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Review: probabilities in standard QFT

Before reviewing the probability interpretation of standard QFT, we recall the main
ingredients of the GBF version of Schrödinger-Feynman quantization (SFQ).
To each hypersurface Σ on spacetime is associated its space of field
configurations CΣ on it, and also each region M has its space of field configurations
CM. This space is the same for the hypersurface with opposite orientation:
CΣτ = C

Στ
. If we foliate spacetime using a foliation parameter τ , we thus can write

Cτ instead of CΣτ when we refer to a constant-τ hypersurface.
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Review: probabilities in standard QFT

The associated quantum state space H S
Σ then consists of the Schrödinger wave

function(al)s ψS
Σ : CΣ → C. We think of the state space of the oppositely

oriented hypersurface as being the same: H S
Στ

= H S
Στ

, and therefore again write H S
τ

instead of H S
Στ

when we refer to a constant-τ hypersurface. The involution ιSΣτ
relating states on Στ to states on Στ is given by complex conjugation. We shall
denote a state on Στ and its ιSΣτ -image on Στ by the same letter, and indicate by its
subscript the orientation. That is, for ϕτ ∈ Cτ we write

(ιSΣτψ
S
Στ )(ϕτ ) = ψS

Στ
(ϕτ ) = ψS

Στ
(ϕτ ) .

This just says that we can move the bar from over a hypersurface towards over the
state and vice versa.
The state space H S

Στ
is turned into a Hilbert space by the inner product

〈
ηS

Στ , ζ
S
Στ

〉
Στ

=

ˆ

Cτ

Dϕ ηS
Στ

(ϕ) ζS
Στ (ϕ) .
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Review: probabilities in standard QFT

To each region M in spacetime with boundary ∂M can thus be associated its
boundary state space H S

∂M. As a generalization of the usual quantum-mechanical
transition amplitude, each boundary state ψS

∂M is given a complex amplitude via the
linear amplitude map ρS

M : H S
∂M → C of the region:

ρS
M(ψS

∂M) =

ˆ

C∂M

Dϕ ψS
∂M(ϕ) ZM(ϕ) .

The quantity ZM is called the field propagator of the region M. It is computed as
a Feynman path integral of the action:

ZM(ϕ) =

ˆ

φ|∂M=ϕ

Dφ exp (iSM(φ)) .

The amplitude map ρM induces a map ρ̃M : HΣ1 → HΣ2 by〈
ζS

Σ2
, ιSΣ2

ρ̃M η
S
Σ1

〉
Σ2

!
= ρM(ηS

Σ1
⊗ζS

Σ2
) ∀ ηS

Σ1
∈ HΣ1ζ

S

Σ2
∈ HΣ2

.

In the standard situation ρ̃M is just the time evolution operator Û .
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Review: probabilities in standard QFT

The rest of this section is basically Section 4.1 of [RO2005]. To discuss the
probability interpretation, we start with a review of it in the standard formulation.
(In this elementary discussion of probabilities we assume for simplicity that state
spaces are finite dimensional. This avoids difficulties of the infinite dimensional case
which might require the introduction of probability densities etc.)
We consider a slice M[t1,t2] of Minkowski spacetime bounded by two spacelike
equal-time hyperplanes Σ1 and Σ2 at times t1,2. We canonically orient all equal-time
hypersurfaces Σt backwards in time, and by a bar as in Σ2 we thus indicate forward
orientation. We also recall that canonically the boundary of a region is outwards
oriented, therefore ∂M[t1,t2] = Σ1 tΣ2.
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Review: probabilities in standard QFT

Let ψΣ1 = |ψ〉
Σ1
∈ HΣ1 be the normalized ket-state of a quantum system at time t1

and ∗η
Σ2

= 〈
Σ2

η | ∈ H ∗Σ2
a normalized bra-state at time t2. Usually of course one

considers only one state space, i.e., HΣ1 and HΣ2
are canonically identified via

time-translation symmetry. However here we will distinguish them formally in order
to aid the later comparison with the General Boundary Formulation. The associated
transition amplitude A is given by

A = 〈
Σ2

η | Û[t1,t2] |ψ〉Σ1
= ∗η

Σ2
(ρ̃MψΣ1)

where Û[t1,t2] : HΣ1 → HΣ2
is the time-evolution operator. The associated

probability P is the modulus square of the transition amplitude: P = |A|2.
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Review: probabilities in standard QFT

What is the physical meaning of P? The simplest interpretation of this quantity is as
expressing the probability of finding the normalized state η

Σ2
at time t2 given that

the normalized state ψΣ1 was prepared at time t1. Thus, we are dealing with a
conditional probability. More specifically, such a probability usually depends on
two types of data: data describing knowledge or preparation and data describing
observation, i.e., a measurement which fixes the answer to a question.

