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Overview

Quantum theories are most often obtained through a process of
quantization, starting from a classical theory.
We have seen how the Schrödinger-Feynman quantization
scheme fits naturally into the GBF. However, both of its
ingredients, the Schrödinger representation and the path integral
are in general not well defined.
It turns out that a version of geometric quantization known as
holomorphic quantization can be adapted to the GBF.
In the special case of linear field theory, i.e., given a quadratic
Lagrangian, this leads to a rigorous and functorial quantization
scheme.

Robert Oeckl (CCM-UNAM) Holomorphic quantization CCM 20130425 & 0502 3 / 25



Review of Schrödinger-Feynman quantization
We consider for each hypersurface Σ the associated space KΣ of field
configurations of the classical field theory. In the Schrödinger
representation the state spaceHΣ is the space of wave functions on KΣ

with the inner product

〈ψ′, ψ〉 =

∫
KΣ

ψ(ϕ)ψ′(ϕ) dµΣ(ϕ).

But what is the measure µΣ? And, how exactly, is KΣ defined?

For a spacetime region M the amplitude map is given by the Feynman
path integral,

ρM(ψ) =

∫
KM

ψ(φ|∂M) exp
(
iSM(φ)

)
dµM(φ).

Here SM is the action in M. The integral is over the space KM of field
configurations in the region M. But what is KM exactly? And what is
the measure µM?
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Lagrangian field theory (I)
Formulate field theory in terms of first order Lagrangian density
Λ(ϕ, ∂ϕ, x). For a spacetime region M the action of a field φ is

SM(φ) :=
∫

M
Λ(φ(·), ∂φ(·), ·).

Classical solutions in M are extremal points of this action. These are
obtained by setting to zero the first variation of the action,

(dSM)φ(X) =

∫
M

Xa
(
δΛ
δϕa − ∂µ

δΛ
δ ∂µϕa

)
(φ) +

∫
∂M

Xa∂µy
δΛ
δ∂µϕa (φ)

under the condition that the infinitesimal field X vanishes on ∂M. This
yields the Euler-Lagrange equations,(

δΛ
δϕa − ∂µ

δΛ
δ ∂µϕa

)
(φ) = 0.
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Lagrangian field theory (II)

The boundary term can be defined for an arbitrary hypersurface Σ.

(θΣ)φ(X) = −

∫
Σ

Xa∂µy
δΛ
δ∂µϕa (φ)

This 1-form is called the symplectic potential. Its exterior derivative is
the symplectic 2-form,

(ωΣ)φ(X,Y) = (dθΣ)φ(X,Y) = −
1
2

∫
Σ

(
(XbYa

− YbXa) ∂µy
δ2Λ

δϕbδ ∂µϕa
(φ)

+(Ya∂νXb
− Xa∂νYb) ∂µy

δ2Λ

δ ∂νϕbδ ∂µϕa
(φ)

)
.

We denote the space of solutions in M by LM and the space of germs of
solutions on a hypersurface Σ by LΣ.
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Lagrangian field theory (III)
Let M be a region and φ ∈ L∂M. Then φ may or may not be induced
from a solution in M. If φ arises from a solution in M and X,Y arise
from infinitesimal solutions in M, then,

(ω∂M)φ(X,Y) = (dθ∂M)φ(X,Y) = −(ddSM)φ(X,Y) = 0.

This means, LM induces an isotropic submanifold of L∂M.

It is natural to require that the symplectic form is non-degenerate. We
are then led to the converse statement: If given X we have
(ω∂M)φ(X,Y) = 0 for all induced Y, then X itself must be induced. This
means, LM induces a coisotropic submanifold of L∂M.

