > 1

2 |q
3
| < 1

2

and in the third over

|q
1
|, |q

3
| > 1

2

• other diagrams are calculated similarly

• order u2: diagrams shown below, weights include 1
2 in front of H̃2

Int
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• any diagram computes according to following rules:

1. label frequencies/momenta in incoming sense at each vertex

2. external frequencies range within |q| < 1
2 , internal within |q| ∈ [ 1

2 , 1]

3. to each internal line connecting frequencies q
1

and q
2

associate propa-
gator (2 ιπ)dδ(d)

(q
1
+q

2
)/(q2

1
+ r)

4. to each four-point vertex a factor u(2 ιπ)d times a delta function over
the sum of the four incoming frequencies

5. each external leg obtains spin fluctuation variable σ<(q) = ζσ′(2q)

6. integrate over frequencies of internal and external lines according to
rule 2.

• what we have now achieved, up to a certain order in u, is calculating
exp−H̃′s4 [σ,r,u] in terms of r, u and σ<

• however what we really want is H̃′s4 [σ′,r′,u′], thus it remains to take the
logarithm of the expression, replace σ<(q) by σ′(q′), and express r′ and u′

in terms of r and u

• it can be shown that if and only if H̃′Int is the sum of all connected graphs
to all orders in u, then exp−H̃′Int is the sum of all connected and discon-
nected graphs to all orders in u, thus taking the logarithm is equivalent
to removing all disconnected diagrams

• up to order u2 the disconnected diagrams are those in figure 4.3(a)

• moreover we only study σ′-dependent terms, thus we can drop ZGauss(r)
and all diagrams without external lines (those of figure 4.3(d) and
the 8-shaped diagram of first order in u)

• replacing σ<(q) by σ′(q′) simply happens by substituting ζσ′(2q) for an
external line instead of σ<(q)

3.3 Recovering the original Hamiltonian

• changing variables from q to q′ = 2q and using the results obtained up to
now we arrive at our desired primed Hamiltonian H̃′s4 [σ′,r′,u′] in the form
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H̃′s4 [σ′,r,u] = 1
2

ˆ
d
d

q u′2(q,r,u) σ′(q)σ′(−q)

+
ˆ

d
d

q1

ˆ
d
d

q2

ˆ
d
d

q3 u
′
4(q

1
,q

2
,q

3
,r,u) σ′(q

1
)σ′(q

2
)σ′(q

3
)σ′(−q

1
−q

2
−q

3
)

+ terms of order (σ′)6 and higher ...

with the functions

u′2(q,r,u) = ζ2/2d
{

1
4 q

2 + r + 12u
ˆ

d
d

p
1

(p2 + r)

− 96u2

ˆ
d
d

p1

ˆ
d
d

p2
1

(p2
1

+ r)
1

(p2
2

+ r)
1(

(1
2
q − p

1
− p

2
)2 + r

)
+ terms of order u3 and higher ...

}

u′4(q
1
,q

2
,q

3
,r,u) = ζ4/23d

{
u− 12u2

ˆ
d
d

p
1

(p2 + r)
1(

(1
2
q
1

+1
2
q
2
− p)2 + r

)
− 2 permutations

+ terms of order u3 and higher ...
}

wherein we integrate about

|p|, |p
1
|, |p

2
|, |12q−p1

−p
2
|, |12q1+1

2q1−p| ∈ [ 1
2 , 1]

• now again we make some approximations in order to cast our new Hamil-
tonian H̃′s4 [σ′,r,u] into the same form as the original Hamiltonian

H̃s4 [σ,r,u] =
1
2

ˆ
d
d

q
(
q2 + r

)
σ(q)σ(−q)

+ u

ˆ
d
d

q1

ˆ
d
d

q2

ˆ
d
d

q3 σ(q
1
) σ(q

2
) σ(q

3
) σ(−q

1
−q

2
−q

3
)

Wilson shows: these approximations are good for dimensions near d = 4

• first we calculate u′2(q,r,u) only up to linear order in u, set

ζ = 21+d/2

and further approximate
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|p|<1ˆ

|p|>1
2

d
d

p
1

(p2 + r)
≈ 1

(1 + r)

=: 4c︷ ︸︸ ︷
|p|<1ˆ

|p|>1
2

d
d

p

|p|<1ˆ

|p|>1
2

d
d

p
1

(p2 + r)
1(

(1
2
q
1

+1
2
q
2
− p)2 + r

) ≈ 1
(1 + r)2

|p|<1ˆ

|p|>1
2

d
d

p

︸ ︷︷ ︸
=: 4c

• then renaming u′4(q
1
,q

2
,q

3
,r,u) by u′ we can write the recursion relations

as

r′(r,u) = 4
(
r + 3cu/(1+r)

)
+ higher orders in u

u′(r,u) = 24−d
(
u− 9cu2/(1+r)2

)
+ higher orders in u

• thus we are ignoring effects of order (σ′)6 and u2 or higher

• repeating many times the process of integrating out the high fluctuation
frequencies, after starting at initial interaction with couplings r0 and u0

and using our recursion relations

rk+1(rk,uk) = 4
(
rk + 3cuk/(1+rk)

