Quantum Field Theory with General Boundaries in Anti de Sitter spacetime

Max Dohse

Centro de Ciencias Matematicas UNAM Campus Morelia

Outline

This talk presents some work in progress from my Ph.D. thesis, done under supervision of Robert Oeckl and in collaboration with Daniele Colosi (both CCM-UNAM, Morelia)

- Classical Klein-Gordon theory on AdS and Minkowski
- Schrödinger-Feynman Quantization (SFQ)
- 4 Holomorphic quantization (HQ)

3 Schrödinger-Feynman Quantization (SFQ)

4 Holomorphic quantization (HQ)

Anti de Sitter spacetime (AdS)

- ▶ constant negative curvature
- ► global AdS_{1,3} coordinates: time $t \in [-\infty, +\infty]$ radius $\rho \in [0, \frac{\pi}{2})$ angles $\Omega = (\theta, \varphi)$ on \mathbb{S}^2
- ► boundary ∂AdS : hypercylinder $\mathbb{R} \times \mathbb{S}^2$ at $\rho = \frac{\pi}{2}$ (timelike)
- ► static metric: $\mathrm{d}s_{\mathrm{AdS}}^2 = \frac{R_{\mathrm{AdS}}^2}{\cos^2 \rho} \left(-\mathrm{d}t^2 + \mathrm{d}\rho^2 + \sin^2 \rho \,\mathrm{d}s_{\mathbb{S}^2}^2 \right)$
- ▶ Penrose diagram with timelike geodesics: ⇒
- ► no (temporally) asymptotically free states, no standard S-matrix!

Review: standard S-matrix in Minkowski spacetime

Time-slice region $\mathbb{M}_{[t_1,t_2]}$

- ► standard QFT in flat spacetime: one Hilbert space H of free states
- ► S-matrix is unitary operator S: $\mathcal{H} \to \mathcal{H}$ with matrix elements

$$egin{aligned} \mathcal{S}_{\eta,\zeta} &= {}_{\mathrm{out}}\langle \zeta \, | \, \mathcal{S} \, | \, \eta
angle_{\mathrm{in}} \ \mathcal{S}_{\eta,\zeta} &\sim {}_{t
ightarrow \infty} {}_{+t} \langle \zeta \, | \, \mathcal{U}_{[-t,+t]} \, | \, \eta
angle_{-t} \end{aligned}$$

► usual assumption: interaction switched off for large times, states become asymptotically free

Review: standard S-matrix in Minkowski spacetime

Time-slice region $\mathbb{M}_{[t_1,t_2]}$

- ▶ standard QFT in flat spacetime: one Hilbert space *H* of free states
- S-matrix is unitary operator $S: \mathcal{H} \to \mathcal{H}$ with matrix elements

$$egin{aligned} \mathcal{S}_{\eta,\zeta} &= {}_{\mathrm{out}}\langle \zeta \, | \, \mathcal{S} \, | \, \eta
angle_{\mathrm{in}} \ \mathcal{S}_{\eta,\zeta} &\sim {}_{t
ightarrow \, t
ightarrow \, +t} \langle \zeta \, | \, \mathcal{U}_{[-t,+t]} \, | \, \eta
angle_{-t} \end{aligned}$$

- ► usual assumption: interaction switched off for large times, states become asymptotically free
- ▶ improved assumption: interaction negligible for large distances

spacetime geometry!

 Minkowski: large distances for large times (straight geodesics)
 AdS: not the case! (periodically reconverging geodesics)

AdS: hypercylinder

- ► one solution: use different region! natural choice: **rod** hypercylinder region: $\mathbb{M}_{\rho_0} = \mathbb{R} \times \mathbb{B}^3_{\rho_0}$
- ► $ds_{AdS}^2 = \frac{R_{AdS}^2}{\cos^2 \rho} \left(-dt^2 + d\rho^2 + \sin^2 \rho \, ds_{S^2}^2 \right)$ AdS metric causes large distances near boundary at $\rho = \frac{\pi}{2}$,
- on hypercylinders $\Sigma_{\rho_0} = \mathbb{R} \times \mathbb{S}^2_{\rho_0}$ near the boundary $\rho = \frac{\pi}{2}$ the interaction becomes negligible and states become asymptotically free
- ► How can we construct S-matrix for nonstandard regions?

