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Axioms for hypersurfaces
Recall that a quantum field theory can be described as rule that assigns:
1. A ("state”) topological vector space Hx associated to oriented

hypersurfaces ©
2. Linear ("propagator”) maps pu associated to oriented regions M

Certain axioms come from conditions or "physical requirements”
As first approach we consider the case 9% = () for every hypersurface ©

» Duals:
Hs = Hs
where Y has the inverse orientation of X.
Y = o implies (Hs)* = Hs.

Hilbert spaces is the desirable category to satisfy this conditions.
Nevertheless we have seen that the categorical point of view can not be
compatible with this choice of objects with morphisms given by regions.
Therefore will avoid considering this axioms in complete generality as a
functorial assignement from the cobordism category tho vector spaces
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» Duals:
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Y = o implies (Hg)* = Hs.
» Tensor products:
Hs,us, = Hs, ® Hs,
If OM = X, U Xp, then Hoy = 7‘()*:1 ® Hs,
» Empty hypersurfaces: Hy = C
» A hermitian structure (-, -)s on Hsx and conjugate-linear maps
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Time evolution

For a region M = ¥ Ul ¥, the "time evolution” along the region may be
described heuristically as the ”amplitude transition”)

pm(v) =" ¥ - Zu(@)Dpom
KoM

with " Zy = eSm(®)”
We would like to describe the "unitary” evolution as a vector

pu € Hy, ® Hx, = Howm,
but this is not possible in general in since the linear map
pm - dompy C Hs, — Hs,

is not necessarily bounded. Instead we take the unbounded dual
("amplitude”) linear map py : Hom — C
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Axioms for regions

» For every region M there exists a hermitian unbounded linear functional
pm : Hom — C

» Gluing: If M is a manifold with 9M = ¥4 U LU X while My = Us M
obtained by identifying T with ¥, then for the contraction Hs ® Hy — C,
the linear map pu, can be defined as

PM

Hs, ® Hy ® Hy —— Hoy ——>
1 P 7
l i 7 pmy
N e
Hy, =——— Hom,

in particular for Xy = ¢, we have that OM; = 0, therefore py, € C.
Explicitly we define

o () =D o (- ® & @ 1x())

icl

where {¢;}ic/ is an orthonormal basis of Hsx



Another gluing axiom

Let M = M’ LI M” be a manifold such that oM’ =¥’ LY, 0M” =% LUY" and
let My = M’ Uz M” be the gluing along ¥, then

M

Hsr @ Hs @ Hy @ Hyr Hom —C

7 7
| s

i 7 pm
\ Ve

HZ\% (4 HZ” _ H8M1

Explicitly we define

o () =D ow (- ©&) - pur (ex(§) @)

iel



Axiom for topological field theories

» For any cylindrical region X x [0, 1],
Prxo,1] = id € Hy ® Hs,
where 9 (I x [0, 1]) = £ U X. This implies that
prxpo,] i Hs @ He — C
equals the bilinear pairing given by the contraction
Hs @ Hy — C

This axiom is optional for topological theories. It follows from the fact that the
diffeomorphism type of a cylinder remains the same for concatenation of two
cylinders



Manifolds with corners

In order to consider smooth structure with corners on an n—dimensional
manifold M we need a smooth atlas with corners {(x,, Ur)} where the
coordinate are continuous maps

x, U, cM—=R]
and where the change of ("curved”) coordinates
X0 X, x,(Uy N UL) — x. (U, N0 UL

are restrictions to open of R’ of R"—diffeomorphisms.

The "corner subset” of the manifolds correspond to the points p € M such
that x, (p) € R" has two or more null coordinates v.

This "corner subset” has a stratified structure an decomposes as a union of
corner manifolds



Presentation of hypersurfaces

Let X C 9M be a connected component contained in the fopological
boundary of a manifold with corners. We present it as a union of
hypersurfaces with boundary

Y=%3UXU---UL,

We suppose that X;, ¥; may intersect on (n — 2)-manifolds contained in their
boundary, i.e.
Z,‘ﬁzj‘:821 0822#@

All this topological manifolds M, X;, ¥, N ¥;, should be considered as
manifolds with corners.