)
uk+1(rk,uk) = 24−d

(
uk − 9cu2

k/(1+rk)2
)

(each time neglecting higher order in uk) after k steps we get an effective
Hamiltonian H̃(k)

s4 in which we have integrated out all fluctuation frequen-
cies |q| ∈ [2−k, 1], i.e., this effective Hamiltonian describes the behaviour
of fluctuations with low frequencies |q| ∈ [0, 2−k]

4 Calculation of critical exponent ν

4.1 Fixed points and critical points

• for temperatures T above but near the critical temperature Tcrit, the crit-
ical exponent ν describes power law behavior of the correlation length
ξ(T ):

ξ(T ) = (T − Tcrit︸ ︷︷ ︸
τ

)−ν =: τ−ν
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• we remember having giving up for the sake of simplicity the connection
between the spin variables sn living on the lattice sites n and its discrete
Fourier transform σ[s,q]

• now we would like to have back something similar to the lattice spins,
therefore we introduce a spin field depending on a (dimensionless) contin-
uous position variable x:

s[σ,x] :=
ˆ

|q|<1

d
d

q eiqx σ(q)

• then we have the 2-point spin correlation

Γ(x,r,u) := Z−1
(r,u)

ˆ
Dσ s(x) s(0) e− eHs4 [σ,r,u]

which can be written

Γ(x,r,u) =
ˆ

d
d

q eiqx Γ̃(q,r,u)

• defining the correlation length ξ in terms of the behavior of the 2-point
spin correlation for large distances x leads to technical problems, thus we
use a convenient alternative definition:

ξ2(r,u) := −

[
dΓ̃(q,r,u)/dq2

Γ̃(q,r,u)

]
q=0

and call the so defined ξ effective range of correlation

• critical points correspond to infinite effective correlation range

• integrating out high frequencies we obtain a new 2-point spin correlation,
which is related to the original one by the scaling relation

Γ̃′(q′=2q,r′,u′) = 2d/ζ2 Γ̃(q,r,u) = 1
4 Γ̃(q,r,u)

• the scaling relation for effective correlation ranges is

ξ′(r′,u′) = 1
2 ξ(r,u)

• these two scaling relations say that the new system is less correlated than
the original one, or in other words, correlation decreases on larger scales
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• now we will look for fixed points (r∗, u∗) of the recursion relations

• at a fixed point of the recursion relations we will have

rk+1(rk,uk) = rk

uk+1(rk,uk) = uk

which implies for the effective correlation range ξk+1(rk+1,uk+1) = ξk(rk,uk)

• together with ξk+1 = 1
2 ξk this implies that at fixed points we have either

vanishing or infinite effective correlation range, but the vanishing case can
be ruled out, thus fixpoints correspond to critical points of the system

• as in the Gaussian model, our recursion relations always have one trivial
fixpoint r∗ = u∗ = 0, also called Gaussian fixpoint

• in case of dimension d > 4: iterating the recursion relations many times uk
approaches zero because of the factor 24−d, and with uk zero the recursion
relation for rk has zero as only fixpoint

• in case d = 4: the recursion relation for uk has zero as only fixpoint, thus
again rk goes to zero, too

• thus in case d ≥ 4 our recursion relations only have the Gaussian fixpoint
r∗ = u∗ = 0

• in case d < 4: choose u0 small, then with increasing iterations uk will
increase until the second term in its recursion relation becomes comparable
to the first, and a new non-Gaussian fixpoint is approximately given by

u∗ ≈ 24−d − 1
9c

r∗ ≈ −4c u∗ = −4
9

(24−d − 1)

• Wilson shows that these approximations are reasonable for d <∼ 4, because
then both u∗ and r∗ are small

• defining

ε := 4− d

and expanding in ε we find for small, positive ε that the fixpoint is given
by

u∗ ≈ ε ln 2
9c

> 0

r∗ ≈ −4
9
ε ln 2 < 0

with both |r∗|, |u∗| � 1
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• as the figure illustrates, the value of uk after many iterations is near the
fixpoint u∗ independent of the original coupling u0 (as long as u0 lies within
the basin of attraction of the non-Gaussian fixpoint), this means that the
effective coupling strength (within the basin of attraction) is determined
by the fixpoint, and not by the original coupling u0

4.2 Linearized recursion relations

• recall definitions (after rescaling j to 1) of temperature-dependent coupling
constants

r ≡ r0 :=
b

j
− 2d =

B

kbT
− 2d

u ≡ u0 := l/j2 = L/(kbT )

• in non-Gaussian case u 6= 0 we can be at a critical temperature without
having r0 and u0 at fixed point values, because for being at Tcrit one only
needs to adjust one parameter, but for being at fixed point one has to
adjust two parameters

• the role of the fixpoint for T = Tcrit consists in that with increasing
number k of iterations rk and uk approach the fixpoint values, while for
T 6= Tcrit they show another limiting behavior

• now consider specific interaction before iteration starts, with T being only
variable (i.e.: d,B,L fixed), then r0 and u0 depend on T analytically as
above