Mathematically, for two independent events A and B , the conditional probability
P(A|B) of finding A given B is defined as

P(A|B) :=
P(A AND B)

P(B)
.
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Review: probabilities in standard QFT

Example 1.1: In order to make this more explicit, for the simplest case let us write
this probability as P(η

Σ2
|ψΣ1) (read: the probability of [observing] η

Σ2
conditional

on [the preparation of] ψΣ1):

P
(
ηΣ2

∣∣ψΣ1

)
=
∣∣∣ 〈

Σ2
η | Û[t1,t2] |ψ〉Σ1

∣∣∣2.
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Review: probabilities in standard QFT

An important ingredient of this interpretation is that the cumulative probability of
all exclusive alternatives is 1. The meaning of the latter is specified with the help of
the inner product which defines orthonormality. Let {ξ

Σ2,h
}h ∈H2 be an orthonormal

basis of HΣ2
, representing a complete set of mutually exclusive measurement

outcomes, then this implies

1 =
∑

h ∈H2

P
(
ξΣ2,h

∣∣ψΣ1

)
=
∑

h ∈H2

∣∣∣ 〈
Σ2

ξh | Û[t1,t2] |ψ〉Σ1

∣∣∣2 .
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Review: probabilities in standard QFT

Example 1.2: As an obvious extension of the Example 1.1 suppose now that we
know a priori that only certain measurement outcomes might occur. (We might
select a suitable subset of performed measurements in order to exclude other
outcomes.) A way to formalize this is to say that the possible measurement outcomes
lie in a closed subspace P

Σ2
of HΣ2

. Suppose that the orthonormal base of HΣ2

restricts to an ONB {ξ
Σ2,p
}p ∈P2 ⊆H2 of P

Σ2
.
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Review: probabilities in standard QFT

We are now interested in the probability of measuring an outcome specified by a
single state ξΣ2,m

∈ PΣ2
with m ∈ P2 conditional both on the prepared state being

ψΣ1 and knowing that the outcome must lie in PΣ2
. We denote this conditional

probability by P(ξ
Σ2,m
|ψΣ1 ,PΣ2

). According to the definition of a conditional
probability, in order to obtain it we must divide the conditional probability
P(ξ

Σ2,m
|ψΣ1) by the probability P(P

Σ2
|ψΣ1) that the outcome of the measurement

lies in P
Σ2

given the prepared state is ψΣ1 . The latter is simply

P
(
P

Σ2

∣∣ψΣ1

)
=
∑
p ∈P2

P
(
ξ
Σ2,p

∣∣ψΣ1

)
=
∑
p ∈P2

∣∣∣ 〈
Σ2

ξp | Û[t1,t2] |ψ〉Σ1

∣∣∣2

0 < P
(
P

Σ2

∣∣ψΣ1

)
≤ 1 ⇔ ∅ 6= P2 ⊆ H2
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Review: probabilities in standard QFT

Supposing the result is not zero, which would imply the impossibility of obtaining
any measurement outcome in P

Σ2
and thus the meaninglessness of the quantity

P(ξm |ψΣ1 ,PΣ2
), this implies

P
(
ξ
Σ2,m

∣∣ψΣ1 ,PΣ2

)
=

P
(
ξ
Σ2,m

∣∣ψΣ1

)
P
(
PΣ2

∣∣ψΣ1

)
=

∣∣ 〈
Σ2

ξm | Û[t1,t2] |ψ〉Σ1

∣∣2∑
p ∈P2

∣∣ 〈
Σ2

ξp | Û[t1,t2] |ψ〉Σ1

∣∣2 .
Since the denominator is positive and smaller than 1, we have
P
(
ξ
Σ2,m

∣∣ψΣ1 ,PΣ2

)
> P

(
ξ
Σ2,m

∣∣ψΣ1

)
, as expected.
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Review: probabilities in standard QFT

Example 1.3: We can further modify the Example 1.2 by testing not against a
single state, but a closed subspaceM

Σ2
⊆ P

Σ2
. We denote the associated conditional

probability by P(M
Σ2
|ψΣ1 ,PΣ2

). This is obviously the sum of conditional
probabilities P(ξ

Σ2,m
|ψΣ1 ,PΣ2

) for an orthonormal basis {ξΣ2,m
}m ∈M2 ⊆P2 of MΣ2

(to which again we suppose the ONB of PΣ2
to be restricting):

P
(
M

Σ2

∣∣ψΣ1 ,PΣ2

)
=

∑
m ∈M2

∣∣ 〈
Σ2

ξm | Û[t1,t2] |ψ〉Σ1

∣∣2
∑

p ∈P2

∣∣ 〈
Σ2

ξp | Û[t1,t2] |ψ〉Σ1

∣∣2
0 ≤ P

(
M

Σ2

∣∣ψΣ1 ,PΣ2

)
≤ 1 ⇔ M2 ⊆ P2 ⊆ H2.
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Review: probabilities in standard QFT

