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Motivations from quantum field theory
The evolution from Σ1 = {t1} × R3 to Σ2 = {t2} × R3, where ∂M = Σ1 t Σ2,
M = [t1, t2]× R3. Is given by the amplitude transition

ρM : HΣ1 ⊗HΣ2
→ C

”ρ(ψ1 ⊗ ψ∗2 ) =

Z
Kt1
×Kt2

ψ2(ϕ2)ZM (ϕ1, ϕ2)ψ1(ϕ1)Dϕ1Dϕ2”

′′ZM (ϕ1, ϕ2) :=

Z
K[t1,t2],φ|ti =ϕi

eiSM (φ)Dφ′′

or alternatively as an operator

ρ̃M : HΣ1 → HΣ2 , ρ̃M ∈ H∗Σ1 ⊗HΣ2

Thus we have a ”rule"that assigns (state) vector spaces to (oriented)
hypersurfaces Σ, and unitary (evolutionary) maps to regions M

Σ1

��

�K
�L

M

M
�N
�N
�O
�P
�P
�Q
�R
�R
�S

� // HΣ1

��

M
� // ρ̃M

Σ2
� // HΣ2



Axioms from quantum theory

I (A-1) Duals:
HΣ = H∗Σ

Where we take a dual vector space.
In the previous slide, this allows a coupling of ”in” state ψΣ1 , with an ”out”
state ψ2 ∈ HΣ2 .

I (A-2) Tensor products:

HΣ1tΣ2 = HΣ1 ⊗HΣ2

This is a tensor product and not a cartesian product i.e. quantum states
demand an algebraic structure
It follows that H∂M = HΣ1tΣ2

= H∗Σ1
⊗HΣ2 thus

ρ̃M ∈ H∂M

We consider algebraic duals and tensor products. For physically relevant
theories we woukd like HΣ to be infinite dimensional Hilbert spaces. In
this case Hilbert space (continuous) duals and Hilbert space
(completed) tensor products will not be considered. In the formal TQFT
models we will just have finite dimensional Hilbert spaces, so duals and
tensor products are algebraic.
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Gluing axiom

(A-3a) If M is a manifold with ∂M = Σ1 t Σ t Σ while M1 = ∪ΣM obtained by
identifying Σ with Σ, then

ρ̃M1 = (ρ̃M )Σ,

where (ρ̃M )Σ is the contraction

HΣ1 ⊗HΣ ⊗HΣ → HΣ1

(A-3b) When two regions M1,M2 with ∂M1 = Σ1 t Σ, with
∂M1 = Σ1 t Σ, ∂M2 = Σ′ t Σ2 are glued along a boundary diffeomorphism
f : Σ→ Σ′, we obtain ρ̃M1∪f M2 ∈ H

∗
Σ1
⊗HΣ2 as the contraction (ρ̃M1 , ρ̃M2 )

where
(·, ·) : H∗Σ1 ⊗ (HΣ ⊗H∗Σ)⊗HΣ2 → H

∗
Σ1 ⊗HΣ2

This axiom encodes the ”time evolution” composition

′′ZM1∪f M2 =

Z
KΣ

ZM1 (ϕ1, ϕΣ)ZM2 (ϕΣ, ϕ2)Dϕ′′Σ

with eiSM1∪M2 = eiSM1 eiSM2 .



More abstract axioms

I (A-4a) For the empty hypersurface ∅ = Σ,

H∅ = C

It follows that for ∂ (M1 ∪f M2) = ∅, ρ̃M1∪f M2 = ρ̃M1 ⊗ ρ̃M2

I (A-4b) For the empty region with empty boundary ρ̃∅ = 1 : C→ C
Also for the empty region with non empty boundary Σ t Σ,
ρ̃∅ = id ∈ H∗Σ ⊗HΣ.

I (A-5a) There are hermitian structures in HΣ and H∗Σ compatible with
duals i.e. there are conjugate-linear maps ιΣ : HΣ → H∗Σ, ιΣ : H∗Σ → HΣ,
such that ιΣ ◦ ιΣ = id and the following diagrams commutes

H∗Σ
ι

Σ

��

⊗ HΣ

id

��

// C

z 7→z

��
HΣ ⊗ HΣ

〈|〉 // C

I (A-5b) ρ̃M is unitary
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”Topological field theories”
I (A-6) For any cylinder region Σ× [0, 1],

ρ̃Σ×[0,1] = id ∈ H∗Σ ⊗HΣ,

where ∂ (Σ× [0, 1]) = Σ t Σ.
(Physics commment: This axiom encodes ”kinematical theories”, i.e.
theories with null Hamiltonian where the action SM (ϕ), ϕ ∈ KM is
diffeomorphisms invariant