• now we want to study the theory for temperatures near Tcrit in order to
calculate the critical exponent ν

• first step is to study sequence {(rk(T ), uk(T ))} generated by repeatedly
iterating the recursion relations and starting from (r0(T ), u0(T ))
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• we expect rk(Tcrit)
k →∞−→ r∗ and uk(Tcrit)

k →∞−→ u∗ as on line A in figure
4.5

• because the recursion relations are analytic, we expect linear behavior for
fixed k and T close enough to Tcrit:

rk(T ) = rk(Tcrit) + ρk(
τ︷ ︸︸ ︷

T − Tcrit)
uk(T ) = uk(Tcrit) + µk(T − Tcrit︸ ︷︷ ︸

τ

)

• now if k is sufficiently large, then

rk(Tcrit) ≈ r∗ ⇒ rk(T ) ≈ r∗

uk(Tcrit) ≈ u∗ ⇒ uk(T ) ≈ u∗

• this suggests we should study the recursion formulae close to Tcrit for large
k, because then we can linearize the recursion formulae

• in matrix form this reads

(
rk+1 − r∗
uk+1 − u∗

)
≈M

(
rk − r∗
uk − u∗

)

M =

(
4− 12cu∗

(1+r∗)2
12c

(1+r∗)

2ε18cu∗
2

(1+r∗)3 2ε − 2ε18cu∗

(1+r∗)2

)

• after iterating the linearized recursion relations many times the relation
reads

(
rk+n − r∗
uk+n − u∗

)
≈Mn

(
rk − r∗
uk − u∗

)
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• the advantage of studying Mn for large n is that Mn is completely domi-
nated by the largest eigenvalue of M

• in the limit of vanishing u∗ the eigenvalues are 4 and 1, with 4n clearly
dominating 1n for large n

• by diagonalizing M the explicit form of Mn neglecting the eigenvalue 1
can be obtained (with λ being the dominant eigenvalue, and v, w some
components of the eigenvectors of M):

Mn = λn
(

1 v
w vw

)
(4.1)

λ = 4
(
1− 1

3 ε ln 2
)

v = +4c
(
1 + 5

9 ε ln 2
)

w = −4c
(
1 + 5

9 ε ln 2
)

• because we are considering T ≈ Tcrit, for fixed k we have

rk(T )− rk(Tcrit) ∼ (T − Tcrit) = τ

uk(T )− uk(Tcrit) ∼ (T − Tcrit) = τ

so that for sufficiently large k

(rk(T )− r∗) + v(uk(T )− u∗) = ck(T − Tcrit) = ck τ

and thus from the matrix equation (4.1) we deduce

rk+n − r∗ = λn ck (T − Tcrit) (4.2)
uk+n − u∗ = λn w ck (T − Tcrit)

• now we can calculate the critical exponent ν, we had seen above that the
effective correlation length ξ(r,u) is defined for any choice of interaction
parameters r and u, since these depend on T we have ξ = ξ(T )

• we had also seen the scaling relation

ξ(rk+n,uk+n) = 2−(k+n) ξ(r0,u0)

• from (4.2) we read off the following:

[
rk+n+1(T )− r∗

]
T−Tcrit = τ/λ

=
[
rk+n(T )− r∗

]
T−Tcrit = τ[

uk+n+1(T )− u∗
]
T−Tcrit = τ/λ

=
[
uk+n(T )− u∗

]
T−Tcrit = τ
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or written more clearly

rk+n+1(Tcrit+τ/λ) = rk+n(Tcrit+τ)

uk+n+1(Tcrit+τ/λ) = uk+n(Tcrit+τ)

• thus

ξ(rk+n+1,uk+n+1)T=Tcrit+τ/λ = ξ(rk+n,uk+n)T=Tcrit+τ

which with the scaling relation implies

2−(k+n+1)ξ(Tcrit+τ/λ) = 2−(k+n)ξ(Tcrit+τ) (4.3)

• thus assuming power law behavior for the effective correlation range

ξ(Tcrit+τ) ∼ τ−ν

(4.3) for arbitrarily small τ gives us

(τ/λ)−ν = 2τ−ν

thus

ν =
ln 2
lnλ

=
1

2− ε/3

• up to linear order in ε this writes

ν ≈ 1
2 + 1

12 ε

• the artificial features of the iteration scheme (factors of ln 2) do not appear
in ν, which is crucial, because the critical exponent should be aproperty
of the physical system, and not of the method of solution

• for nonzero ε our ν differs from the value 1
2 obtained in Gaussian and

mean field model, experimentally (d=3) ν ≈ 0.6...0.7, in the 3-dim. (2-
dim.) Ising model one has ν = 0.64 (1.0), we have obtained here for
(d = 3), (ε = 1) that ν ≈ 0.58 and for (d = 2), (ε = 2) that ν ≈ 2

3 , thus it
seems that for ”small” ε = 1 our approximations work well, but for ”not
so small” ε = 2 they fail

• ν is independent of the initial couplings r0 and u0, thus we have an example
for universal behavior of a system
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