Hamiltonian Systems with Dressing Symmetries

Edison Alejandro Montoya Gómez¹ Supervisor: Hugo Montani²

¹ Instituto de Matemáticas, Unidad Morelia, Universidad Autónoma de México, UNAM-Campus Morelia.

¹ Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo.

> ² Instituto Balsiero Centro Atómico de Bariloche.

Morelia, Abril 16 2010

(ロ) (同) (三) (三) (三) (○) (○)

Contents

Introduction

Symplectic Geometry

Poisson-Lie Groups

Double Groups and Dressing Actions

Actions on T^*G and Collective Motion

Bibliography

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Introduction

Configuration Space	\longrightarrow Smooth Manifold Q
System Evolution	\longrightarrow Curve $\gamma(t)$ on Q with coordinates $q_i(t)$
Lagrangian $L = T - V$	\longrightarrow Smooth Function $L \in \mathcal{F}(TQ)$
Euler-Lagrange Equations	\longrightarrow Differential Equations on <i>TQ</i>
Phase Space	\longrightarrow Cotangent Bundle T^*Q
Legendre Transformation	\longrightarrow Transformation $F: TQ \rightarrow T^*Q$, symplectic Form
Hamiltonian $H = p\dot{q} - L$	\longrightarrow Smooth Function $H \in \mathcal{F}(T^*Q)$
Hamilton Equations	\longrightarrow Hamiltonian Vector Field
Canonical Transformation	\longrightarrow Symplectic Map
Conserved Quantities	\longrightarrow Momentum Map

symplectic Geometry

Cotangent Bundle

The Cotangent Bundle $M = T^*Q$ is possibly the most important type of symplectic manifold for physical applications.

If Q = G Lie group then the cotangent bundle $T^*G = G \times \mathfrak{g}^*$ is trivial. We can define over the cotangent bundle:

- The Lioville Form $\theta = \sum p_i dq_i$.
- The canonical 2-form $\omega_0 = -d\theta = \sum dq_i \wedge dp_i$.

This is the symplectic structure over T^*Q .

Theorem

Let Q be a manifold and $f : Q \to Q$ a diffeomorphism; we can define the **lift** $F : T^*Q \to T^*Q$ such that this diagram commute

(ロ) (同) (三) (三) (三) (○) (○)

and F^* is symplectic. In this case satisfies $F^*\theta = \theta$

Symplectic Geometry

Momentum Map

Let (M, ω) be a symplectic manifold and $\rho : G \times M \to M$ a symplectic action of the Lie group *G* on M; that is, $(\rho_g)^* \omega = \omega$. we say that a map

$$\Phi: M \to \mathfrak{g}^*$$

is a **Momentum Map** for the group action provided that for every $X \in \mathfrak{g}$

$$i_{X^M}\omega = d\phi_X$$

where ϕ_{χ} is construct as

$$\begin{split} \Phi : & M \to \mathfrak{g}^* \\ & m \longmapsto \Phi(m) : \quad \mathfrak{g} \to \mathbb{R} \\ & X \longmapsto \langle \Phi(m), X \rangle_{\mathfrak{g}} = \phi_x(m) \end{split}$$

and

$$(X^M)_{m_0} = \left. rac{d}{dt}
ho(e^{tX},m_0)
ight|_{t=0}$$
 , with $X \in \mathfrak{g}$

is the tangent vector at $m_0 \in M$ over the curve $m(t) = \rho(e^{tX}, m_0)$.

Symplectic Geometry

Momentum Map

Definition

A momentum mapping Φ is called **Ad**^{*}-equivariant provided

$$\Phi(\rho(g,m)) = Ad_{g^{-1}}^*(\Phi(m))$$

for every $g \in G$; that is, the following diagram commutes:

This will permit maps the Hamiltonian vector fields from M to g^* .

 Concrete momentum mappings one normally constructs are Ad*-equivariant . However, there are "exotic" case where Φ is not Ad*-equivariant , [1]

Lie Group Representations

Definition (Adjoint Representation)

with $X, Y \in \mathfrak{g}, g \in G$.