Example 1.4: A conceptually different extension is the following: suppose now that
{ξΣ1,h}h ∈H1 is an orthonormal basis of HΣ1 , then the quantity

P
(
ξΣ1,h

∣∣η
Σ2

)
=
∣∣ 〈

Σ2
η | Û[t1,t2] | ξh〉Σ1

∣∣2
describes the conditional probability of the prepared state having been ξΣ1,h given
that η

Σ2
was measured. This may be understood in the following sense. Suppose

somebody prepared a large sample of measurements with random choices of initial
states ξΣ1,h . We then perform measurements as to whether the final state is ηΣ2

or
not (the latter meaning that it is orthogonal to ηΣ2

). The probability distribution of
the initial states ξΣ1,h in the sample of measurements resulting in η

Σ2
is then given

by P(ξΣ1,h |ηΣ2
).
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Review: probabilities in standard QFT

These four examples are supposed to illustrate two points. Firstly, the modulus
square of a transition amplitude can be interpreted as a conditional probability in
various different ways. Secondly, the roles of different parts of a measurement
process, in respect to which is considered the conditional one and which the
depending one, are not fixed. In particular, the interpretation is not restricted to
”final state conditional on initial state”.
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Probabilities in the GBF: without projectors

This section is basically Section 4.2 of [RO2005]. In the General Boundary
Formulation the dependence of probabilities on preparation data and observation
data is preserved. The considerations of the previous section together with the GBF
context lead to the following formulation of the probability interpretation.
Consider a process taking place in a spacetime region M with a boundary ∂M. Let
H∂M be the generalized state space describing the given physical system or
measurement setup, i.e., the state space associated with the boundary ∂M. Then,
both types of data are encoded through closed subspaces of H∂M: we suppose that a
certain ”prepared” knowledge about the process amounts to the specification of the
closed preparation subspace P∂M ⊂ H∂M. That is, we assume that we know the
state describing the measurement process to be part of that subspace.
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Probabilities in the GBF: without projectors

Say we are now interested in answering the question whether the measurement
outcome corresponds to a closed measurement subspaceM∂M ⊆ P∂M ⊂ H∂M.
That is, we are interested in the conditional probability P(M∂M|P∂M) of the
measurement process being described by the measurement subspace M∂M, given that
its preparation is described by the preparation subspace P∂M.
Let again be {ξh}h ∈H an orthonormal basis of H∂M which reduces to an ONB
{ξp}p ∈P ⊆H of P∂M and further to an ONB {ξm}m ∈M ⊆P ⊂H of M∂M. Then a first
way of expressing P(M∂M|P∂M) is:

P
(
M∂M

∣∣P∂M) =

∑
m ∈M

|ρM(ξm)|2∑
p ∈P

|ρM(ξp)|2

(One might be tempted to interpret the numerator and the denominator separately
as probabilities. However, that does not appear to be meaningful in general.) As a
special case, if M∂M has dimension one, being spanned by one normalized vector ξ,
we also write P(M∂M|P∂M) = P(ξ|P∂M).
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Probabilities in the GBF: without projectors

Let us check that P(M∂M|P∂M) indeed has the properties of a quantum
mechanical probability:
By construction we have probabilities in the unit interval:

0 ≤ P(M∂M|P∂M) ≤ 1 .

It might now happen that the denominator is zero. This would imply that the
probability of observing anything given the preparation P∂M vanishes and thus the
conditional probability is physically meaningless. Moreover, because of (M ⊆ P) this
implies that the numerator vanishes, too, and thus P(M∂M|P∂M) is undefined. Thus
the knowledge encoded in P∂M does not correspond to any physically allowed process.
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Probabilities in the GBF: without projectors

For two mutually exclusive observations encoded by orthogonal subspaces M∂M,1
and M∂M,2, we have additive probabilities:

P
(
M∂M,1 ⊕M∂M,2

∣∣P∂M) = P
(
M∂M,1

∣∣P∂M)+ P
(
M∂M,2

∣∣P∂M)
m

P̂M∂M,1 ◦ P̂M∂M,2 a∂M = 0 = P̂M∂M,2 ◦ P̂M∂M,1 a∂M ∀ a∂M ∈ H∂M ,

(with P̂M∂M,1 the projection operator onto subspace M∂M,1 ⊂ H∂M) as can be seen
at a glance by inserting the probability definition into the equation above.
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Probabilities in the GBF: without projectors

Arbitrary outcome has unity probability for any (allowed) preparation and
M ⊆ P , i.e., the probability for M = P equals unity.