 $\Rightarrow \quad \text{GBF !}$

Outline

Classical Klein-Gordon theory on AdS and Minkowski

3 Schrödinger-Feynman Quantization (SFQ)

4 Holomorphic quantization (HQ)

7 / 28

Minkowski as flat limit of AdS

▶ scalar curvature of AdS inversely proportional to curvature radius R_{AdS} squared, thus flat limit $R_{AdS} \rightarrow \infty$ should give us Minkowski! use well known Minkowski results to calibrate corresponding AdS counterparts

<u>Anti de Sitter</u> \implies flat limit \implies

- $\bullet \text{ metric:} \\ \mathrm{d}s_{\mathrm{AdS}}^2 = \frac{R_{\mathrm{AdS}}^2}{\cos^2\rho} \left(-\mathrm{d}t^2 + \mathrm{d}\rho^2 + \sin^2\rho \,\mathrm{d}s_{\mathbb{S}^2}^2 \right)$
- $\begin{array}{l} \blacktriangleright \ \text{Laplace-Beltrami operator:} \\ \square_{\text{AdS}} = R_{\text{AdS}}^{-2} \left\{ -\cos^2\rho \, \partial_t^2 + \tan^{-2}\rho \, \square_{\mathbb{S}^2} \\ +\cos^2\rho \, \partial_\rho^2 + \, \frac{2}{\tan\rho} \, \partial_\rho \right\} \end{array}$
- ► Klein-Gordon equation: $(\square_{AdS} - m^2) = 0$
- ▶ 10 Killing vector fields: (j, k = 1, 2, 3)1 time translation $R_{AdS}^{-1} K_{4,0}$ 3 "4-boosts" $R_{AdS}^{-1} K_{4,j}$ 3 rotations K_{jk} 3 "0-boosts" K_{0j}

 $\underline{\mathbf{Minkowski}} \quad (\tau = R_{\mathrm{AdS}}t, \ r = R_{\mathrm{AdS}}\rho)$

- ► metric: $ds^2_{\text{Mink}} = -d\tau^2 + dr^2 + r^2 d\Omega_2^2$
- ► Laplace-Beltrami: $\Box_{\text{Mink}} = -\partial_{\tau}^{2} + r^{-2} \Box_{\mathbb{S}^{2}}$ $+ \partial_{r}^{2} + \frac{2}{r} \partial_{r}$
- ► Klein-Gordon equation: $(\square_{\text{Mink}} - m^2) = 0$
- ▶ 10 Killing vector fields: 1 time translation T₀
 - 3 spatial translations T_j
 - 3 rotations K_{jk}
 - 3 Lorentz boosts K_{0j}

Minkowski as flat limit of AdS

Max Dohse (CCM-UNAM, Morelia)

Minkowski: classical Klein-Gordon solutions I

- ▶ spherical coordinates: separation of variables gives radial DEQ of 2nd degree, two linear independent solutions → Bessel modes + Neumann modes
- defining $p_E^{\mathbb{R}} = \sqrt{|E^2 m^2|}$ the modes write

$$\mu_{Elm_{l}}^{(a)}(t,r,\Omega) = \frac{p_{E}^{\mathbb{R}}}{4\pi} e^{-iEt} Y_{l}^{m_{l}}(\Omega) \tilde{j}_{El}(r) \qquad \tilde{j}_{El}(r) = \begin{cases} j_{l}(p_{E}^{\mathbb{R}}r) & E^{2} > m^{2} \\ i^{-l} j_{l}(ip_{E}^{\mathbb{R}}r) & E^{2} < m^{2} \end{cases}$$

$$\mu_{Elm_{l}}^{(b)}(t,r,\Omega) = \frac{p_{E}^{\mathbb{R}}}{4\pi} e^{-iEt} Y_{l}^{m_{l}}(\Omega) \tilde{n}_{El}(r) \qquad \tilde{n}_{El}(r) = \begin{cases} n_{l}(p_{E}^{\mathbb{R}}r) & E^{2} > m^{2} \\ i^{l+1} n_{l}(ip_{E}^{\mathbb{R}}r) & E^{2} < m^{2} \end{cases}$$

$$q_{1}^{4} q_{1}^{4} q_{1}^{$$

Minkowski: classical Klein-Gordon solutions II

▶ can expand KG solution on time-slice region in propagating Bessel modes

▶ on rod region: propagating+evanescent Bessel modes

$$\phi(t, r, \Omega) = \int_{-\infty}^{+\infty} dE \sum_{l, m_l} \phi^a_{Elm_l} \mu^{(a)}_{Elm_l}(t, r, \Omega)$$