Definition (Coadjoint Representation)

(ロ) (同) (三) (三) (三) (○) (○)

with $X, Y \in \mathfrak{g}, \xi \in \mathfrak{g}^*, g \in G$.

In order to construct our system we need the next elements:

- ► A Poisson-Lie group is a Lie group *G* with a Poisson structure compatible with the group operations.
- ► The infinitesimal version of Poisson Lie groups are the Lie bialgebras.
- With the help of Lie bialgebras we can define the dual Lie group G^* of G.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► *G*^{*} will be the symmetry group.
- ▶ With the Poisson-Lie groups we can construct double groups.
- The dressing action we will define over double groups.

Poisson Geometry

Definition

A Poisson Structure over a smooth Manifold M (called Poisson Manifold) is a map $\{, \}_M : C^{\infty}(M) \times C^{\infty}(M) \longrightarrow C^{\infty}(M)$ that satisfies:

- $\{f,g\} = -\{g,f\}$, antisymmetric.
- ▶ ${f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0$, Jacobi identity.
- $\{fg,h\} = f\{g,h\} + \{f,h\}g$, Leibniz identity.

Definition

A map $\lambda : N \to M$ that preserves the Poisson bracket is called **Poisson Map**

$$\{F_1, F_2\}_M \circ \lambda = \{F_1 \circ \lambda, F_2 \circ \lambda\}_N$$

The cartesian product $M \times N$ of Poisson manifolds is a new Poisson Manifold with bracket $\{f, g\}_{M \times N}(x, y) = \{f(, y), g(, y)\}_M(x) + \{f(x,), g(x,)\}_N(y)$

Definition

A **Poisson-Lie group** is Lie group G with Poisson structure such that the product $\mu : G \times G \longrightarrow G$ is a Poisson map,

$$\{\textit{F}_{1}\circ\mu,\textit{F}_{2}\circ\mu\}_{\textit{G}\times\textit{G}}=\{\textit{F}_{1},\textit{F}_{2}\}_{\textit{G}}\circ\mu$$

Poisson-Lie Group Lie Bialgebra

Example

The Poisson structure on G induced a Lie algebra structure on \mathfrak{g}^* given by

 $[\xi_1,\xi_2]_{\mathfrak{g}^*}=(d\{f_1,f_2\})_e$, with $(df_i)_e=\xi_i\in\mathfrak{g}^*$.

This is call the tangent Lie bialgebra.

Theorem

 \Rightarrow) If G is a Poisson-Lie group, then g have a natural bialgebra structure, called tangent Lie bialgebra.

 \Leftarrow) Any Lie bialgebra structure on \mathfrak{g} is a tangent Lie bialgebra of an unique Poisson-Lie group G [5].

In general a Lie bialgebra on g is defined by a Lie bracket on g* compatible with the Lie bracket on g. In particular the tangent Lie bialgebra satisface the compatibility condition.

Double Lie Groups

Definition

Three Lie algebras $(\delta, \mathfrak{g}, \mathfrak{g}^*)$ form a **double Lie algebra** if \mathfrak{g} and \mathfrak{g}^* are subalgebras of δ and $\delta = \mathfrak{g} \oplus \mathfrak{g}^*$ as vectorial space.

Theorem

If (g, g^*) is Lie bialgebra. We Denote as $g \Join g^*$ the vector space $g \oplus g^*$ together with a Lie bracket

 $[(X,\eta)(Z,\xi)]_{\mathcal{D}(\mathfrak{g})} = ([X,Z] - ad_{\eta}^*Z + ad_{\xi}^*X, [\eta,\xi] - ad_X^*\xi + ad_Z^*\eta)$

Then $(\mathfrak{g} \bowtie \mathfrak{g}^*, \mathfrak{g}, \mathfrak{g}^*)$ is a double Lie algebra $\mathcal{D}(\mathfrak{g})$.

From this theorem we know that the Lie bracket of cross elements is

$$[\xi, X]_{\mathcal{D}} = ad_X^*\xi - ad_\xi^*X$$

Definition

If \mathfrak{g}^* is endowed with a Lie algebra structure, then the connected and simply-connected Lie group G^* with Lie algebra \mathfrak{g}^* is called **Dual Group** of *G*.