1 = P
(
P∂M

∣∣P∂M) =

∑
m ∈P

|ρM(ξm)|2∑
p ∈P

|ρM(ξp)|2
∀ P∂M ⊂ H∂M
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Probabilities in the GBF: without projectors

If we haveM∂M,2 impliesM∂M,1 implies P∂M, then the following probability chain
rule holds:

M∂M,2 ⊆ M∂M,1 ⊆ P∂M ⊂ H∂M

⇒ P
(
M∂M,2

∣∣P∂M) = P
(
M∂M,2

∣∣M∂M,1
)
P
(
M∂M,1

∣∣P∂M).
This can quickly be checked by inserting the probability definition into the chain rule.
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Probabilities in the GBF: without projectors

Now let’s see how the GBF’s probability definition reproduces the probability
interpretation in the standard situation of the slice region M = M[t1,t2] of examples
1.1 -1.4. First of all, according to the core axioms the boundary state space factors
into a tensor product of two state spaces: H∂M = HΣ1 ⊗HΣ2

.
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Probabilities in the GBF: without projectors

Example 2.1: For Example 1.1 we select a normalized state ψΣ1
∈ HΣ1 and set

P∂M = ”ψΣ1 ⊗HΣ2
” ⊂ H∂M

P∂M :=
{
αΣ ∈ H∂M | ∃ ηΣ2

∈ HΣ2
: αΣ = ψΣ1 ⊗ηΣ2

}
⊂ H∂M

Max Dohse (CCM-UNAM Morelia) GBF: Probabilities GBF Seminar (06.Mar.2013) 27 / 56



Probabilities in the GBF: without projectors

Let us denote by {ψΣ1 ⊗ξΣ2,p
}p ∈P =H2 an orthonormal basis of P∂M. Then, the

probability of ”observing” the normalized η
Σ2
∈ HΣ2

, which corresponds to setting

M∂M = ψΣ1 ⊗ηΣ2
,

subject to the ”preparation” of ψΣ1
∈ HΣ1 turns out as

P
(
M∂M

∣∣P∂M) =

∣∣∣ρM(ψΣ1 ⊗ η
Σ2

)

∣∣∣2∑
p ∈P

∣∣∣ρM(ψΣ1 ⊗ ξ
Σ2,p

)

∣∣∣2 =
∣∣∣ρM(ψΣ1 ⊗ η

Σ2
)

∣∣∣2 .
(We comment on unity denominator at the end of this section.)
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Probabilities in the GBF: without projectors

Comparing the notation to the standard formalism, i.e., recognizing

ρM(ψΣ1 ⊗ηΣ2
) = 〈

Σ2
η | Û[t1,t2] |ψ〉Σ1

shows that we recover the standard result P(ηΣ2
|ψΣ1),

ρM(ψΣ1 ⊗ηΣ2
) = 〈η

Σ2
, ιΣ2 ρ̃MψΣ1〉Σ2

= ∗η
Σ2

(ιΣ2 ρ̃MψΣ1) = 〈
Σ2

η | Û[t1,t2] |ψ〉Σ1
.
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Probabilities in the GBF: without projectors

The condition that the cumulative probability of all exclusive alternatives is 1, is now
reproduced by construction:

1 =
∑
p ∈P

P
(
ψΣ1 ⊗ξΣ2,p

∣∣PΣ

)
=

∑
p ∈P

∣∣∣ρM(ψΣ1 ⊗ ξ
Σ2,p

)

∣∣∣2∑
p ∈P

∣∣∣ρM(ψΣ1 ⊗ ξ
Σ2,p

)

∣∣∣2 .
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Probabilities in the GBF: without projectors

Example 2.2: Similarly, Example 1.2 is recovered by setting

P∂M = ”ψΣ1 ⊗PΣ2
” ⊆ ”ψΣ1 ⊗HΣ2

” ⊂ H∂M

P∂M :=
{
α∂M ∈ H∂M | ∃ηΣ2

∈ P
Σ2

: α∂M = ψΣ1 ⊗ηΣ2

}
⊂ H∂M

M∂M := ψΣ1 ⊗ξΣ2,m
m ∈ P2

for an orthonormal basis {ψΣ1 ⊗ξΣ2,p
}p ∈P2 of P∂M with (∅ 6= P2 ⊆ H2). Then we

get agreement of P(ξ
Σ2,k
|ψΣ1 ,PΣ2

) with

P
(
M∂M

∣∣P∂M) =

∣∣∣ρM(ψΣ1 ⊗ ξ
Σ2,m

)

∣∣∣2∑
p ∈P2

∣∣∣ρM(ψΣ1 ⊗ ξ
Σ2,p

)

∣∣∣2 .
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Probabilities in the GBF: without projectors

Example 2.3: For Example 1.3 we keep P∂M and its orthonormal basis and assume
that it restricts to an ONB {ψΣ1 ⊗ξΣ2,m

}m ∈M2 of M∂M with (M2 ⊆ P2 ⊆ H2) and

M∂M = ”ψΣ1 ⊗MΣ2
” ⊆ ”ψΣ1 ⊗PΣ2

” ⊂ H∂M

M∂M :=
{
α∂M ∈ H∂M | ∃ηΣ2

∈M
Σ2

: α∂M = ψΣ1 ⊗ηΣ2

}
⊂ H∂M.