Example: 2d-manifolds with corners

When dim M = 2 hypersurfaces ¥, in the presentation of a component
¥ C OM are diffeomorphic to:

1. Segments O ("open strings”)
2. Closed circles C (closed strings”)

on the other hand nonempty intersections ¥, N X; = {p} are just "corner”
points



Axioms for corners

Besides of the Hilbert spaces Hs associated to boundary components of
¥ C OM, we also consider Hilbert spaces associated to every hypersurfaces
¥; of the decomposition Hs;.

» For every decomposition ¥ = ¥4 U - - - U X, there exists vector spaces
Hs, Hs, and surjective linear maps
7T:Hsg, ®---®Hs, — Hs

For the case without corners 7 is an isomorphism.

» 7 is compatible with the hermitian structure (-, -)5, i.e. the orthogonal
complement of ker 7 is isomorphic via 7 to its image Hs.

» T is compatible with the conjugation s, i.e. 70 (15, ® - Qtx,) =tz o T.



Gluing axiom for corners

» Let M = M’" U M” be a manifold such that we have decompositions
OM =T UL, oM’ =T ux"” andlet Mi = M’ Us M" be the gluing

along X, then
Hyr @ Hy @ Hy @ Hxrr Hom al C
7 7
! i 7 Py
) : ‘
Hs» @ Hysr Hom,

Explicitly we define

pwy o 7() =D pw o Ter (- @ &) purr 0 T (15(6) ® -)
iel

» Suppose that for 9M = ¥4 U X2 we have that py o 7 : Hy, ® Hy, — C
gives rise to a linear isomorphism gy : Hx, — Hsx, then gy is unitary.



Axiom for empty regions

For non necessarily topological field theories it is useful to consider an
instantaneous time evolution, i.e. we consider empty regions with boundary
> U X with

ppoT:Hy @Hy — C
and we demand that

Po © T(L):('), ) = <'7 '>Z
We think of ¥, ¥ glued along its boundaries



Quantum Field Theories in dimension 2

For the two kinds of hypersurfaces in dimension 2, there are two basic
decompositions:

To0 : Ho ® Ho — Ho

and
Toc : Ho — He

And there is just one fundamental region D (cf. the case of tgft where there
are 3 fundamental regions: disc, cylinder and pants)



Amplitude for the disc

pp:He—C

Since C = 9D may be decomposed into two open strings and two open
strings and also for the emty region we have this decomposition then, we
may be squeeze the disc onto one open string, i.e.

ppoTocoToo : Ho® Ho — C
may be identified with the bilinear mapping

(»-)c = pp o Toc © Too (tc(-), -)



Amplitude for the cylinder

We decompose the boundary 0D into two open strings and then into four and
glue opposite open strings. Then, by the gluing axiom

Peyiinder © (Toc ®@ Toc) : Ho® Ho — C

equals
ZPD o Toc © Too © (Too ® Too)(¥ ® & @ to(&) @ n)

1



Gluing of two discs

We can also consider the gluing of two discs along an open string contained
in the boundary

pp ©Toc 0 Too(¥ ®n) = D _ pp, © Toc © Too(¥ @ &)pp, © Toc © Too(to(&) ® 1)

1



2d Yang Mills

Consider G a compact Lie group and A a connection on a G—principal
bundle 7 : P — Mjy,, over a surface My, of genus g and n boundary
components. Take the area form w € Q?(Mg,n, R)

Sym(A) = — /

Mg,n

tr(FA A +F) = —/ tr(F*)w, A € Q' (Mg.n, 0)

Mg,n

Then for every area preserving diffeomorphism f € Diffy ., Mg,», we have
Sym(f*A) = Sym(A)

Hence by a result of Moser Syu(A) depends just on the total area s and the
topology of the region My,». Thus it is useful to adopt the notation

s
Pg,n = PMy,n



Yang Mills (II)

» A connection A of the bundle = : P |o— O restricted to an open string
O C OMy,» can be modified by gauge transformations and made locally
constant. Therefore gauge class may be completely defined by its
holonomy. The holonomy along the open string O, exp [, A, may be
identified with an element of G and encodes all the information of the
connection O modlo gauge
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Yang Mills (II)

» A connection A of the bundle = : P |o— O restricted to an open string
O C OMy,» can be modified by gauge transformations and made locally
constant. Therefore gauge class may be completely defined by its
holonomy. The holonomy along the open string O, exp [, A, may be
identified with an element of G and encodes all the information of the
connection O modlo gauge

» Hence G encodes the space of connections on O modulo gauge and
corresponds to a "configuration space”.