SM (f ∗ϕ) = SM (ϕ), for all f : M 	, f ∈ Diff0(M), ϕ ∈ KM

Null hamiltonian evolution in Minkowski space-time yields the
identification Ht1 ' Ht2 ' H. Thus solutions ρ̃m should be interpreted as
vacuum states)

I Example: BF theories modulo gauge. For simplicity take dim M = 2,

SBF (B,A) =

Z
M

B ∧ F A, B ∈ Ω0(M,R),A ∈ Ω1(M, g)

where g is the Lie algebra of G, and A is a connection for a G−principal
bundle (for physicists ϕ = B × A is a field configuration and F A is the
field strength.) Then for every f ∈ Diff0(M)

SBF (f ∗B, f ∗A) =

Z
M

f ∗B∧F f∗A =

Z
M

f ∗(B∧F A) =

Z
f (M)

B∧F A =

Z
M

B∧F A



”Area almost topological field theories”
Example: Yang-Mills theories. For simplicity take M compact, dim M = 2 with
area form ω ∈ Ω2(M,R)

SYM (A) =

Z
M

tr(F A ∧ ∗F A) =

Z
M

tr(F 2)ω, A ∈ Ω1(M, g)

Then for every
f ∈ Diff0,ωM := {f ∈ Diff0M | f ∗ω = ω}

we have the invariance

SYM (f ∗A) =

Z
M

tr(F ◦ f )2f ∗ω =

Z
M

tr(F 2)ω = SYM (A)

Theorem (Moser)
Let ω, ω′ two area forms in M such that they give the same total area
t =

R
M ω =

R
M ω
′, then there exists a diffeomorphism isotopy

fs ∈ Diff0M, 0 ≤ s ≤ 1 such that f ∗1 ω
′ = ω.

Corollary
The Yang-Mills action SYM of the cylinder ρ̃Σ×[0,1], depends only on the total
area t.
The transition amplitude of the cylinder ρ̃t,Σ×[0,1] : HΣ → HΣ, depends just on
the total area t of the cylinder Σ× [0, 1]



Objects

Simplifying (mathematical) hypothesis: A) regions M and hypersurfaces Σ
correspond to a compact manifolds.
B) There is no ”time” foliation in M, we rather regard space-time M as an
”evolving movie” of space Σ where space topology may change.
Recall the assignment M 7→ ρ̃M , Σ 7→ HΣ, the ”source” for this rule can be
described as the n−dimensional cobordisms Cob(n). This category consists
of
Objects Obj(Cob(n)) : hypersurfaces Σ are identified with diffeomorphism
classes of oriented closed (∂Σ = ∅) (n − 1)−dimensional manifolds
There exists a operation of objects: Σ1,Σ2 7→ Σ1 t Σ2. The empty object is a
unity of the operation:

∅ t Σ = Σ = Σ t ∅



Morphisms

Morphisms MorphCob(n)(Σ1,Σ2) : regions M are identified with equivalence
classes of cobordisms M : Σ1  Σ2,

Σ1
′′ in′′ // M Σ2′′out′′

oo

The ”in” diffemorphism inverts orientation in Σ1 with respect to the induced
orientation in M, the ”out” diffeomorphism preserves orientation. The
equivalence relation of cobordisms M ′ ∼ M

M ′

Σ1

′′ in′′
>>||||||||

′′ in′′

!!BBBBBBBB Σ2

′′out′′

``BBBBBBBB

′′out′′~~||||||||

M

h′

OO

The cobordism class of the composition of two cobordisms M2 ◦M1 is well
defined trough the cobordism class of the gluingM1Uf M2.
Σ× [0, 1] : Σ Σ is the identity morphism in the object Σ.



Examples of nonequivalent morphisms

1. The cylinder

Σ
Σ×[0,1] ///o/o/o Σ

2. A bended cylinder M1 : Σ t Σ ∅, or equivalently

Σ

M1

ww

&f %e "b
�Y
�O
�E
|<y9x8

Σ

3. Another bended cylinder M2 : ∅ Σ t Σ, or equivalently

Σ

M2

''

x8y9|<
�E
�O
�Y
"b %e &f

Σ



Symmetric monoidal categories

The operation of objects defined by disjoint union is associative, and
symmetric: there is a twist morphism

τ : Σ1 t Σ2  Σ2 t Σ1

There is also an operation of morphisms, M1 : Σ1  Σ′1 and M2 : Σ2  Σ′2,

M1 tM2 : Σ1 t Σ2  Σ′1 t Σ′2

There exists the empy morphism ∅M : ∅ ∅ There is also a symmetry for the
disjoint union of morphisms, and the unity morphism

Σ1 t Σ2
M1tM2 ///o/o/o

τ

��
�O
�O
�O

Σ′1 t Σ′2

τ

�� �O
�O
�O

Σ2 t Σ1
M2tM1 ///o/o/o Σ′2 t Σ′1

All this constitutes a symmetric monoidal category (Cob(n),t, ∅).