Then we recover P(M
Σ2
|ψΣ1 ,PΣ2

) via

P
(
M∂M

∣∣P∂M) =

∑
m ∈M2

∣∣∣ρM(ψΣ1 ⊗ ξ
Σ2,m

)

∣∣∣2∑
p ∈P2

∣∣∣ρM(ψΣ1 ⊗ ξ
Σ2,p

)

∣∣∣2 .
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Probabilities in the GBF: without projectors

Example 2.4: For Example 1.4 we have

P∂M = ” HΣ1 ⊗ηΣ2
” ⊂ H∂M

P∂M :=
{
α∂M ∈ H∂M | ∃ψΣ1

∈ HΣ1 : α∂M = ψΣ1 ⊗ηΣ2

}
⊂ H∂M

and denote by {ξΣ1,p ⊗ηΣ2
}p ∈P1=H1 an orthonormal basis of P∂M.
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Probabilities in the GBF: without projectors

Then, the probability of ”observing” (respectively ”having observed” since t1 < t2) a
state ξΣ1,m

∈ HΣ1 , which corresponds to setting

M∂M = ξΣ1,m ⊗η
Σ2
,

subject to the ”preparation” (respectively ”post-preparation”) of ηΣ2
∈ HΣ2

turns out
as

P
(
M∂M

∣∣P∂M) =

∣∣∣ρM(ξΣ1,m ⊗ η
Σ2

)

∣∣∣2∑
p ∈P1

∣∣∣ρM(ξΣ1,p ⊗ η
Σ2

)

∣∣∣2 =
∣∣∣ρM(ξΣ1,k

⊗ η
Σ2

)

∣∣∣2 .
which recovers P(ξΣ1,k |ηΣ2

). The important point here of course consists in
”post-preparing” the experimental setup at time t2 > t1 and ”measuring” the initial
state retroactively. This again illustrates nicely that for certain data the ”preparation
vs. observation” interpretation is independent of the temporal sequence of the events
described in the data.
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Probabilities in the GBF: without projectors

Thus preparation in a generalized sense can be expressed as ”fixing some (input and
output) parts” of an experiment while leaving some parts unfixed. In other words,
preparation is fixing the question asked to the physical system and fixing the possible
answers. Measurement can then be seen as ”fixing the parts left undetermined” in
the preparation, or determining which of the possible answers occured.

Here input (output) denotes anything flowing into (out of) the spacetime region
within which the experiment is conducted.
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Probabilities in the GBF: without projectors

We recall that in Example 1.1 we had chosen ψΣ1 to be normalized while
{ξΣ2,p

}p ∈P2 =H2 was an orthonormal basis of HΣ2
. Moreover, the induced map

ρ̃M : HΣ1 → HΣ2 should be an isomorphism which conserves the inner product.
This then implies for these examples that

1 =
∑
p ∈P2

∣∣∣ρM(ψΣ1 ⊗ξΣ2,p
)

∣∣∣2 =
∑
p ∈P2

∣∣∣〈ξΣ2,p
, ιΣ2 ρ̃MψΣ1〉Σ2

∣∣∣2
Either ιΣ2 ρ̃M maps ψΣ1 directly to one vector of the orthonormal base {ξ

Σ2,p
} (which

can of course be arranged by choosing the ONB adequately) and hence the sum is
over Kronecker deltas all vanishing but one, or the sum is achieved by summing over
all inner products (now each < 1) of ιΣ2 ρ̃MψΣ1 with the vectors {ξ

Σ2,p
} of the ONB.

By similar reasoning, the normalization factor in Example 1.4 equals unity, too (but
not the ones in the second and third example, since therein not the whole Hilbert
space HΣ2

is covered by PΣ).
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Probabilities in the GBF: projection operators
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Probabilities in the GBF: projection operators

This section is basically Section 3 of [RO2007]. We consider the same setting as in
the previous subsection: with preparation encoded by a closed preparation subspace
P∂M ⊂ H∂M and measurement outcomes by a closed measurement subspace
M∂M ⊂ H∂M. And again we are interested in the conditional probability
P(M∂M|P∂M) of the measurement process being described by M∂M given that its
preparation is described by P∂M. The second (equivalent) way for expressing this
probability is