Taking both statements together yields,

LM induces a Lagrangian submanifold of L∂M.
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Encoding classical field theory

A classical field theory may be encoded by “general boundary” data:
For each hypersurface Σ there is a manifold LΣ (of germs of classical
solutions near Σ). LΣ carries a non-degenerate symplectic form ωΣ

(from Lagrangian field theory).
For each region M there is a manifold LM (of classical solutions in M)
and an embedding rM : LM → L∂M.
The submanifold rM(LM) ⊆ L∂M is Lagrangian with respect to ω∂M.
These structures are compatible with orientation change,
decomposition of hypersurfaces and gluing of regions.

This defines in (various different ways) a category of classical field
theories.
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Geometric quantization: Prequantization

Geometric quantization is designed to output the structures of the
standard formulation of quantum theory, i.e., a Hilbert space of states
and an operator algebra of observables acting on it. Its main input is
the space L of solutions of the classical theory in spacetime with its
symplectic structure ω. It proceeds roughly in two steps:

1 We consider a hermitian line bundle B over L with a connection ∇
that has curvature 2-form ω. Define the prequantum Hilbert space
H as the space of square-integrable sections with inner product

〈s′, s〉 =

∫
(s′(η), s(η))η dµ(η).

Here the measure dµ is given by the 2n-form ω ∧ · · · ∧ ω if L has
dimension 2n. Classical observables, i.e., functions on L, act
naturally as operators on H with the “correct” commutation
relations.
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Geometric quantization: Polarization

2 This Hilbert space is too large. Choose in each complexified
tangent space (TφL)C a Lagrangian subspace Pφ with respect to
ωφ. We then restrict H to those sections s of B such that

∇X s = 0,

if Xφ ∈ Pφ for all φ ∈ L. This is called a polarization. The subspace
H of H obtained in this way is the Hilbert space of states. Not all
observables are well defined on it as they might not leave the
subspaceH ⊆ H invariant.

Robert Oeckl (CCM-UNAM) Holomorphic quantization CCM 20130425 & 0502 10 / 25



Kähler polarization
We are interested in a Kähler polarization. Then Pφ is determined by a
complex structure Jφ in TφL that is compatible with ωφ. Jφ satisfies
Jφ ◦ Jφ = −1 and ωφ(JφX, JφY) = ωφ(X,Y). Then

Pφ = {X ∈ (TφL)C : iX = JφX}.

Jφ yields a real inner product on TφL:

gφ(Xφ,Yφ) := 2ωΣ(Xφ, JφYφ).

We shall require gφ to be positive definite. We also obtain a complex
inner product on TφL viewed as a complex vector space:

{Xφ,Yφ}φ := gφ(Xφ,Yφ) + 2iωφ(Xφ,Yφ).

The Hilbert spaceH obtained from H through a Kähler polarization is
also called the holomorphic representation.
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Linear field theory
To be able to deal with the field theory case where L is generically
infinite-dimensional we restrict ourselves to the simplest setting of
linear field theory. That is, we take L to be a real vector space and the
symplectic form ω to be invariant under translations in L. Not much is
known beyond this setting.

Then, L can be naturally identified with its tangent space. Moreover,
the symplectic form ω, the complex structure J, the real and complex
inner products g, {·, ·} all become structures on the vector space L. The
line bundle B becomes trivial and its section (the elements of H) can be
identified with complex functions on L. For a Kähler polarization the
elements of the subspaceH ⊆ H are precisely the holomorphic
functions on L. Moreover, the inner product formula simplifies,

〈ψ′, ψ〉 =

∫
ψ′(η)ψ(η) exp

(
−

1
2

g(η, η)
)

dµ(η).
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The measure
What is the measure dµ?

It turns out that on an infinite-dimensional vector space L no
translation-invariant measure exists. Instead, we should look for a
Gaussian measure

dν ≈ exp
(
−

1
2

g(η, η)
)

dµ.

However, not even that exists on the Hilbert space L. The measure
does exist if we extend L to a larger vector space L̂. Concretely ν and L̂
can be constructed as an inductive limit of finite-dimensional quotient
spaces of L. It turns out that L̂ can also be identified with the algebraic
dual of the topological dual of L.