Double Lie Groups

Definition

• Given three groups (\mathcal{D}, G, G^*) they form a **Double Lie Group** if G and G^* are closed subgroups of \mathcal{D} and the map α is diffeomorphism

$$egin{aligned} lpha &: & {m{G}} imes {m{G}}^* o {\mathcal{D}} \ & ({m{g}}, \widetilde{{m{h}}}) \longmapsto {m{g}} \widetilde{{m{h}}} \end{aligned}$$

▶ For each pair (g, \tilde{h}) with $g\tilde{h} \in D$ there is $\tilde{h}g \in D$ s.t.

$$\widetilde{h}g = g^{\widetilde{h}}\widetilde{h}^g$$
, with $g, g^{\widetilde{h}} \in G$ and $\widetilde{h}, \widetilde{h}^g \in G^*$

With this we can define the Dressing Action as:

$$dr: G^* imes G o G$$

 $(\widetilde{h}, g) \longmapsto Dr(\widetilde{h}, g) = g^{\widetilde{h}}$

Given G and G^{*} Poisson-Lie Groups with tangent Lie bialgebra (g, g^{*}) and (g^{*}, g) respectively. We denote by G ⋈ G^{*} the Lie Group with tangent Lie algebra g ⋈ g^{*}.

Dressing Action and Momentum Map on T^*G

Theorem The map

$$dr: \quad G^* imes G o G \ (\widetilde{h},g) \longmapsto dr(\widetilde{h},g) = g^{\widetilde{h}}$$

Is a left action of G^* on G and lifts to the trivialization $T^*G \equiv G \times \mathfrak{g}^*$ as

$$egin{aligned} Dr : & G^* imes T^*G o T^*G \ & (\widetilde{h},(g,\xi)) \longmapsto Dr^{G imes \mathfrak{g}^*}(\widetilde{h},(g,\xi)) = (g^{\widetilde{h}}, \mathit{Ad}_{\widetilde{h}^g}\xi) \end{aligned}$$

With Ad* -equivariant momentum map given by

$$\Phi_{\scriptscriptstyle B}(g,\eta) = \Pi_{\mathfrak{g}} A d_{g^{-1}}^{*\mathcal{D}} \eta$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

All of this writen in body coordinates i.e. left trivialization.

Collective Motion

Now concider a **Hamiltonian System** (T^*G, ω, H) with momentum map $\Phi : T^*G \to \mathfrak{g}$ associated to the dressing action of G^* on G. Suposse that H is a **Collective Hamiltonian** i.e.

 $H = \mathcal{F} \circ \Phi$, with $\mathcal{F} : \mathfrak{g} \to \mathbb{R}$

we can associate to \mathcal{F} a map $\mathcal{L}_{\mathcal{F}} : \mathfrak{g} \to \mathfrak{g}^*$, such that for any $X \in \mathfrak{g}$

$$\langle X, \mathcal{L}_{\mathcal{F}}(Y) \rangle_{\mathfrak{g}^*} = \langle (d\mathcal{F})_{Y}, X \rangle_{\mathfrak{g}} = \left. \frac{d\mathcal{F}(X+tY)}{dt} \right|_{t=0}$$

With this we can construct the function

$$\mathcal{L}_{\mathcal{F}} \circ \Phi : T^*G \to \mathfrak{g}^*.$$

Proposition

The Hamiltonian vector field defined by $H = \mathcal{F} \circ \Phi$ on T^*G is

$$V_{\mathcal{H}}|_{(g,\eta)} = (Dr_{(g,\eta)})_* [\mathcal{L}_{\mathcal{F}} \circ \Phi](g,\eta)$$

with $(g, \eta) \in T^*G \equiv G \times \mathfrak{g}^*$.

Collective Motion

The image of the Hamiltonian vector field V_H through the momentum map Φ is

$$(d\Phi)_m V_H|_m = -ad^*_{\mathcal{L}_{\mathcal{F}}(\Phi(m))}\Phi(m)$$

This means that the momentum map maps the Hamiltonian vector field to the coadjoint orbits on \mathfrak{g} .