P
(
M∂M

∣∣P∂M) =

∣∣∣∣ ρM ◦ P̂P∂M ◦ P̂M∂M

∣∣∣∣2∣∣∣∣ ρM ◦ P̂P∂M
∣∣∣∣2

with P̂P∂M and P̂M∂M being the orthogonal projectors onto the subspaces P∂M
respectively M∂M, while ◦ denotes the composition of maps.
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Probabilities in the GBF: projection operators

There is a slight difference between the presentation of the probability interpretation
in this section and the one in Section 2. There, the subspace M∂M was restricted to
be a subspace of P∂M. This restriction is lifted here, which represents more a formal
than a physical difference. Conceptually, making M∂M a subspace of P∂M just means
taking into account the knowledge about the preparation when the question is asked.
In particular, if P̂P∂M and P̂M∂M commute, then we can replaceM∂M byM∂M ∩P∂M
without any change to P(M∂M|P∂M). Thus the projector prescription for the
probabilities is somewhat more flexible with respect to which measurement subspaces
M∂M it allows.
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Probabilities in the GBF: projection operators

The expressions in denumerator and denominator which the norm is taken of are
linear maps H∂M → C and thus elements of H ∗∂M. The norm of such maps is defined
here as follows: let

β∂M ∈ H ∗∂M : H∂M → C

be a bounded linear map. Then there exists its dual ∗β∂M ∈ H∂M such that

β∂M(ψ∂M) = 〈∗β∂M, ψ∂M〉∂M ∀ ψ∂M ∈ H∂M

and we define

||β∂M ||H ∗
∂M

:= || ∗β∂M ||H∂M .

However, the amplitude map ρM is generically not bounded. Thus P∂M must be
”small enough” such that it makes ρM ◦ P̂P∂M into a bounded map. This condition is
satisfied in standard situations.
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Probabilities in the GBF: projection operators

We recall that projectors are orthogonal if and only if they are hermitian. Thus, for
any map β∂M as above, any orthogonal projector P̂S∂M onto a subspace S∂M ⊂ H∂M

and for all ψ∂M ∈ H∂M we have

(β∂M◦P̂S∂M)ψ∂M =
〈
(∗(β∂M ◦ P̂S∂M), ψ∂M

〉
∂M

= β∂M (P̂S∂Mψ∂M) =
〈∗β∂M , P̂S∂Mψ∂M

〉
∂M

=
〈
P̂S∂M

∗β∂M, ψ∂M
〉
∂M

=⇒ ∗(β∂M ◦ P̂S∂M) = P̂S∂M
∗βΣ ∈ H∂M

In the same way we can show that for several projectors {P̂S∂M,j }j=1,...,k we have

∗(β∂M ◦ P̂S∂M,1 ... P̂S∂M,k ) = P̂S∂M,k ... P̂S∂M,1 (∗β∂M).
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Probabilities in the GBF: projection operators

P(M∂M|P∂M) again has the properties of a quantum mechanical probability:
By construction we have probabilities in the unit interval:

0 ≤ P(M∂M|P∂M) ≤ 1 .

It might again happen that the denominator is zero. This would imply that the
probability of observing anything given the preparation subspace P∂M vanishes and
thus the conditional probability is physically meaningless. Moreover this implies that
the numerator vanishes, too, and thus P(M∂M|P∂M) is undefined. Thus the
knowledge encoded in P∂M does not correspond to any physically allowed process.
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Probabilities in the GBF: projection operators

For two mutually exclusive observations encoded by orthogonal subspaces M∂M,1
and M∂M,2 we have additive probabilities:

P
(
M∂M,1 ⊕M∂M,2

∣∣P∂M) = P
(
M∂M,1

∣∣P∂M)+ P
(
M∂M,2

∣∣P∂M)
m

P̂M∂M,1 ◦ P̂M∂M,2 a∂M = 0 = P̂M∂M,2 ◦ P̂M∂M,1 a∂M ∀ a∂M ∈ H∂M

because of

P
(
M∂M,1⊕M∂M,2

∣∣P∂M) =

∣∣∣∣ ρM ◦ P̂P∂M ◦ P̂M∂M,1⊕M∂M,2

∣∣∣∣2∣∣∣∣ ρM ◦ P̂P∂M
∣∣∣∣2

=

∣∣∣∣ ρM ◦ P̂P∂M ◦ (P̂M∂M,1 +P̂M∂M,2)
∣∣∣∣2∣∣∣∣ ρM ◦ P̂P∂M

∣∣∣∣2
=

¨
∗(ρM◦P̂P∂M◦(P̂M∂M,1+P̂M∂M,2)

)
, ∗
(
ρM◦P̂P∂M◦(P̂M∂M,1+P̂M∂M,2)

)∂
∂M∣∣∣∣ ρM ◦ P̂P∂M

∣∣∣∣2
= P

(
M∂M,1

∣∣P∂M)+ P
(
M∂M,2

∣∣P∂M)+ (2Re N ) /
∣∣∣∣ ρM ◦ P̂P∂M

∣∣∣∣2
wherein N vanishes:
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Probabilities in the GBF: projection operators