Examples from 2d TQFT

In this case dim M = 2, dim Σ = 1 and therefore Σ = S1. Hence

Obj(Cob(2)) = {∅,S1,S1 t S1,S1 t S1 t S1, . . . } ' {0, 1, 2, ...}

Obj(Cob(2)) is a set!, (Obj(Cob(2)),t, ∅) is a monoid that corresponds to
the additive monoid structure on the natural numbers

Proposition
Let M1,M2 be two compact connected oriented surfaces with boundary. The
surfaces M1,M2 are diffeomorphic iff they have the same genus g and the
same number of boundary components k.

This will allow a complete description of morphisms:

MorphCob(2)(Σ1,Σ2)



The category of vector spaces Vect

On the other hand we organize the spaces HΣ also in a category Vect
Objects Obj(Vect) : are vector spaces V
Morphisms are linear maps
We have as operation a tensor product ⊗
This is symmetric

V ⊗W ' W ⊗ V

It has a unit
C⊗ V ' V ' V ⊗ C

Hence (Vect,⊗,C) is also a symmetric monoidal category



The functorial hypothesis

One of the first attemps to formalize TQFT is regarding the rule Σ 7→ HΣ and
M 7→ ρ̃ as a functor
The formal definition can be written as follows

Definition
A TQFT is a monoidal functor between monoidal symmetric categories

Z : (Cob(n),t, ∅)⇒ (Vect,⊗,C)

Z(Σ) := HΣ, ZΣ1,Σ2 (M) := ρ̃M

The interpretation of Atiyah’s axioms as a functorial relation between
categories does not cover physically relevant theories, nevertheless it
clarifies conceptual insights for further research and also for calculations



Generating cobordisms in 2d

Let V be the vector space associated to Σ ∼= S1, i.e. V = Z(1) ∈ Vect.
From the topological classification of surfaces it follows that every cobordism
in 2d can be obtained as a composition of one or several cobordisms in the
following list. The corresponding morphisms associated by using the functor
Z are dscribed below

Z ⇓

e : C→ V , m : V ⊗ V → V , id : V → V , δ : V → V ⊗ V , ε : V → C,

τ : V ⊗ V → V ⊗ V

They are called unit, multiplication, identity, comultiplication, trace and
twisting respectively



Relations among generators
The previous maps coming from generators have relations induced by the
cobordism equivalence (surface classification)
For instance the multiplication m : V ⊗ V → V is associative as can be
deduced from the following equivalence of cobordisms (in graph notation)

���_
�_
�_
�_

id ///o/o/o/o

  
 `
 `
 `
 `

///o/o/o • m ///o/o/o • m ///o/o/o ∼= ///o/o/o • m ///o/o/o • m ///o/o/o

///o/o/o

id
>>
>~
>~
>~
>~

>>>~
>~
>~
>~
>~

This also may be expressed as a commutative diagram

V ⊗ (V ⊗ V )
id⊗m //

OO

��

V ⊗ V
m

""EEEEEEEEE

V

(V ⊗ V )⊗ V
m⊗id // V ⊗ V

m

<<yyyyyyyyy



The unit e and multiplication m have the property

• e ///o/o/o

���^
�^
�^
�^
�^

id ///o/o/o ///o/o/o • m ///o/o/o ∼=
id ///o/o/o



Frobenius relation

One important relation is Frobenius relation wich follows from the
diffeomorphism

Finally we have a vector space V which is also a unital commutative algebra
with additional structures such as the coproduct, the counit and the Frobenius
relation. This relation encodes a compatibility between the product and the
coproduct. A (commutative) Frobenius algebra is an algebra V provided
with the operations and relations we have just mentioned. Using commutative
diagrams

V ⊗ (V ⊗ V )OO

��

id⊗m // V ⊗ V

V ⊗ V
δ⊗id// (V ⊗ V )⊗ V



Finite dimension

Theorem
A Frobenius algebra V has finite dimension

Proof. Consider the Frobenius relation then it follows that the following
composition should coincide with the identity

V (V ⊗ V )⊗ VOO

��

ε◦m⊗id // C⊗ V

V ⊗ C
δ◦e⊗id// V ⊗ (V ⊗ V ) V

Let (a | b) := ε(m(a⊗ b)) then the previous composition yields

a⊗ 1 7→ a⊗
nX

i=1

ai ⊗ bi 7→
nX

i=1

ai ⊗ bi ⊗ a
nX
i1

ai (bi | a) = a

Therefore a1, . . . , an is basis for V .

