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Motivation

Objective
The main idea is to formulate the quantum theory in such a way that the
observables become the relevant objects and the quantum states are
"secondary." Now, the states are taken to "act" on operators to produce
numbers.

Usefulness
Mathematically precise description of the structure of quantum field
theories.

Tool for studying the foundations of QFT.

Work with issues related to nonlocality, the particle concept, the field
concept, and inequivalent representations.

Fundamental part in the formulation of QFT in curved spacetime.
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Wightman Axioms

1 Hilbert Space
There is a separable Hilbert space H. The states of the theory are described
by unit rays in H.
There is a unitary, positive-energy representation U of the Poincaré group on
H.
There exists an invariant, vacuum-vector |Ψ0〉 = U|Ψ0〉 ∈ H.
The space of invariant vectors is one-dimensional (uniqueness of the
vacuum).

2 The quantum field φ is an operator-valued distribution.
3 Vectors of the form φ(f1) · · ·φ(fn)|Ψ0〉 , for f ∈ S and arbitrary n span H.
4 The field φ transforms covariantly under U:

U(Λ, a)φ(f )U(Λ, a)∗ = φ({Λ, a}f )

where ({Λ, a}f )(x) = f (Λ−1(x − a)).
5 The field φ is local → relativistic causality → CCR:

[φ(f ), φ(g)]± = 0 if the supports of f and g are spacelike separated.
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Haag-Kastler Axioms
Net of Algebras

We use the basic fields to associate to each open region O in spacetime an
algebra A(O) of operators on Hilbert space.

O → A(O)

Where O denotes an open, finitely extended region of Minkowski space.

The theory is characterized by a net of algebras A, where any A(O)
algebra is generated by all Φ(f ) "operator valued distributions" that are
"smeared out" with test functions f having their support in the region O.
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Haag-Kastler Axioms
Poincaré Invariance

Poincaré invariance means now that to a transformation g there
corresponds an automorphism αg of the abstract net with the property

αgA(O) = A(gO)

αg maps the elements of A(O) onto the elements of the algebra of the
transformed region gO in such a way that all algebraic relations are
conserved.

A representation π of A is a homomorphism from the net A to a net of
operator algebras π(A) i.e. π assigns to each algebraic element A its
"representor" π(A), an operator acting in a Hilbert space.
Given a representation the automorphism αg is called implementable in the
representation π if exist a unitary operator U(g) acting in the representation
space such that

U(g)π(A)U−1(g) = π(αgA)
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Haag-Kastler Axioms

The abstract net should posses an irreducible representation π0 in which
αg is implementable and U(g) satisfies the two Wightman axioms:

There is a unitary, positive-energy representation U of the Poincaré group on
H.
There exists an invariant, vacuum-vector |Ψ0〉 = U|Ψ0〉 ∈ H.

Isotony: if O1 ⊂ O2 then A(O1) ⊂ A(O2).

Additivity property

A(O1 ∪ O2) = A(O1) ∨ A(O2)

where the symbol ∨ on the right hand side denote the operator algebra
generate by two algebras A(Oi), i = 1, 2.

Hermiticity means that A(O) is an involutive algebra (a ∗-algebra). One
has within each A(O) the involution A → A∗.
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Haag-Kastler Axioms

Transformation properties of fields , becomes

U(a, α)A(O)U−1(a, α) = A(Λ(α)O + a)

The geometry symmetry operations map the algebra of one region onto
the algebra of the transforme region.

Causality: A(O1) is compatible with A(O2) when the two regions lie
space-like. In others words, two observables associated with space-like
separated regions are compatible.

Completeness is translated to the algebra as: Any operator should be
approximated as linear combination of products of the algebra elements.

Primitive Causality: Let Ô denote the causal completion of O then

A(Ô) = A(O)
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Fundamental Elements

Algebra
We may define de algebra Aloc = ∪A(O) of "all local observables" and the
C∗-algebra

A = Āloc

the completion of Aloc in the norm topology.

States
States ω : A → C are positive linear funtionals (ω(A∗A) ≥ 0 ∀A ∈ A) such that
ω(1) = 1. The value of the state ω acting on the observable A can be
interpreted as the expectation value of the operator A on the state ω,i.e.,
〈A〉 = ω(A).

Edison Montoya (UNAM, IFM-UMICH) AQFT October 21 9 / 18



GNS-Construction

Let A be a C∗-algebra with unit and let ω : A → C be a state. Then there exist
a Hilbert space H, a representation π : A → L(H) and a vector |Ψ0〉 ∈ H such
that,

ω(A) = 〈Ψ0, π(A)Ψ0〉H
Furthermore, the vector |Ψ0〉 is cyclic. The triplet (H, π, |Ψ0〉) with this
properties is unique (up to unitary equivalence).

First, we use ω to define a (pre-)inner-product on A by (A1, A2) = ω(A∗
1A2).

Then we take the left ideal Iω = {A ∈ A : ω(A∗A) = 0} ⊆ A and define a
pre-Hilbert space as the quotient vector space A/Iω, now this space has a
induced inner-product and can be use to complete A/Iω and define a Hilbert
space Hω.
In this Hilbert space Hω there is a natural representation
πω : A → BL(Hω,Hω) is define as an extended of the continuos
homomorphism π̃ω(a) : A/Iω → A/Iω whit action π̃ω(a) : [b] 7→ [ab].
In this representation the vector |Ψ0〉 ∈ H corresponding to e ∈ A is a cyclic
vector and satisfies ω(A) = 〈Ψ0, π(A)Ψ0〉H for all A ∈ A.
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Klein-Gordon Field
Classical Description

The theory is define in Minkowski spacetime 4M. We will perform a 3 + 1
decomposition in the form M = Σ × R whit an arbitrary embeddings
Tt : Σ → 4M (the surface Σ is topologically R

3).