N =
¨
∗(ρM◦P̂P∂M ◦P̂M∂M,1

)
, ∗
(
ρM◦P̂P∂M ◦P̂M∂M,2

)∂
∂M

=
〈
P̂M∂M,1 ◦P̂P∂M

∗ρM, P̂M∂M,2 ◦P̂P∂M
∗ρM
〉
∂M

=
〈
P̂P∂M ◦ P̂M∂M,2 ◦ P̂M∂M,1︸ ︷︷ ︸

= 0

◦ P̂P∂M ◦
∗ρM,

∗ρM
〉
∂M

= 0.
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Probabilities in the GBF: projection operators

Arbitrary outcome has unity probability for any (allowed) preparation
subspace:

1 = P
(

H∂M

∣∣P∂M) =

∣∣∣∣∣∣ ρM ◦ P̂PΣ ◦

IdH∂M︷ ︸︸ ︷
P̂H∂M

∣∣∣∣∣∣2∣∣∣∣∣∣ ρM ◦ P̂PΣ

∣∣∣∣∣∣2 ∀ P∂M ⊂ H∂M
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Probabilities in the GBF: projection operators

If we haveM∂M,2 impliesM∂M,1 implies P∂M, then the following probability chain
rule holds:

M∂M,2 ⊆ M∂M,1 ⊆ P∂M ⊂ H∂M

⇒ P
(
M∂M,2

∣∣P∂M) = P
(
M∂M,2

∣∣M∂M,1
)
P
(
M∂M,1

∣∣P∂M).
This can quickly be checked by inserting the probability definition the chain rule and
applying the premise to the projection operators.
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Probabilities in the GBF: projection operators

Now let us verify again how the GBF probabilities via projectors reproduce the
examples of the standard formulation. Again, following the core axioms we have to
suppose for the standard case that the state space factors into a tensor product of
two state spaces: H∂M = HΣ1 ⊗HΣ2

.

Max Dohse (CCM-UNAM Morelia) GBF: Probabilities GBF Seminar (06.Mar.2013) 47 / 56



Probabilities in the GBF: projection operators

Example 3.1: For Example 1.1 we select two normalized states ψΣ1
∈ HΣ1 and

η
Σ2
∈ HΣ2

and set

P∂M = ”ψΣ1 ⊗HΣ2
” ⊂ H∂M

M∂M = ” HΣ1 ⊗ηΣ2
” ⊂ H∂M

P∂M :=
{
α∂M ∈ H∂M | ∃βΣ2

∈ HΣ2
: α∂M = ψΣ1 ⊗βΣ2

}
⊂ H∂M

M∂M :=
{
α∂M ∈ H∂M | ∃βΣ1

∈ HΣ1 : α∂M = βΣ1 ⊗ηΣ2

}
⊂ H∂M
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Probabilities in the GBF: projection operators

Let us now denote by {ξΣ1,j ⊗ξΣ2,k
}j ,k=1,...,(dim HΣ1,2

) an orthonormal basis of H∂M

with ξΣ2,k
= ιΣ2

ρ̃MξΣ1,k , and further such that ψΣ1 is one of the ξΣ1,j . Then, the

probability of ”observing” ηΣ2
∈ HΣ2

subject to the ”preparation” of ψΣ1
∈ HΣ1 after

the calculation below turns out as:

P
(
M∂M

∣∣P∂M) =
∣∣∣〈ηΣ2

, ψΣ2

〉
Σ2

∣∣∣2 =
∣∣∣ 〈

Σ2
η
∣∣ Û[t1,t2]

∣∣ψ〉
Σ1

∣∣∣2
which again recovers the standard result P(η

Σ2
|ψΣ1).
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Probabilities in the GBF: projection operators

The calculation goes as follows: the two relevant projectors are

P̂P∂M = ψΣ1〈ψΣ1 , · 〉Σ1
⊗IdH

Σ2

= ψΣ1〈ψΣ1 , · 〉Σ1
⊗

dim H
Σ2∑

k=1

ξ
Σ2,k

〈ξ
Σ2,k

, · 〉
Σ2

P̂M∂M = IdHΣ1
⊗η

Σ2
〈η

Σ2
, · 〉

Σ2

=

dim HΣ1∑
k=1

ξΣ1,k〈ξΣ1,k , · 〉Σ1
⊗η

Σ2
〈η

Σ2
, · 〉

Σ2
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Probabilities in the GBF: projection operators

The probability for Example 3.1 via projectors then is:

