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Axioms for hypersurfaces
Recall that a quantum field theory can be described as rule that assigns:

1. A (”state”) topological vector space HΣ associated to oriented
hypersurfaces Σ

2. Linear (”propagator”) maps ρ̃M associated to oriented regions M
Certain axioms come from conditions or ”physical requirements”
As first approach we consider the case ∂Σ = ∅ for every hypersurface Σ

I Duals:
HΣ = H∗Σ

where Σ has the inverse orientation of Σ.
Σ = σ implies (H∗Σ)∗ = HΣ.

I Tensor products:
HΣ1tΣ2 = HΣ1 ⊗HΣ2

If ∂M = Σ1 t Σ2, then H∂M = H∗Σ1
⊗HΣ2

I Empty hypersurfaces: H∅ = C
I A hermitian structure 〈·, ·〉Σ on HΣ and conjugate-linear maps
ιΣ : HΣ → HΣ

Hilbert spaces is the desirable category to satisfy this conditions.
Nevertheless we have seen that the categorical point of view can not be
compatible with this choice of objects with morphisms given by regions.
Therefore will avoid considering this axioms in complete generality as a
functorial assignement from the cobordism category tho vector spaces
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Time evolution

For a region M = Σ1 t Σ2, the ”time evolution” along the region may be
described heuristically as the ”amplitude transition”)

ρM (ψ) =′′
Z

K∂ M
ψ · ZM (ϕ)Dϕ′′∂M

with ′′ZM = eiSM (ϕ)′′

We would like to describe the ”unitary” evolution as a vector

ρ̃M ∈ H∗Σ1 ⊗HΣ2 = H∂M ,

but this is not possible in general in since the linear map

ρ̃M : domρ̃M ⊂ HΣ1 → HΣ2

is not necessarily bounded. Instead we take the unbounded dual
(”amplitude”) linear map ρM : H∂M → C



Axioms for regions

I For every region M there exists a hermitian unbounded linear functional

ρM : H∂M → C

I Gluing: If M is a manifold with ∂M = Σ1 t Σ t Σ while M1 = ∪ΣM
obtained by identifying Σ with Σ, then for the contraction HΣ ⊗HΣ → C,
the linear map ρM1 can be defined as

HΣ1 ⊗HΣ ⊗HΣ

����

H∂M
ρM //

��

C

HΣ1

N.

@@

7
� �

H∂M1

ρM1

=={
{

{
{

in particular for Σ1 = ∅, we have that ∂M1 = ∅, therefore ρM1 ∈ C.
Explicitly we define

ρM1 (·) =
X
i∈I

ρM (· ⊗ ξi ⊗ ιΣ(ξi ))

where {ξi}i∈I is an orthonormal basis of HΣ



Axioms for regions

I For every region M there exists a hermitian unbounded linear functional

ρM : H∂M → C

I Gluing: If M is a manifold with ∂M = Σ1 t Σ t Σ while M1 = ∪ΣM
obtained by identifying Σ with Σ, then for the contraction HΣ ⊗HΣ → C,
the linear map ρM1 can be defined as

HΣ1 ⊗HΣ ⊗HΣ

����

H∂M
ρM //

��

C

HΣ1

N.

@@

7
� �

H∂M1

ρM1

=={
{

{
{

in particular for Σ1 = ∅, we have that ∂M1 = ∅, therefore ρM1 ∈ C.
Explicitly we define

ρM1 (·) =
X
i∈I

ρM (· ⊗ ξi ⊗ ιΣ(ξi ))

where {ξi}i∈I is an orthonormal basis of HΣ



Another gluing axiom

Let M = M ′ tM ′′ be a manifold such that ∂M ′ = Σ′ t Σ, ∂M ′′ = Σ t Σ′′ and
let M1 = M ′ ∪Σ M ′′ be the gluing along Σ, then

HΣ′ ⊗HΣ ⊗HΣ ⊗HΣ′′

����

H∂M
ρM //

��

C

HΣ′ ⊗HΣ′′
N.

AA

7
� �

H∂M1

ρM1

=={
{

{
{

Explicitly we define

ρM1 (·, ·) =
X
i∈I

ρM′ (· ⊗ ξi ) · ρM′′(ιΣ(ξi )⊗ ·)



Axiom for topological field theories

I For any cylindrical region Σ× [0, 1],

ρ̃Σ×[0,1] = id ∈ HΣ ⊗HΣ,

where ∂ (Σ× [0, 1]) = Σ t Σ. This implies that

ρΣ×[0,1] : H∗Σ ⊗HΣ → C

equals the bilinear pairing given by the contraction

H∗Σ ⊗HΣ → C

This axiom is optional for topological theories. It follows from the fact that the
diffeomorphism type of a cylinder remains the same for concatenation of two
cylinders



Manifolds with corners

In order to consider smooth structure with corners on an n−dimensional
manifold M we need a smooth atlas with corners {(xν ,Uν)} where the
coordinate are continuous maps

xν : Uν ⊂ M → Rn
+

and where the change of (”curved”) coordinates

xµ ◦ x−1
ν : xν(Uν ∩ Uµ)→ xµ(Uν ∩ Uµ)

are restrictions to open of Rn
+ of Rn−diffeomorphisms.