A priori, wave functions are thus really functions of L̂ rather than on L.
But, a function that is square-integrable on L̂ and holomorphic is
completely determined by its values on L. This allows us to “forget”
about L̂ to some extent.
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Encoding linear (semi)classical field theory

A semiclassical linear field theory is encoded as:
For each hypersurface Σ there is a real vector space LΣ (of classical
solutions near Σ). LΣ carries a non-degenerate symplectic form ωΣ

(from Lagrangian field theory). Moreover, LΣ carries a compatible
complex structure JΣ (for geometric quantization). LΣ is a real
Hilbert space with gΣ and a complex Hilbert space with {·, ·}Σ.
For each region M there is a real vector space LM (of classical
solutions in M) and a real linear map rM : LM → L∂M.
The subspace rM(LM) ⊆ L∂M is Lagrangian with respect to ω∂M.
These structures are compatible with orientation change,
decomposition of hypersurfaces and gluing of regions.

It follows: L∂M = rM(LM) ⊕R J∂MrM(LM) is an orthogonal sum.
Define: uM : L∂M → L∂M as uM(rM(v) + J∂MrM(w)) = rM(v) − J∂MrM(w).
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State spaces

For each hypersurface Σ we define a Hilbert space of statesHΣ by
using the geometric quantization prescription. Thus,HΣ is a space of
holomorphic functions on LΣ with the inner product,

〈ψ′, ψ〉Σ :=
∫

L̂Σ

ψ′(φ)ψ(φ) dνΣ(φ).
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Amplitudes

For each region M we define the linear amplitude map ρM : H∂M → C
by

ρM(ψ) :=
∫

L̂M

ψ(r(φ)) dνM(φ).

Here L̂M is an extension of LM and νM is a Gaussian measure on L̂M,
depending on g∂M that heuristically takes the form

dνM ≈ exp
(
−

1
4

gM(η, η)
)

dµ

with µ a (fictitious) translation-invariant measure.

It can be shown that this prescription is here equivalent to the
Feynman path integral prescription.
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Main Result

We obtain a quantum theory in terms of the data of the GBF.

Theorem
With an additional integrability assumption, the GBF core axioms are
satisfied by this quantization prescription.

The quantization prescription may be viewed (in various ways) as a
functor from classical field theories to general boundary quantum field
theories.
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Coherent States

The Hilbert spacesHΣ are reproducing kernel Hilbert spaces and
contain coherent states of the form

Kξ(φ) = exp
(1
2
{ξ, φ}Σ

)
associated to classical solutions ξ ∈ LΣ. They have the reproducing
property,

〈Kξ, ψ〉Σ = ψ(ξ),

and satisfy the completeness relation

〈ψ′, ψ〉Σ =

∫
L̂Σ

〈ψ′,Kξ〉Σ〈Kξ, ψ〉Σ dνΣ(ξ).

They can be thought of as representing quantum states that
approximate specific classical solutions.
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Complex conjugation and evolution (I)

Given a region M we recall the map uM : L∂M → L∂M. It has a quantum
counter part UM : H∂M →H∂M given by

(UMψ)(φ) := ψ(uMφ).

This is compatible with coherent states in the sense

UMKξ = KuMξ.

The maps uM and UM have remarkable properties. They are involutive
(i.e, square to the identity), conjugate linear and isometric. In fact, they
act like a complex conjugation in the classical respectively quantum
setting. In particular,

ρM(UM(ψ)) = ρM(ψ).
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Complex conjugation and evolution (II)
At the same time the maps uM and UM play the role of generalized
evolution maps. Suppose M is a region with boundary ∂M = Σ1 ∪ Σ2.
The classical dynamics of the theory in M can be described as an
evolution between the hypersurfaces Σ1 and Σ2 precisely if uM
restricted to LΣ1 ⊆ L∂M = LΣ1 ⊕ LΣ2 has image LΣ2 ⊆ L∂M. In this case

uM(φ1 + φ2) = t−1(φ2) + t(φ1) where φ1 ∈ LΣ1 , φ2 ∈ LΣ2

with t : LΣ1 → LΣ2 the classical evolution map.