Corollary
(a | ·) : V → C is non degenerate from every a ∈ V
V ' V ∗

V ' V ∗ ∗



This last result impose an obstruction for considering V as an infinite
dimensional Hilbert space. This obstruction may also be clarified by a straight
calculation:
If δ : V → V ⊗ V is a coproduct defined as δ(|ψi〉) = |ψi〉 ⊗ |ψi〉 for an
orthonormal basis an linearly extended. Then:
a) This map is basis dependent.
b) Furthermore the trace ε : V → C can be defined (or redefined) as ε|ψi〉 = 1
and extended linearly. The Frobenius relation implies that ε becomes infinite.
Thus a trace can exist only for finite dimensional Hilbert spaces.
In physics literature this discussion is the main limitation of the categorical
interpretation of Atiyah’s axioms in order to produce formalisms for physically
relevant models.



Classification of 2d-TQFT

Despite the limitations we have described for the categorical point of view,
one of the most appealing features of this formalism is that it provides a
complete classification of 2d-TQFT. Namely we have the following theorem:

Theorem
The monoidal functors Z : Cob(2)⇒ Vect have themselves a category
structure. Furthermore the following categories are equivalent

2d− TQFT ' cFA

Where the r.h.s. corresponds to the commutative Frobenius algebras
category.

Natural transformations of functors Z correspond to morphisms in the
category 2dTQFT, equivalence of categories are defined by full, faithful and
essentially surjective functors.



Explicit calculations for BF theories

Problem: Let Mg be a closed (∂Mg = ∅) oriented surface of genus g. We are
interested in calculating ρ̃Mg ∈ C.
I. Bf theories: Consider the action SBF then boundary configurations
correspond to the Lie group G modulo the adjoint action, thus V = HS1 is the
Hilbert spaces

CClass(G) = {f : G→ C | f (g−1 · x · g) = f (x)}

of class functions on G. By Peter Weil theorem there exists an ON basis {χα}
on CClass(G) = L2(G) given by characters

χα(g) = tr(α(g))

associated to irreducible representations α. Any state in CClass(G) may be
written as ψ =

P
α ψαχα.

Algebra product m : V ⊗ V → V is given by convolution, characters are
nilpotent mod coefficients: m(χi ⊗ χj ) = aijδi,jχi



We consider as "building blocks” of the surface M as the unit, outwards
bended tube, the triple product each one is represented in the vector space
morphisms:
a) Cap:

e =
X
α

fαχα =
X
α

wα ∈ V , wα = fαχα

b) Three holed sphere:

t =
X
α

cαχα ⊗ χα ⊗ χα ∈ V ⊗ V ⊗ V

c) Two holed sphere:

µ =
X
α

χ∗α ⊗ χ∗α ∈ V ∗ ⊗ V ∗



The identity relation yields the relation among coefficients cαfα = 1
A direct calculation yields

µ(wα,wα) = f 2
α = c−2

α

Also
t =

X
α

c4
αwα ⊗ wα ⊗ wα

For instance take g = 2, a contraction of suitable oriented graphs yields the
contraction of the tensor (µ⊗ µ⊗ µ, t ⊗ t) =

P
α c2

α

•µ •t
�� c#i)o/u5{;
�A

]]
{;u5o/i)c#

]�
///o/o/o •µ •too o/ o/ o/

AA
#c )i /o 5u ;{

A�

��;{ 5u /o )i #c
�]

•µ



For general genus we have the contraction of 3(g − 1) times µ with 2(g − 1)
times t hence

Z(Mg) = ρ̃M =
X
α

c2(g−1)
α

After some calculations from group representation theory cα = vol(G)

(2π)dim G dimα



Calculations in other models
II. Dijkgraaf-Witten model: it uses finite gauge group G, then V = Cclass(G)
is a Frobenius algebra. Here the categorical interpretation of 2d TQFT is fully
incorporated. Nice calculations of representation theory yield

Z(Mg) = |G|2g−2
X 1

(dimα)2g−2

III. Electromagnetism: recall that T > 0 is the total area of the region
a) Cap:

e =
X
α∈Z

e−Tα2/2χα

where χα(θ) = eiθα, α ∈ Z, θ ∈ [0, 2π).
b) Three holed sphere:

t =
X
α∈Z

e−Tα2/2χα ⊗ χα ⊗ χα

c) Two holed sphere:
µ =

X
α∈Z

e−Tα2/2χ∗α ⊗ χ∗α

Invariant
Z(Mg) =

X
α∈Z

e−Tα2



IV. 2d Yang Mills:
a) Cap:

e =
X
α

dimαe−T/2C2(α)χα

b) Three holed sphere:

t =
X
α

e−T/2C2(α)/ dimαχα ⊗ χα ⊗ χα

c) Two holed sphere:

µ =
X
α

e−T/2C2(α)χ∗α ⊗ χ∗α

Invariant

Z(Mg) =
X
α

e−TC2(α)

(dimα)2g−2



More general building blocks for example balls, may be considered in any
dimension, but we have to describe TQFT with corners
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