The ”corner subset” of the manifolds correspond to the points p ∈ M such
that xν(p) ∈ Rn has two or more null coordinates ν.
This ”corner subset” has a stratified structure an decomposes as a union of
corner manifolds



Presentation of hypersurfaces

Let Σ ⊂ ∂M be a connected component contained in the topological
boundary of a manifold with corners. We present it as a union of
hypersurfaces with boundary

Σ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn

We suppose that Σi , Σj may intersect on (n − 2)-manifolds contained in their
boundary, i.e.

Σi ∩ Σj = ∂Σ1 ∩ ∂Σ2 6= ∅

All this topological manifolds M,Σi ,Σi ∩ Σj , should be considered as
manifolds with corners.



Example: 2d-manifolds with corners

When dim M = 2 hypersurfaces Σi in the presentation of a component
Σ ⊂ ∂M are diffeomorphic to:

1. Segments O (”open strings”)

2. Closed circles C (”closed strings”)

on the other hand nonempty intersections Σi ∩ Σj = {p} are just ”corner”
points



Axioms for corners

Besides of the Hilbert spaces HΣ associated to boundary components of
Σ ⊂ ∂M, we also consider Hilbert spaces associated to every hypersurfaces
Σi of the decomposition HΣi .

I For every decomposition Σ = Σ1 ∪ · · · ∪ Σn there exists vector spaces
HΣ,HΣi and surjective linear maps

τ : HΣ1 ⊗ · · · ⊗ HΣn → HΣ

For the case without corners τ is an isomorphism.
I τ is compatible with the hermitian structure 〈·, ·〉Σ, i.e. the orthogonal

complement of ker τ is isomorphic via τ to its image HΣ.
I τ is compatible with the conjugation ιΣ, i.e. τ ◦ (ιΣ1 ⊗ · · · ⊗ ιΣn ) = ιΣ ◦ τ .



Gluing axiom for corners

I Let M = M ′ tM ′′ be a manifold such that we have decompositions
∂M ′ = Σ′ ∪ Σ, ∂M ′′ = Σ ∪ Σ′′ and let M1 = M ′ ∪Σ M ′′ be the gluing
along Σ, then

HΣ′ ⊗HΣ ⊗HΣ ⊗HΣ′′

����

τ // // H∂M
ρM //

��

C

HΣ′ ⊗HΣ′′
N.

AA

7
� �

τ // // H∂M1

ρM1

=={
{

{
{

Explicitly we define

ρM1 ◦ τ(·, ·) =
X
i∈I

ρM′ ◦ τΣ′ (· ⊗ ξi ) ρM′′ ◦ τΣ′′(ιΣ(ξi )⊗ ·)

I Suppose that for ∂M = Σ1 ∪ Σ2 we have that ρM ◦ τ : H∗Σ1
⊗HΣ2 → C

gives rise to a linear isomorphism ρ̃M : HΣ1 → HΣ2 then ρ̃M is unitary.



Axiom for empty regions

For non necessarily topological field theories it is useful to consider an
instantaneous time evolution, i.e. we consider empty regions with boundary
Σ ∪ Σ with

ρ∅ ◦ τ : H∗Σ ⊗HΣ → C

and we demand that
ρ∅ ◦ τ(ιΣ(·), ·) = 〈·, ·〉Σ

We think of Σ,Σ glued along its boundaries



Quantum Field Theories in dimension 2

For the two kinds of hypersurfaces in dimension 2, there are two basic
decompositions:

τOO : HO ⊗HO → HO

and
τOC : HO → HC

And there is just one fundamental region D (cf. the case of tqft where there
are 3 fundamental regions: disc, cylinder and pants)



Amplitude for the disc

ρD : HC → C

Since C = ∂D may be decomposed into two open strings and two open
strings and also for the emty region we have this decomposition then, we
may be squeeze the disc onto one open string, i.e.

ρD ◦ τOC ◦ τOO : HO ⊗HO → C

may be identified with the bilinear mapping

〈·, ·〉C = ρD ◦ τOC ◦ τOO (ιC(·), ·)



Amplitude for the cylinder

We decompose the boundary ∂D into two open strings and then into four and
glue opposite open strings. Then, by the gluing axiom

ρcylinder ◦ (τOC ⊗ τOC) : HO ⊗HO → C

equals X
i

ρD ◦ τOC ◦ τOO ◦ (τOO ⊗ τOO)(ψ ⊗ ξi ⊗ ιO(ξi )⊗ η)



Gluing of two discs

We can also consider the gluing of two discs along an open string contained
in the boundary

ρD ◦ τOC ◦ τOO(ψ ⊗ η) =
X

i

ρD1 ◦ τOC ◦ τOO(ψ ⊗ ξi )ρD2 ◦ τOC ◦ τOO(ιO(ξi )⊗ η)