» Therefore the Hilbert space describing the state space H is the L2
class functions C(G), with the inner product

(W, Mo = /G ¥(9)n(g) dg

where dg is the Haar measure on G.

» In order to describe the holonomy along a closed string C C My,,» we
require conjugation classes on G, i.e. H¢ is the completion of the class
functions

Coinss(G) = {f: G—C | f(g~"-x-g) = f(x)}



Representation theory

» ON basis: By Peter Weil theorem there exists an ON basis {x"} on
Ceiss(G) C L%(G, dg) given by characters x"(g) = tr(V(g)) associated
to irreducible representations V. Any state in Cc¢iass(G) may be written as
P = Zv ¢VXV-
For C(G) = L?(G, dg) an orthogonal basis is given by the entries t,}/ of
representation matrices. There is a product given by convolution,
characters are nilpotent mod coefficients. Recall that " = > tY

» Inner products:

1
X, x"MYe =dvw, (tf  tamo = 5V,W51,m6j,nm
» Conjugation: o o
/(@) =t/(g "), x" =x"
» Notice that the projection 7oc : Ho — H¢ may be written as
T0c(¥)(9) = Jheiq ¥(hgh™")dh or with these bases

1

(dim V)2
» Also for the decomposition of one open string into two strings
700 : Ho® Ho — Ho

Toc(l’/y"/) = 6v,wdi;

1 v

TOO(ti/"/ ® tnvq‘;) = 6V’W5j’m7dim Vt,-



Amplitude for the disc
With these tools we are now able to give explicit calculations for the
amplitudes pj 5,
» For the disc p5 € H therefore

pos = av(s)x”, po1(x") = av(s)
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Amplitude for the disc
With these tools we are now able to give explicit calculations for the
amplitudes pj 5,
» For the disc pj 4 € H¢ therefore

P8,1 = Z aV(S)XV7 P8,1(Xv) = ay(s)
» By "shrinking the disc” and making the are area s =0
0.1 © Toc © Too(to(-),) = (-, -)o
hence
av(s 1
5V,W5j,m5i,n# = P8,1 o Toc © TOO(ti/"/ ® ton) = 5v,w5/,m5i,nm

here we use the fact that co(t}) = t and to(x") = x"
Therefore ay(0) = dim V

» Define ay(s)dim V = ay(s), then ay(0) = 1

» By the gluing of two discs of areas sy and s; by taking {dim Vt,-}’} as a
basis of Hy we have

av(st + 82) = a(sz)a(s2)

hence we may write «(s) = exp(8vs) and the propagator between two
open strings may be written as

B4 () = exp(Bvs)t



The cylinder
By the gluing axiom applied to the disc with four boundary open strings:

0620 (Toc®Toc)(-®-) = Z(dim U)p35.10Toc ©Too © (Too @ Too) (- ® f/,L'/® t;ff(g))
U,ij
introduce ¢ and t}" then

po2(x" ®x") = dv.wexp(Bvs)

The closed surface
Decompose the disc as an 2g—gon and gluing properly the sides

pe.0 =Y exp(Bv)(dim V)>~2 e C
%
notice that the sum is formal and that may diverge in some cases
Any surface

S

Pg,n(XV1 Q- ® Xvn) = 5V1 WVays Vi eXp(ﬁw )(dim Vi )27297"



if constants By are real we consider the heat propagator end the euclidian
field theory, if they are imaginary the complete calculation requires
representation theory to get the right value iCy /4 where Cy is the quadratic
Casimir of the representation.
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