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2d-Ising model as a sum over paths

< s(p1) · ... · s(pn) > =
1

Z

∑
s

sν(p1) · ... · sν(pn) exp (K
∑
ij

si sj)

=
1

Z ′

∑
paths:∂path={p1,...,pn}

z length(path)

Sum over mutycomponent paths with ends at measured spins, and
z = tanh(K ).



2d-Ising model á la GBFT

A factorization of the weight of each path into factors assigned to
cells dual to the vertices of the Ising lattice

< s(p1) · ... · s(pn) >=
1

Z ′
#iRJ(i)

I Occupied cells are marked as J(i) = 1, empty cells as J(i) = 0.

I Amplitudes R0 and R1 assign weights to boundary states/colorings
as follows: R0(0, 0, 0, 0) = 1, R0(1, 0, 0, 0) = 0, R0(1, 1, 0, 0) = z ,
R0(1, 1, 1, 0) = 0, R0(1, 1, 1, 1) = z2, ...,
R1(0, 0, 0, 0) = 0, R1(1, 0, 0, 0) = z1/2, R1(1, 1, 0, 0) = 0,
R1(1, 1, 1, 0) = z3/2, R1(1, 1, 1, 1) = 0, ...

I Composition/gluing of amplitudes is a sum over the colorings (with
0 or 1) of the bdary links of each cell.

I Multi cell regions are possible.



Spin foam model for QED
euclidian, compact, without fermions; Reisenberger 94, Aroca-Fort-Gambini 96

<Wl >=
1

Z ′

∑
surfaces:∂surface=l

exp(−Cn2Area(surface))

The sum is over branched colored by integers n.

The weights can be factorized into gluing cell amplitudes
with cell types depending on how each cell intersects l

<Wl >=
1

Z ′
#iRJ(i)



Objective and interpretation
Approximate, local partial description of a system based on local partial knowledge

I AvailableMeasurements($) ⊂ Obs(System)

In field theory we start with E
π−→ M.

Discrete models may start with E∆
π−→ ∆.

In E∆ the location of measurements and their results are recorded;
∆ only stores the location of the discrete set of measurements.

As $ increases more measurements are made, ∆ is refined.



Predictions are correlations that need to be corrected

PICTURE

1. Phys. state determined locally and up to some approx. by:
partial knowledge of initial condition and/or bdary conditions

2. Other measurements can be predicted up to some error.
The error can be corrected increasing $.

Alternative view:
Predictions are correlation functions of available measurements.
The measure predicting such correlations is corrected increasing $.

Wilsonian renormaization:
A sequence of models describing the same system with increasing
resolution may correct the predictions up to convergence.



Veselov’s discrete time mechanics

Let q = (qk), k ∈ U ⊂ Z, qk ∈ Q be a discrete history.
Given the bdary cond. q|∂U fixed, a motion is an extremum of

S(q) =
∑
k

L(qk , qk+1) , with L : Qx × Qy → R

dS(q) · δq =
∑
U◦

(
∂L

∂y i
(qk−1, qk) +

∂L

∂x i
(qk , qk+1))δqik

+
∂L

∂x i
(q∂U− , q∂U−+1)δqi∂U− +

∂L

∂y i
(q∂U+−1, q∂U+)δqi∂U+

we read the equations of motion and two Lagrange 1-forms

θ−L (x , y)(δx i , δy i ) =
∂L

∂x i
(x , y)δx i , θ+

L (x , y)(δx i , δy i ) =
∂L

∂y i
(x , y)δy i



Structure in Veselov’s mechanics

I Motions can be param by initial conditions in Qx × Qy ; there
dS = θ−L + (F n)∗θ+

L .
Define ωL = dθ−L = −dθ+

L ; then ddS = 0 implies

(F n)∗ωL = ωL

I A G -invariant lagrangian gives ξQ×QydS = 0 ∀ ξ ∈ Lie(G );
thus

(F n)∗(ξQ×Qyθ
+
L ) = ξQ×Qyθ

+
L

I There is a hamiltonian view of the equations of motion in the
region where ωL is not degenerate:
unit time evolution along XH for H(x , y) = −L(x , y) +

∫
θ+
L



Examples

I For solved systems L(qk , qk+1) = SH(qk , qk+1), “perfect”.

I Particle in Rn with L = T − V modeled by

L(qk , qk+1) = (
qk+1 − qk

∆t
− V (

qk + qk+1

2
))∆t , “approx.”.

I Veselov’s top: Let qk ∈ SO(n) be the top’s orientation,

L(qk , qk+1) = tr(qk I q
T
k+1) , approx. in a sense, but integrable.



On the classical continuum limit

I Continuum histories qcont induce discrete histories qcont|$.

I In a continuum limit

dSdisc,$(qcont|$) · δqcont|$ → dScont(qcont) · δqcont.

This implies convergence of
(i) the equations of motion,
(ii) the symplectic structure and
(iii) the conserved quantities.



Geometric quantization

I Qx × Qy |ωLn−deg, is a symplectic manifold preserved by
evolution and wave functions of the form ψ(x) , ψ(y) both
come from a polarization.
However, gluing neighboring intervals is not always simple.

I A discretization à la Reisenberger confining the potential to
centers of the 1-cells solves this problem.
Gluing is done as mandated by the free theory.

I The propagator is constructed as a product of unit time
propagators in the same fashion as the Transfer Matrix.

I A continuum limit may yield a definition of the path integral
in phase space.



Multisymplectic discrete field theory

A version of the framework of Marsden and collaborators developed using

a discretization à la Reisenberger M → D(∆) ∼ (∆,∆∗).

Let φ = (φν , φτ ) be a discrete section/history,
where ν ∈ Un ⊂ ∆n, τ ∈ Un−1 ⊂ ∆n−1, φν ∈ F , φτ ∈ F .

Given the bdary cond. φ|∂U fixed, a motion is an extremum of

S(φ) =
∑

c∈D(U)

L(φ|c) , with L(φ|c) = L(φν ;φτ1, ..., φτn)

dS(φ) · δφ =
∑
U◦

{∑
c∩ν

∂L

∂φAν
(φ|c)δφAν +

∑
c∩τ

∂L

∂φAτ
(φ|c)δφAτ

}

+
∑
∂U

∂L

∂φAτ
(φ|c)δφAτ

Two types of eqs of motion, Lagrange n-form “integrated” in ∂U:



Structure in multisymplectic discrete field theory

1-forms: Θτ
L(φ|c) · (φAν , δφAτ1, ..., δφ

A
τn) =

∂L

∂φAτ
(φ|c)δφAτ ,

corresponding 2-forms: Ωτ
L(φ|c) = dΘτ

L(φ|c)

Multisymplectic formula:
(φ solves the eqs of motion and V ,W are a 1st variations of it)

V yW y

(∑
∂U

π∗Ωτ
L

)
= 0

A G -invariant lagrangian implies a G action that preserves the
space of solutions. For any ξ ∈ Lie(G ), we denote by ξq its
corresponding 1st variation. Then∑

∂U

ξqyΘτ
L(φ|c) = 0



Etc

I Examples: 1d case = Veselov’s discrete mechanics,
nonlinear PDEs (Marsden et al),
classical electrodynamics (Mona?), 2d gravity (Mona),
hamiltonian LGT revisited (?)

I Classical continuum limit follows the same principle.
Case study of convergence in Marsden et al.

I Geometric quantization à la GBFT (???)
May arrive to spin foam models or similar.
USE 1d CASE AS A GUIDE
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