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Schrédinger-Feynman quantization

» Schrédinger representation + Feynman path integral quantization
The state space Hs for a hypersurface X is the space of functions on
field configurations Qs on .

» We write the inner product there as

<¢2m)1>:J Do (0)T2(@).

Qs

» The amplitude for a region M and a state 1 in the state space Hom
associated to the boundary oM of M is

om(th) = jo Do () Zu(),

where the hypersurface X represents the boundary of M: ¥ = oM.
» Zy is the propagator given by the Feynman path integral,

Zule) = Do M) v e Q.

JKM»‘M}::@

The integral is over the space Ky of field configurations ¢ in the interior
of M s.t. ¢ agrees with ¢ on the boundary .



S-matrix in the standard setting

» We consider a massive Klein-Gordon field in Minkowski spacetime.

» The usual situation
Spacetime region: M = [t, k] x R®
Boundary: 0M = £, U 2,
State space: Hom = Hz, ® H3,

V1,2 wave functions of field config.
P1,2 at times t1,2 tl

v

» Standard transition amplitudes take the form

WalUy 11 1W01) = pryy, i) (W2@b1) = JD(W D2 Vi(@1)a(@2) Ziyy 11 (@1, @2),

Uy, 1,1 - time-evolution operator from time # to time f.
21, 1) - field propagator s.t. vacuum-to-vacuum amplitude equals one.



Free classical theory

» Free action of the real massive Klein-Gordon field

i>1

Sitp1,0(9) = %Jd“x ((ao¢)(ao¢) =D _(2ih)(0i) — m2¢2> :

the integral is extended over the region under consideration.
» Bounded solutions in the region M are parametrized by plane waves,
a3k
(2m)32w

where w = |/— > ;02 + m2.

» A classical solution that reduces to the field config. ¢+ at t and ¢ at &
is

d(x,1) :J (a(k)e"‘“’eikx + c.c.) .

olx,t) = SNl =0 oy

o sin w(tz — t1)

sinw(t—t)

sin (,U(tg — t1) (PQ(X).

» The symplectic structure on L; reads

Wil 1, d2) = %Jdax (¢1 o ¢‘2)



Field propagator for the free theory

» Field propagator
Zity 1001, 02) = J Do eis[q,rzj,o((b))
blr=9;

the integral can be evaluated by shifting the integration variable by a
classical solution matching the boundary configurations:

1
Zit, 1,001, 02) = Ny, 1,1,0€Xp (—EJdBX (01 @2) Wi, 1) ($;>) ,
where W, ;) is the operator valued 2 x 2 matrix

—iw (cos w(k—t) —1 )

W = Shoth ) —1 cos w(ty — t)

» The evolution described by this field propagator is unitary.



Quantum theory

» Vacuum state P9 € H;
1
Prole) = Crexp (75 JdSX@(XJ(wcpJ(X)) :

where C; is a normalization factor. This state corresponds to the
standard Minkowski vacuum state in the Schrédinger representation.

» Coherent states in the interaction picture (time-independent description of
free states)

3, 3 _
Ben(@) = Kon oXD (J ik e e cp(x)) beolo),

n complex function; K: ., normalization factor.



S-matrix in the standard setting: Free theory

» S-matrix for the free theory

<¢n2|80‘¢111 > = f ﬂnjoo <1p12‘112‘u[12»f1],0|11’f1 M >

bb— +00

= lim o, 1o(b2 ®y)
t12—>+oo

— o ([ e (mmahI = Jmi(k1 — Jmelh?) ),

where E = vk2 + m2.



S-matrix in the standard setting: Source interaction (I)

» Klein-Gordon field interacting with a source field p; the action takes the
form

Sty s () = Sig i 0(b) + J dx u(x)b(x),

the support of u vanishes outside the interval [t &].

» The field propagator for the theory with the source interaction takes the

form

Z[f1»tzlyu(@1»@2)zj¢lt 1'D¢e 0], (P)

bl,=w2

Shifting the integration variable by a classical solution ¢ of the
homogeneous Klein-Gordon equation interpolating between ¢+ at t; and
@2 at b,

e gt i g
Z[t1,t2],u[(p1,(p2) _ Zt1 bl, ((p1y(p2) lJ‘d X (x) bg(x) ez fd X p(x)a(x)

where « is a solution of the inhomogeneous Klein-Gordon equation
(O + m*)a(t, ) = u(t, x),

with boundary conditions o(t,x) = 0 and o(t, x) = 0 for all x € R®.



