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Introduction

Configuration Space −→ Smooth Manifold Q

System Evolution −→ Curve γ(t) on Q with coordinates qi (t)

Lagrangian L = T − V −→ Smooth Function L ∈ F(TQ)

Euler-Lagrange Equations −→ Differential Equations on TQ

Phase Space −→ Cotangent Bundle T∗Q

Legendre Transformation −→ Transformation F : TQ → T∗Q, symplectic Form

Hamiltonian H = pq̇ − L −→ Smooth Function H ∈ F(T∗Q)

Hamilton Equations −→ Hamiltonian Vector Field

Canonical Transformation −→ Symplectic Map

Conserved Quantities −→ Momentum Map



symplectic Geometry
Cotangent Bundle

The Cotangent Bundle M = T ∗Q is possibly the most important type of
symplectic manifold for physical applications.
If Q = G Lie group then the cotangent bundle T ∗G = G × g∗ is trivial.
We can define over the cotangent bundle:

I The Lioville Form θ =
P

pidqi .
I The canonical 2-form ω0 = −dθ =

P
dqi ∧ dpi .

This is the symplectic structure over T ∗Q.

Theorem
Let Q be a manifold and f : Q → Q a diffeomorphism; we can define the lift
F : T ∗Q → T ∗Q such that this diagram commute

T ∗Q F−−−−−→ T ∗Q

π

??y ??yπ
Q f−−−−−→ Q

and F∗ is symplectic. In this case satisfies F∗θ = θ



Symplectic Geometry
Momentum Map

Let (M, ω) be a symplectic manifold and ρ : G ×M → M a symplectic action
of the Lie group G on M; that is, (ρg)∗ω = ω. we say that a map

Φ : M → g∗

is a Momentum Map for the group action provided that for every X ∈ g

iXMω = dφX

where φX is construct as

Φ : M → g∗

m 7−→ Φ(m) : g→ R
X 7−→ 〈Φ(m),X 〉g = φX (m)

and

(X M )m0 =
d
dt
ρ(etX ,m0)

˛̨̨̨
t=0

, with X ∈ g

is the tangent vector at m0 ∈ M over the curve m(t) = ρ(etX ,m0).



Symplectic Geometry
Momentum Map

Definition
A momentum mapping Φ is called Ad∗-equivariant provided

Φ(ρ(g,m)) = Ad∗g−1 (Φ(m))

for every g ∈ G; that is, the following diagram commutes:

g∗
Ad∗

g−1
−−−−−→ g∗

Φ

x?? x??Φ

M
ρg−−−−−→ M

This will permit maps the Hamiltonian vector fields from M to g∗.

I Concrete momentum mappings one normally constructs are
Ad∗-equivariant . However, there are "exotic" case where Φ is not
Ad∗-equivariant , [1]



Lie Groups
Lie Group Representations

Definition (Adjoint Representation)

G Ad−−−−−→ Aut(g)

exp
x?? x??exp

g
ad−−−−−→ End(g)

AdgX = d
dt (g etX g−1)

˛̨
t=0 = gXg−1

adX Y = d
dt (AdetX Y )

˛̨
t=0 = [X ,Y ]

with X ,Y ∈ g, g ∈ G.

Definition (Coadjoint Representation)

G Ad∗−−−−−→ Aut(g∗)

exp
x?? x??exp

g
ad∗−−−−−→ End(g∗)

〈Ad∗g ξ,Y 〉 = 〈ξ,Adg−1 Y 〉

〈ad∗X ξ,Y 〉 = −〈ξ, adX Y 〉

with X ,Y ∈ g, ξ ∈ g∗, g ∈ G.



Poisson-Lie Groups
Introduction

In order to construct our system we need the next elements:

I A Poisson-Lie group is a Lie group G with a Poisson structure
compatible with the group operations.

I The infinitesimal version of Poisson Lie groups are the Lie bialgebras.
I With the help of Lie bialgebras we can define the dual Lie group G∗ of G.
I G∗ will be the symmetry group.
I With the Poisson-Lie groups we can construct double groups.
I The dressing action we will define over double groups.



Poisson Geometry

Definition
A Poisson Structure over a smooth Manifold M (called Poisson Manifold)
is a map { , }M : C∞(M)× C∞(M) −→ C∞(M) that satisfies:

I {f , g} = −{g, f}, antisymmetric.
I {f , {g, h}}+ {g, {h, f}}+ {h, {f , g}} = 0 , Jacobi identity.
I {fg, h} = f{g, h}+ {f , h}g , Leibniz identity.

Definition
A map λ : N → M that preserves the Poisson bracket is called Poisson Map

{F1,F2}M ◦ λ = {F1 ◦ λ,F2 ◦ λ}N

The cartesian product M × N of Poisson manifolds is a new Poisson Manifold
with bracket {f , g}M×N (x , y) = {f ( , y), g( , y)}M (x) + {f (x , ), g(x , )}N (y)

Definition
A Poisson-Lie group is Lie group G with Poisson structure such that the
product µ : G ×G −→ G is a Poisson map,

{F1 ◦ µ,F2 ◦ µ}G×G = {F1,F2}G ◦ µ



Poisson-Lie Group
Lie Bialgebra

Example
The Poisson structure on G induced a Lie algebra structure on g∗ given by

[ξ1, ξ2]g∗ = (d{f1, f2})e ,with (dfi )e = ξi ∈ g∗.

This is call the tangent Lie bialgebra.

Theorem
⇒) If G is a Poisson-Lie group, then g have a natural bialgebra structure,
called tangent Lie bialgebra.