► on neighborhood of hypercylinder Σ_{r_0} : prop.+evan. Bessel + Neumann modes

$$\phi(t,r,\Omega) = \int_{-\infty} dE \sum_{l,m_l} \left\{ \phi^a_{Elm_l} \mu^{(a)}_{Elm_l}(t,r,\Omega) + \phi^b_{Elm_l} \mu^{(b)}_{Elm_l}(t,r,\Omega) \right\}$$

Max Dohse (CCM-UNAM, Morelia)

AdS: classical Klein-Gordon solutions I

- ▶ spherical coordinates: separation of variables gives radial DEQ of 2nd degree, two linear independent solutions → Jacobi + hypergeometric modes
- ► define magic frequencies $\omega_{nl}^+ := 2n + l + \tilde{m}_+,$ and mass parameters $\tilde{m}_{\pm} = \frac{d}{2} \pm \nu$ wherein $\nu = \sqrt{d^2/4 + m^2 R_{AdS}^2}$
- ▶ the Jacobi modes write

 $\mu_{nlm_{l}}^{(+)}(t,\rho,\Omega) = e^{-i\omega_{nl}^{+}t} Y_{l}^{m_{l}}(\Omega) J_{nl}^{(+)}(\rho) \qquad J_{nl}^{(+)}(\rho) \sim \sin^{l}\rho \cos^{\tilde{m}}+\rho P_{n}^{(l+1/2,\nu)}(\cos 2\rho)$ • the hypergeometric modes write

 $\mu_{\omega l m_l}^{(S,a)}(t,\rho,\Omega) = \mathrm{e}^{-\mathrm{i}\omega t} Y_l^{m_l}(\Omega) S_{\omega l}^a(\rho) \qquad S_{\omega l}^a(\rho) = \sin^l \rho \, \cos^{\tilde{m}} + \rho \, F(\alpha^{S,a}, \, \beta^{S,a}; \, \gamma^{S,a}; \, \sin^2 \rho)$

 $\mu_{\omega l m_{l}}^{(S,b)}(t,\rho,\Omega) = e^{-i\omega t} Y_{l}^{m_{l}}(\Omega) S_{\omega l}^{b}(\rho) \qquad S_{\omega l}^{b}(\rho) = \frac{-\cos^{m+\rho}}{(\sin\rho)^{l+d-2}} F(\alpha^{S,b}, \beta^{S,b}; \gamma^{S,b}; \sin^{2}\rho)$

AdS: classical Klein-Gordon solutions II

▶ can expand KG solution on time-slice region in Jacobi modes

$$\phi(t,\rho,\Omega) = \sum_{nlm_l} \left\{ \phi^+_{nlm_l} \ \mu^{(+)}_{nlm_l}(t,\rho,\Omega) + \overline{\phi^-_{nlm_l}} \ \overline{\mu^{(+)}_{nlm_l}(t,\rho,\Omega)} \right\}$$

 \blacktriangleright on rod region in hypergeometric *a*-modes

$$\phi(t, r, \Omega) = \int_{-\infty}^{+\infty} d\omega \sum_{l, m_l} \phi^a_{\omega l m_l} \mu^{(a)}_{\omega l m_l}(t, r, \Omega)$$

► on neighborhood of hypercylinder Σ_{r_0} in hypergeometric *a* and *b*-modes $\stackrel{+\infty}{\underset{c}{\rightarrow}}$

$$\phi(t,r,\Omega) = \int_{-\infty} d\omega \sum_{l,m_l} \left\{ \phi^a_{\omega lm_l} \mu^{(a)}_{\omega lm_l}(t,r,\Omega) + \phi^b_{\omega lm_l} \mu^{(b)}_{\omega lm_l}(t,r,\Omega) \right\}$$