The phase space can be written as Γ = (ϕ, π), where ϕ = T ∗
t [φ] and

π = T ∗
t [
√

hna∇aφ].

The symplectic structure takes the following form, when acting on
vectors (ϕ1, π1) and (ϕ2, π2)

Ω([ϕ1, π1], [ϕ2, π2]) =

∫

Σ

(π1ϕ2 − π2ϕ1)d3x

We can define the linear functions on Γ as follow: given a vector Y α in
Γ of the form Y α = (ϕ, π)α , and a pair λα = (−f . − g)α, where f is a
scalar density and g a scalar, we define the action of λ on Y as,

Fλ(Y ) = −λαY α :=

∫

Σ

(f ϕ + g π)d3x = ΩαβλαY β = Ω(λ, Y )
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Klein-Gordon Field
Classical Description

We can compute the Poisson brackets as

{Fλ(Y ), Gν(Y )} = {Ω(λ, Y ),Ω(ν, Y )} = −Ω(λ, ν)

We can define a complex structure J (J : Γ → Γ, J2 = −1) compatible
with the symplectic form. The most general form is given by

−J(ϕ, π) = (Aϕ + Bπ, Cπ + Dϕ)

Where A, B, C, D are linear operators.

We this structures we can defined on the phase space a positive definite
metric µ(·, ·) := Ω(J·, ·).
The classical observables that are to be quantized and in terms of
which the CCR are expressed

ϕ[f ] :=

∫

Σ

f ϕd3x and π[g] :=

∫

Σ

g πd3x (1)
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Klein-Gordon Field
Quantum algebra and States

C∗-algebra
For the case of a linear theory, the algebra ones considers is the so-called Weyl
algebra. Each generator W (λ) ( where λα = (−f ,−g) ) of the Weyl algebra is the
"Exponentiated" version of the linear observables (1), labeled by a phase-space vector
λα. These generator satisface the Weyl relations,

W (λ)∗ = W (−λ), W (λ1)W (λ2) = eiΩ(λ1,λ2)/2W (λ1 + λ2)

The CCR now get replace by the quantum Weyl relations where now the operators
Ŵ (λ) belong to the (abstract) algebra A.

State
The value of the state ωFock acting on the Weyl generators Ŵ (λ) is given by

ωFock (Ŵ (λ)) = e−(1/4)µ(λ,λ) (2)

Where µ(·, ·) := Ω(J·, ·) is the positive definite metric defined on the phase space and
J is a complex structure (J : Γ → Γ, J2 = −1) compatible with the symplectic structure.
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Klein-Gordon Field
Representation

Quantization in the old sense means a representation of the Weyl relations on
a Hilbert space H := L2(C̄, dµ), where C̄ is the quantum configuration space
and dµ is a measure on C̄. One will need to specify these objects in the
construction of the theory. The form to do this is using the GNS construction.

In the general quantization procedure the abstract operators ϕ̂[f ] and π̂[g] are
represent as operators in H.We can represent them, when acting on
functionals Ψ[ϕ] : C̄ → C as

(ϕ̂[f ] · Ψ)[ϕ] := ϕ[f ]Ψ[ϕ]

and

(π̂[g] · Ψ)[ϕ] := −i~
∫

g(x)
δΨ

δϕ(x)
d3x + multiplicative term (3)

The second term in the last equation, depending on configuration variable and
on the details of the measure dµ on C̄.
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Klein-Gordon Field
GNS Construction

In order to specify the measure dµ that defines de Hilbert space, it suffices to concider
configuration observables. The Weyl observable Ŵ (λ) corresponding to λα = (0, f )α

is represented as R(Ŵ (λ)) = eiϕ̂[f ].
The GNS construction says us that

ω(Ŵ (λ)) =

Z

C̄

dµΨ̄0[R(Ŵ (λ))Ψ0] =

Z

C̄

dµei
R

Σ fϕd3x (4)

On the other hand the explicit form of the state (2) is

ω(Ŵ (λ)) = exp
»

−
1
4

µ(λ, λ)

–

= exp
»

−
1
4

Z

Σ

fBfd3x
–

(5)

Let us now compare Eqs. (4) and (5),
Z

C̄

dµei
R

Σ fϕd3x = exp
»

−
1
4

Z

Σ

fBfd3x
–

Schematically this say us that the measure looks like

dµ = e−
R

Σ ϕB−1ϕDϕ

where Dϕ represents a fictitious "Lebesgue-like" measure.
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Klein-Gordon Field
GNS Construction

We still need to find the “multiplicative term" in the representation of the
momentum operator (3). For that, we will need the full Weyl algebra and
Eq.(2) . We have to compute 〈R(Ŵ (g, f ))〉vac = 〈Ψ0, exp(iϕ̂[f ] − i π̂[g])Ψ0〉.
Using a similar analysis done for find the measure, we can show that the
representation of the momentum is

(π̂[g] · Ψ)[ϕ] := −i~
∫

(

g
δ

δϕ
− ϕ(B−1 − iCB−1)g

)

Ψ[ϕ]

quantum configuration space
In the case of Minkowski spacetime and flat embeddings, where Σ is
Euclidian space, the quantum configuration space is the space T ∗ of
tempered distributions on Σ.
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The Future

Implement the dynamics in the linear theory of scalar field.

Construct the theory for interacting fields (one million of dolar in the case
Yang-Mills fields).

Generalize the axioms to curved spacetime.
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