2d Yang Mills

Consider G a compact Lie group and A a connection on a G−principal
bundle π : P → Mg,n over a surface Mg,n of genus g and n boundary
components. Take the area form ω ∈ Ω2(Mg,n,R)

SYM (A) = −
Z

Mg,n

tr(F A ∧ ∗F A) = −
Z

Mg,n

tr(F 2)ω, A ∈ Ω1(Mg,n, g)

Then for every area preserving diffeomorphism f ∈ Diff0,ωMg,n, we have
SYM (f ∗A) = SYM (A)
Hence by a result of Moser SYM (A) depends just on the total area s and the
topology of the region Mg,n. Thus it is useful to adopt the notation

ρs
g,n = ρMg,n



Yang Mills (II)

I A connection A of the bundle π : P |O→ O restricted to an open string
O ⊂ ∂Mg,n can be modified by gauge transformations and made locally
constant. Therefore gauge class may be completely defined by its
holonomy. The holonomy along the open string O, exp

R
O A, may be

identified with an element of G and encodes all the information of the
connection O modlo gauge

I Hence G encodes the space of connections on O modulo gauge and
corresponds to a ”configuration space”.

I Therefore the Hilbert space describing the state space HO is the L2

class functions C(G), with the inner product

〈ψ, η〉O =

Z
G
ψ(g)η(g) dg

where dg is the Haar measure on G.
I In order to describe the holonomy along a closed string C ⊂ Mg,n we

require conjugation classes on G, i.e. HC is the completion of the class
functions

CClass(G) = {f : G→ C | f (g−1 · x · g) = f (x)}
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Representation theory
I ON basis: By Peter Weil theorem there exists an ON basis {χV} on

CClass(G) ⊂ L2(G, dg) given by characters χV (g) = tr(V (g)) associated
to irreducible representations V . Any state in CClass(G) may be written as
ψ =

P
V ψ

VχV .
For C(G) = L2(G, dg) an orthogonal basis is given by the entries tV

ij of
representation matrices. There is a product given by convolution,
characters are nilpotent mod coefficients. Recall that χV =

P
i tV

ii
I Inner products:

〈χV , χW 〉C = δV ,W , 〈tV
ij , t

W
mn〉O = δV ,W δi,mδj,n

1
dim V

I Conjugation:
tV
ij (g) = tV

ji (g−1), χV = χV

I Notice that the projection τOC : HO → HC may be written as
τOC(ψ)(g) =

R
h∈[g]

ψ(hgh−1)dh or with these bases

τOC(tV
ij ) = δV ,W δi,j

1
(dim V )2χ

V

I Also for the decomposition of one open string into two strings
τOO : HO ⊗HO → HO

τOO(tV
ij ⊗ tW

mn) = δV ,W δj,m
1

dim V
tV
in



Amplitude for the disc
With these tools we are now able to give explicit calculations for the
amplitudes ρs

g,n,
I For the disc ρs

0,1 ∈ H∗C therefore

ρs
0,1 =

X
aV (s)χV , ρs

0,1(χV ) = aV (s)

I By ”shrinking the disc” and making the are area s = 0

ρ0
0,1 ◦ τOC ◦ τOO(ιO(·), ·) = 〈·, ·〉O

hence

δV ,W δj,mδi,n
aV (s)

(dim V )2 = ρ0
0,1 ◦ τOC ◦ τOO(tV

ij ⊗ tW
mn) = δV ,W δj,mδi,n

1
dim V

here we use the fact that ιO(tV
ij ) = tV

ji and ιO(χV ) = χV

Therefore aV (0) = dim V
I Define αV (s) dim V = aV (s), then αV (0) = 1
I By the gluing of two discs of areas s1 and s2 by taking {dim V tV

ij } as a
basis of H∗O we have

αV (s1 + s2) = α(s2)α(s2)

hence we may write α(s) = exp(βV s) and the propagator between two
open strings may be written as

ρ̃s
0,1(ti,j ) = exp(βV s)tV

ij
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The cylinder
By the gluing axiom applied to the disc with four boundary open strings:

ρs
0,2 ◦(τOC⊗τOC)(·⊗·) =

X
U,i,j

(dim U)ρs
0,1 ◦τOC ◦τOO ◦(τOO⊗τOO)(·⊗ tU

ij ⊗ tU
ji ⊗·)

introduce tV
ij and tW

ij then

ρs
0,2(χV ⊗ χW ) = δV ,W exp(βV s)

The closed surface
Decompose the disc as an 2g−gon and gluing properly the sides

ρs
g,0 =

X
V

exp(βV )(dim V )2−2g ∈ C

notice that the sum is formal and that may diverge in some cases
Any surface

ρs
g,n(χV1 ⊗ · · · ⊗ χVn ) = δV1,V2,...,Vn exp(βV1 )(dim V1)2−2g−n



if constants βV are real we consider the heat propagator end the euclidian
field theory, if they are imaginary the complete calculation requires
representation theory to get the right value iCV/4 where CV is the quadratic
Casimir of the representation.
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