S-matrix in the standard setting: Source interaction (Il)

» The term &'/ “¢¢ modifies the coherent states as
) = () + [ aPx B ),
falk) = alk) + [ a*x 54 x),
» The transition amplitude results to be

Kty n1 Kipoma gt [ dxu0alx)

)

<11)T12|‘S:“‘IJ‘)”1> = <lbﬁ2‘80|1bﬁ1>
= (P, [Solthr, ) € 4 X ROIAND g3 [ax iy

where fj is the complex classical solution of the Klein-Gordon equation
determined by ny and 1, via

3 ] -



S-matrix in the standard setting: Source interaction (lll)

» The quantity vy is the solution of the inhomogeneous Klein-Gordon
equation
(O+mPyy =y,

with boundary conditions

. t .
for t< t, y(t,k):elE’J drie F7 u(t, k),
t

. 7] .
for t > t, y(t k) :e”EtJ drief u(t k).

]

The function y contains only negative energy modes at early times
(f < t) and positive energy modes at late times (t > £). We recognize
these as the Feynman boundary conditions. Thus, y takes the form,

Yix) = Jd“x’ Ge (%, X )u(x"),

Gr is the Feynman propagator
normalized:(0y + m?)Ge(x, x') = 8*(x — x").



S-matrix in the standard setting: Source interaction (IV)

» S-matrix for the theory with source interaction,

<1Jr’ﬂ2‘811|1pn1> = <wn2|$0m)n1>
- exp (i J d*x u(x)ﬁ(x)) exp (% J d*x d*x"u(x)Gr(x, x')u(x')) ,
f] is the complex solution of the Klein-Gordon given by equation

3 . 7,
fi(t, x) = J (2;‘[)% (m(k)e—l(aka) +T]2(k)el(E17kX]> '



S-matrix in the standard setting: General interaction

» We use functional derivative techniques to work out the S-matrix in the
case of a general interaction. The action of the scalar field with an
arbitrary potential V' can be written as

)

n=0

S() = So(¢)+Jd4X Vix, ¢(x)) = So(¢)+Jd4X 4 (X» %) Su(d)

» We assume that the interaction vanishes outside the interval [, t],
V((t,x),d(t,x)) =0,vx € RVt & [t ta].

» The S-matrix

(W2|Svb1) = exp (in“X 4 (X» *i%» (W2l Sylb1)

pn=0



The hypercylinder

We consider the Klein-Gordon field in a spacetime region with a
boundary.

Spacetime region: M = R x B}, ball of radius
R in space extended over all of time, the solia
hypercylinder.

Boundary: 0M = R x S&, the hypercylinder.
State space: Hon = Hz = Ha.

Solutions of the Klein-Gordon equation

0 o) / )
btrQ) =] GEY 3 walEle Hhipr¥/(),

- /=0 m=—1

where f; denotes a certain kind of spherical Bessel function. Q is a collective
notation for the angle coordinates (8, ¢). Y;” denotes the spherical harmonic.



Classical solutions

Different types of spherical Bessel functions are used depending of the value
of the energy
» If E2 > m? — real momentum, (ordinary) spherical Bessel functions of
the first and second kind: ji(pr) and n;(pr)
» If E? < m? — real imaginary, modified spherical Bessel functions of the
first and second kind: i (ipr) and i;” (ipr)
We introduce a unified notation

alE = JIVER —me) it E? > m? regular at the origin
Ui (r/mE = E2) i E2 < P, regular at the origin

and
b(E. 1) = m(rv/EZ—m?) if E? > m? singular at the origin
PN (r/mE = E2) i E? < P, singular at the origin

, VEZ—m? ifE? > mP,
as well as c(E,r):=al(E,r)+ib(E,r), and p:= {im B2 < P



Classical theory

» Free action

1
Srol¢) =~ 5 | 40 o[t R.O)R) R Q).
» Classical solution well defined inside the solid hypercylinder in terms of
boundary configurations

alE,r)

o(t,Q,r) = 2(E.R)

o(t, Q).



Quantum theory
» Free field propagator

Znolg) = Nnoexp(—%JdtdQ@(tm Rzafgg s (t,m),

where g; is the derivative of & w.r.t. r and R? 2’;(5 77 is to be understood
as an operator via the mode decomposition of the field.