P(M∂M|P∂M) =

∣∣∣∣ ρM ◦ P̂P∂M ◦ P̂M∂M

∣∣∣∣2∣∣∣∣ ρM ◦ P̂P∂M
∣∣∣∣2

=

¨
∗(ρMP̂P∂M P̂M∂M

)
, ∗
(
ρMP̂P∂M P̂M∂M

)∂
∂M¨

∗
(
ρMP̂P∂M

)
, ∗
(
ρMP̂P∂M

)∂
∂M

=

¨
P̂M∂M P̂P∂M

∗ρM , P̂M∂M P̂P∂M
∗ρM
∂
∂M¨

P̂P∂M
∗ρM , P̂P∂M

∗ρM
∂
∂M

=

¨
P̂M∂M P̂P∂M

dim HΣ1∑
k=1

ξΣ1,k ⊗ξΣ2,k
, P̂M∂M P̂P∂M

dim HΣ1∑
k=1

ξΣ1,k ⊗ξΣ2,k

∂
∂M¨

P̂P∂M

dim HΣ1∑
k=1

ξΣ1,k ⊗ξΣ2,k
, P̂P∂M

dim HΣ1∑
k=1

ξΣ1,k ⊗ξΣ2,k

∂
∂M

.
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Probabilities in the GBF: projection operators

We now consider the term in the denominator:

P̂P∂M

dim HΣ1∑
a=1

ξΣ1,a ⊗ξΣ2,a
=

dim HΣ1∑
a,b=1

ψΣ1

”δψ,a”︷ ︸︸ ︷
〈ψΣ1 , ξΣ1,a〉Σ1

⊗

= ξ
Σ2,a︷ ︸︸ ︷

ξ
Σ2,b

〈ξ
Σ2,b

, ξ
Σ2,a

〉
Σ2

= ψΣ1 ⊗ ι
Σ2
ρ̃MψΣ1︸ ︷︷ ︸

:=ψ
Σ2

.

The norm of this is unity since ψΣ1 is normalized and ρ̃M is an isomorphism.
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Probabilities in the GBF: projection operators

Let us move on with the denumerator:

P̂M∂M P̂P∂M

dim HΣ1∑
a=1

ξΣ1,a ⊗ξΣ2,a
= P̂M∂M ψΣ1 ⊗ψΣ2

= ψΣ1 ⊗ ηΣ2
〈ηΣ2

, ψΣ2
〉

Σ2

The norm squared of this according to core axioms is just
∣∣∣〈ηΣ2

, ψ
Σ2

〉
Σ2

∣∣∣2 and thus

we have derived:

P(M∂M|P∂M) =
∣∣∣〈ηΣ2

, ψ
Σ2

〉
Σ2

∣∣∣2 =
∣∣∣ 〈

Σ2
η
∣∣ Û[t1,t2]

∣∣ψ〉
Σ1

∣∣∣2.
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Probabilities in the GBF: projection operators

Example 3.2: For Example 1.2 we set

P∂M = ”ψΣ1 ⊗SΣ2
” ⊆ ”ψΣ1 ⊗HΣ2

” ⊂ H∂M

M∂M = ” HΣ1 ⊗ηΣ2
” ηΣ2

∈ SΣ2

P∂M :=
{
α∂M ∈ H∂M | ∃βΣ2

∈ S
Σ2

: α∂M = ψΣ1 ⊗βΣ2

}
⊂ H∂M

M∂M :=
{
α∂M ∈ H∂M | ∃βΣ1

∈ HΣ1 : α∂M = βΣ1 ⊗ηΣ2

}
⊂ H∂M

We leave the calculation of the probability as a homework for the inclined readership.
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Probabilities in the GBF: projection operators

Example 3.3: For Example 1.3 we keep P∂M and set

M∂M = ” HΣ1 ⊗MΣ2
” ⊆ ”HΣ1 ⊗PΣ2

” ⊂ H∂M

M∂M :=
{
α∂M ∈ H∂M | ∃βΣ1

∈ HΣ1 , ψΣ2
∈M

Σ2
: α∂M = βΣ1 ⊗ψΣ2

}
⊂ H∂M .
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Probabilities in the GBF: projection operators

Example 3.4: For Example 1.4 we set:

P∂M = ” HΣ1 ⊗ηΣ2
” ⊂ H∂M

M∂M = ”ψΣ1 ⊗HΣ2
” ⊂ H∂M

P∂M :=
{
α∂M ∈ H∂M | ∃βΣ1

∈ HΣ1 : α∂M = βΣ1 ⊗ηΣ2

}
⊂ H∂M

M∂M :=
{
α∂M ∈ H∂M | ∃βΣ2

∈ HΣ2
: α∂M = ψΣ1 ⊗βΣ2

}
⊂ H∂M.

This reproduces the correct probabilities also for this case of retroactive measurement
as the active readership can verify following the steps of the first example. In the
definition of probabilities via projectors this is not unexpected, since here we can see
with respect to Example 3.1 we have only interchanged P∂M with M∂M.
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