⇐) Any Lie bialgebra structure on g is a tangent Lie bialgebra of an unique
Poisson-Lie group G [5].

I In general a Lie bialgebra on g is defined by a Lie bracket on g∗

compatible with the Lie bracket on g. In particular the tangent Lie
bialgebra satisface the compatibility condition.



Double Lie Groups
Double Lie Algebra

Definition
Three Lie algebras (δ, g, g∗) form a double Lie algebra if g and g∗ are
subalgebras of δ and δ = g⊕ g∗ as vectorial space.

Theorem
If (g, g∗) is Lie bialgebra. We Denote as g ./ g∗ the vector space g⊕ g∗

together with a Lie bracket

[(X , η)(Z , ξ)]D(g) = ([X ,Z ]− ad∗ηZ + ad∗ξX , [η, ξ]− ad∗X ξ + ad∗Z η)

Then (g ./ g∗, g, g∗) is a double Lie algebra D(g).

I From this theorem we know that the Lie bracket of cross elements is

[ξ,X ]D = ad∗X ξ − ad∗ξX

Definition
If g∗ is endowed with a Lie algebra structure, then the connected and
simply-connected Lie group G∗ with Lie algebra g∗ is called Dual Group of G.



Double Lie Groups

Definition
I Given three groups (D,G,G∗) they form a Double Lie Group if G and

G∗ are closed subgroups of D and the map α is diffeomorphism

α : G ×G∗ → D
(g, eh) 7−→ geh

I For each pair (g, eh) with geh ∈ D there is ehg ∈ D s.t.

ehg = g
ehehg , with g, g

eh ∈ G and eh, ehg ∈ G∗

With this we can define the Dressing Action as:

dr : G∗ ×G→ G
(eh, g) 7−→ Dr(eh, g) = geh

I Given G and G∗ Poisson-Lie Groups with tangent Lie bialgebra (g, g∗)
and (g∗, g) respectively. We denote by G ./ G∗ the Lie Group with
tangent Lie algebra g ./ g∗.



Dressing Action and Momentum Map on T ∗G

Theorem
The map

dr : G∗ ×G→ G
(eh, g) 7−→ dr(eh, g) = geh

Is a left action of G∗ on G and lifts to the trivialization T ∗G ≡ G × g∗ as

Dr : G∗ × T ∗G→ T ∗G
(eh, (g, ξ)) 7−→ DrG×g∗(eh, (g, ξ)) = (geh,Adehg ξ)

With Ad∗-equivariant momentum map given by

ΦB (g, η) = ΠgAd∗Dg−1η

All of this writen in body coordinates i.e. left trivialization.



Collective Motion

Now concider a Hamiltonian System (T ∗G, ω,H) with momentum map
Φ : T ∗G→ g associated to the dressing action of G∗ on G. Suposse that H is
a Collective Hamiltonian i.e.

H = F ◦ Φ ,with F : g→ R

we can associate to F a map LF : g→ g∗, such that for any X ∈ g

〈X ,LF (Y )〉g∗ = 〈(dF)Y ,X 〉g =
dF(X + tY )

dt

˛̨̨̨
t=0

With this we can construct the function

LF ◦ Φ : T ∗G→ g∗.

Proposition
The Hamiltonian vector field defined by H = F ◦ Φ on T ∗G is

VH |(g,η) = (Dr(g,η))∗[LF ◦ Φ](g, η)

with (g, η) ∈ T ∗G ≡ G × g∗.



Collective Motion

The image of the Hamiltonian vector field VH through the momentum map Φ
is

(dΦ)mVH |m = −ad∗LF (Φ(m))Φ(m)

This means that the momentum map maps the Hamiltonian vector field to the
coadjoint orbits on g.

In other words, if m(t) is a trajectory (ṁ(t) = VH |m(t)) on T ∗G then the
momentum map maps m(t) to γ(t) = Φ(m(t)) and satisfies

γ̇(t) = −ad∗LF (γ(t))γ(t)

This is the Hamiltonian system on the coadjoint orbits of g with Hamiltonian
Hg = F .

Conclusion
The momentum map maps the Collective Hamiltonian system H = F ◦ Φ to a
Hamiltonia system on coadjoint orbits with Hamiltonian fuction Hg = F .



Collective Motion

Now we can construct a collective Hamiltonian invariant under the actions of
G∗.

I The momentum map in body coordinates is

ΦB (g, η) = ΠgAd∗D
g−1 η ,with (g, η) ∈ G × g∗

I F : g→ R, is F(X ) = (X ,BX )g, where the map B : g→ g is:
I Symmetric, (X ,BY ) = (BX ,Y ).
I Ad∗-equivariant , Ad∗D

g−1BX = BAd∗D
g−1 X

The collective Hamiltonian is given by

H(g, η) = F(Φ(g, η)) = (ΠgAd∗D
g−1 η,BΠgAd∗D

g−1 η)g

The equations of motion are given by the Hamiltonian vector field
VH |(g,η) = (ġ, η̇)

g−1ġ = −δH
η̇ = ad∗δHη − g∆H

with dH = (∆H, δH) ∈ T ∗g (G × g)



Summary

I We studied the geometrical formulation of classical mechanics with
emphasis in configuration spaces that are Lie groups.

I We applied this formalism to Poisson-Lie groups and Double groups.
I We study the dressing actions of G∗ on G, implementing it on the phase

space T ∗G and we calculated the momentum map associated to the
dressing symmetry.

I We proposed a collective system with dressing symmetry, and we found
its Hamilton equations.

This formalism can be applied to:

I Loop groups (Field Theory on 1 + 1 dimensions).
I T-Duality.
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