» Vacuum state

Prole) = cRexp< 1Jdtdﬂ<p(to)(smm(t,m),

Cr: normalization factor

Bg: family of operators indexed by R given by

. 2C/(E,R)
iR a(E,R)’

» Coherent states in the interaction picture (radius-independent description of
free states)

Br

Vre(@) = Kae exp <J|E> EY Eg/'(mp(ll;) (P/,m(E)> Yrol(e),
=m Im

KR, : normalization factor
&.m(E): complex function s.t. & »(E) =0if [E| < m.




S-matrix on the hypercylinder: Free theory

» Amplitude of the coherent state for the solid hypercylinder

ProlbAc) = exp (J dEY_ 2 (&1m(EVesm(—E) - |a,,m(E)|2)> :

Ezm T

By construction this expression is independent of the radius R. The limit
R — oo gives the asymptotic amplitude for the free theory,

So(be) = Jim pro(ae) = exp (JdEZ (a,m (E)a,,m(E)2)>.



S-matrix on the hypercylinder: Source interaction (l)

» We consider an interaction with a source field p that vanishes outside
the solid hypercylinder (r > R).

» The amplitude associated with the solid hypercylinder R x B is

PR u(VRe) = JD@ Va,e(@) Zrule).

» The field propagator is evaluated by shifting the integration variable by a
solution ¢ matching the boundary data, ¢balg = @

S ah i g
ZR,»L(‘P) — ZR,O((P) elfd X w(x) bg(x) egfd XH(X)EX(X]‘

« satisfies the inhomogeneous Klein-Gordon equation with vanishing
boundary conditions at radius R,

(O+m)a=y, and «lg=0.
» The the amplitude has the form

pru(WR:) = proO(WAE) G R020) gf [ dxu(xy(x)



S-matrix on the hypercylinder: Source interaction (ll)

» The quantity y solves the inhomogeneous Klein-Gordon equation
(O+mP)y =y,

with boundary conditions (expressed in momentum space)

Yi.m(E, ) :ipJoo drrza,(E,r) Gl(E,r)wm(E,r). (1)

0

r>R

» The solution is
Yix) = Jd“x’GF(x,x’)u(x’),

Gr is the Feynman propagator

= the spatially asymptotic boundary conditions (1) are equivalentto the

usual temporally asymptotic Feynman boundary conditions.



S-matrix on the hypercylinder: Source interaction (lll)

» Amplitude on the hypercylinder
PR, (WRe) = pro(VAe)
oxp (i [atxultin) e (5 [ atxats wixGrix, xluix)) (@

where £ is a complex solution of the Klein-Gordon equation

parametrized by functions & (correspondence between complex solutions and
coherent states),

&(t,r, Q) ::J|E\>de,Z %&,m( )i(pr)eEty; ™(Q).

» No explicit dependence on the radius R is present in (2). The limit
R — oo gives the asymptotic amplitude in the case of a source
interaction,

S, (We) = Sole) exp( [ atxuix )S(x)) exp( [[atxatx uix )Gp(x,x’m(x’)).



S-matrix on the hypercylinder: General interaction

» We consider a general interaction vanishing outside a finite spatial region
V((t,x),¢(t,x)) =0, if x| >AR.

» We use functional derivative techniques to work out the amplitude

prv(br) = exp (in‘*x v (x, —iﬁ)) oA ()

» No dependence on R = the aymptotic amplitude for a general
interaction

Sv(P) = exp (in“x % (x, 4%)) S (V)

n=0

pu=0



Equality of asymptotic amplitudes

The asymptotic amplitudes with source interaction in the two settings are
very similar:

» standard setting
i 4 i 4, 44,7 ’ /
(W, ISy ) = (W, Solbn, ) e [ x ) gz [dhxd®x u(x)Grixx ) u(x )’
» hypercylinder
PR (WRe) = pro(bae) 6 X HIEN @b [ uin GelixxIn(x")
» The same Feynman propagator appears in both expressions

» We can identify asymptotic states at temporal and at spatial infinity,
&=1
= isomorphism of Hilbert spaces H1 ® H5 — Hgr

» Indeed this isomorphism makes the free amplitudes equals

(Unz o ity ilbn6)| = pro(WRe). 3)
=&

» Consequently an n-particles states in 1 ® H5 can be expressed as a
linear combination of n-particles states in Hg, and viceversal!



Summary

» General interacting QFTs in Minkowski fit into the GBF

» New representation of the Feynman propagator and the S-matrix using
the hypercylinder geometry

» Existence of an isomorphism between the state space associated with
and the state space associated

» New perspective on QFT: crossing symmetry is implicit in the
hypercylinder case (no distinction between in- and out-states)

» The "hypercylinder" quantization scheme has been applied to dS and
AdS QFTs.
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