In other words, if m(t) is a trajectory $(\dot{m}(t) = V_H|_{m(t)})$ on T^*G then the momentum map maps m(t) to $\gamma(t) = \Phi(m(t))$ and satisfies

$$\dot{\gamma}(t) = -ad^*_{\mathcal{L}_{\mathcal{F}}(\gamma(t))}\gamma(t)$$

This is the Hamiltonian system on the coadjoint orbits of $\mathfrak g$ with Hamiltonian $H_{\mathfrak a}=\mathcal F$.

Conclusion

The momentum map maps the Collective Hamiltonian system $H = \mathcal{F} \circ \Phi$ to a Hamiltonia system on coadjoint orbits with Hamiltonian fuction $H_a = \mathcal{F}$.

Collective Motion

Now we can construct a collective Hamiltonian invariant under the actions of G*.

The momentum map in body coordinates is

$$\Phi_{_{\mathcal{B}}}(g,\eta)= \Pi_{\mathfrak{g}} \mathcal{A} d_{_{g^{-1}}}^{*\mathcal{D}}\eta \qquad \quad ext{, with } (g,\eta)\in G imes \mathfrak{g}^*$$

▶ $\mathcal{F} : \mathfrak{g} \to \mathbb{R}$, is $\mathcal{F}(X) = (X, \mathcal{B}X)_{\mathfrak{g}}$, where the map $\mathcal{B} : \mathfrak{g} \to \mathfrak{g}$ is:

- ► Symmetric, $(X, \mathcal{B}Y) = (\mathcal{B}X, Y)$. ► Ad*-equivariant, $Ad_{a^{-1}}^{*\mathcal{D}}\mathcal{B}X = \mathcal{B}Ad_{a^{-1}}^{*\mathcal{D}}X$

The collective Hamiltonian is given by

$$H(g,\eta) = \mathcal{F}(\Phi(g,\eta)) = (\Pi_{\mathfrak{g}} Ad_{g^{-1}}^{*\mathcal{D}} \eta, \mathcal{B}\Pi_{\mathfrak{g}} Ad_{g^{-1}}^{*\mathcal{D}} \eta)_{\mathfrak{g}}$$

The equations of motion are given by the Hamiltonian vector field $V_H|_{(a,n)} = (\dot{g}, \dot{\eta})$

$$g^{-1}\dot{g} = -\delta H$$

 $\dot{\eta} = ad^*_{\delta H}\eta - g\Delta H$

A D F A 同 F A E F A E F A Q A

with $dH = (\Delta H, \delta H) \in T^*_a(G \times \mathfrak{g})$

Summary

- We studied the geometrical formulation of classical mechanics with emphasis in configuration spaces that are Lie groups.
- We applied this formalism to Poisson-Lie groups and Double groups.
- ► We study the dressing actions of G^{*} on G, implementing it on the phase space T^{*}G and we calculated the momentum map associated to the dressing symmetry.
- We proposed a collective system with dressing symmetry, and we found its Hamilton equations.

(ロ) (同) (三) (三) (三) (○) (○)

This formalism can be applied to:

- Loop groups (Field Theory on 1 + 1 dimensions).
- T-Duality.

Bibliography

- Abraham, R. and Marsden, J.E., *Foundations of Mechanics*, Benjamin-Cummings, Reading, MA, 1978.
- Marsden, J.E., Ratiu, Introduction to Mechanics and Symmetry.
- Rolf Berndt, An Introduction to Symplectic Geometry, Graduate Studies in Mathematics, Vol. 26, 2000.
- Chari V., Pressley A., A Guide to Quantum Groups.
- Bourbaki, Lie groups and lie algebras: chapters 2 and 3, N. Springer.
- A. Cabrera, H. Montani, M. Zuccalli, Poisson-Lie T-Duality and non trivial monodromies. arXiv:0712.2259
- S. Capriotti, H. Montani, Integrable Systems and Poisson-Lie T-duality: a finite dimensional example. arXiv:0910.3236