UM plays a similar role in the quantum theory. Under the same
conditions we have

UM(ψ1 ⊗ ι(ψ2)) = T−1ψ2 ⊗ ι(Tψ1) where ψ1 ∈ HΣ1 , ψ2 ∈ HΣ2
.

Here T : HΣ1 →HΣ2
is the unitary quantum evolution map with

ρM(ψ1 ⊗ ι(ψ2)) = 〈ψ2,Tψ1〉Σ2
.
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Amplitude formula

Remarkably, the amplitude of a coherent state can be calculated
explicitly. Let ξ ∈ L∂M. Then,

ρM(Kξ) = exp
(1
4
{ξ,uMξ}∂M

)
.

This has a simple and compelling physical interpretation. It becomes
more evident in a slightly different presentation. Set
ξ = ξR + J∂Mξ

I
∈ rM(LM) ⊕R J∂MrM(LM). Let K̃ξ denote the normalized

coherent state associated with ξ. Then,

ρM(K̃ξ) = exp
(
−

1
2

g∂M(ξI, ξI) −
i
2

g∂M(ξR, ξI)
)
.
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Klein-Gordon Theory
Spacelike Hypersurfaces

Parametrization of solutions near hypersurface at time t:

φ(t, x) =

∫
d3k

(2π)32E

(
φ(k)e−i(Et−kx) + φ(k)ei(Et−kx)

)
,

Additional structures:

ωt(φ1, φ2) =
i
2

∫
d3k

(2π)32E

(
φ2(k)φ1(k) − φ1(k)φ2(k)

)
,

(J(φ))(k) = −iφ(k),

gt(φ1, φ2) =

∫
d3k

(2π)32E

(
φ1(k)φ2(k) + φ2(k)φ1(k)

)
,

{φ1, φ2}t = 2
∫

d3k
(2π)32E

φ1(k)φ2(k).
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Klein-Gordon Theory
Timelike Hypersurfaces I

Parametrize solution near constant x1 hypersurface,

η(t, x1, x̃) =

∫
dE d2k̃

(2π)32k1

(
η(E, k̃)f (E, k̃, x1)e−i(Et−k̃x̃)

+η(E, k̃) f (E, k̃, x1)ei(Et−k̃x̃)
)
,

where x̃ := (x2, x3), k̃ := (k2, k3), k1 :=
√
|E2 − k̃2 −m2| and

f (E, k̃, x1) :=

eik1x1 = cos(k1x1) + i sin(k1x1) if E2
− k̃2
−m2 > 0

cosh(k1x1) + i sinh(k1x1) if E2
− k̃2
−m2 < 0.

Two classes of solutions:
Propagating waves: E2

− k̃2
−m2 > 0, oscillate in space

Evanescent waves: E2
− k̃2
−m2 < 0, exponential in space
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Klein-Gordon Theory
Timelike Hypersurfaces II

Additional structures:

ωx1(η1, η2) =
i
2

∫
dE d2k̃

(2π)32k1

(
η2(E, k̃)η1(E, k̃) − η2(E, k̃)η1(E, k̃)

)
,

(J(η))(E, k̃) = −iη(E, k̃),

gx1(η1, η2) =

∫
dE d2k̃

(2π)32k1

(
η1(E, k̃)η2(E, k̃) + η2(E, k̃)η1(E, k̃)

)
{η1, η2}x1 = 2

∫
dE d2k̃

(2π)32k1
η1(E, k̃)η2(E, k̃).

Space of solutions decomposes Lx1 = Lp
x1
⊕ Le

x1
.

Hilbert spaceHx1 has subspacesHp
x1

andHe
x1

such that
Hx1 = H

p
x1
⊗H

e
x1

.
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