Max Dohse (CCM-UNAM, Morelia)

Outline

1 Motivation

2 Classical Klein-Gordon theory on AdS and Minkowski

Schrödinger-Feynman Quantization (SFQ)

4 Holomorphic quantization (HQ)

SFQ: coherent states [Colosi:2009]

- consider region M foliated by hypersurfaces Σ_{τ} wherein τ is foliation parameter
- ▶ Dirac picture **coherent states** determined by characterizing function $\eta(\underline{x})$

$$\psi_{\Sigma_{\tau}}^{\mathbf{D},\eta}(\varphi) = \exp\left(\int \mathrm{d}^{3}x \,\varphi(\underline{x}) \,(\overline{\hat{\Upsilon}(\tau)})^{-1} \eta(\underline{x})\right) \psi_{\Sigma_{\tau}}^{\mathbf{S},0}(\varphi)$$
vacuum state given by $\psi_{\Sigma_{\tau}}^{\mathbf{S},0}(\varphi) = \exp\left\{-\frac{1}{2} \int_{\Sigma_{\tau}} \mathrm{d}^{3}x \,\varphi(\underline{x}) \,\left(\hat{A}_{\Sigma_{\tau}}\varphi\right)(\underline{x})\right\}$

with vacuum operator
$$\hat{A}_{\Sigma_{\tau}} = i\sqrt{\left|\left(g^{(3)}g^{\tau\tau}\right)(\tau,\underline{x})\right|} \frac{(\mathcal{O}_{\tau}\mathbf{1})(\tau)}{\hat{\Upsilon}(\tau)}$$

► operator $(\hat{\Upsilon}(\tau) U_{\underline{k}})(\underline{x}) = (c_{\underline{k}}^{a} X_{\underline{k}}^{a}(\tau) + c_{\underline{k}}^{b} X_{\underline{k}}^{b}(\tau)) U_{\underline{k}}(\underline{x})$ wherein $c_{\underline{k}}^{a,b}$ are factors determining the vacuum and $U_{\underline{k}}(\underline{x})$ is an ONB on Σ_{τ} Minkowski equal-time plane: $U_{Elm_{l}}(r, \Omega) = j_{l}(p_{Er})Y_{l}^{m_{l}}(\Omega)$ and $\Upsilon_{E}(t) = e^{-iEt}$ Minkowski hypercylinder: $U_{Elm_{l}}(t, \Omega) = e^{-iEt}Y_{l}^{m_{l}}(\Omega)$ and $\Upsilon_{El}(r) = \check{J}_{El}(r) + i\check{n}_{El}(r)$ AdS hypercylinder: $U_{Elm_{l}}(t, \Omega) = e^{-iEt}Y_{l}^{m_{l}}(\Omega)$ and $\Upsilon_{\omega l}(\rho) = ??? S_{\omega l}^{\omega}(\rho) + ??? S_{\omega l}^{\omega}(\rho)$

SFQ: amplitudes for time-slice $\mathbb{M}_{[t_1,t_2]}$ [ColDo:2010]

• free amplitude with $\hat{\mathcal{B}} = \left(2\left|\hat{\Upsilon}(\tau)\right|^2 \hat{A}_{\Sigma_{\tau}}^{\mathbb{R}}\right)^{-1}$ is independent of $\tau_{1,2}$

$$\rho_{[\tau_1,\tau_2]}^{\mathrm{S},0}\left(\psi_{\Sigma_{\tau_1}}^{\mathrm{D},\eta}\otimes\overline{\psi_{\Sigma_{\tau_2}}^{\mathrm{D},\zeta}}\right) = \exp\int\!\!\mathrm{d}^3x \left(\eta\,\hat{\mathcal{B}}\,\overline{\zeta} - \frac{1}{2}\overline{\eta}\,\hat{\mathcal{B}}\,\eta - \frac{1}{2}\overline{\zeta}\,\hat{\mathcal{B}}\,\zeta\right)$$

 \blacktriangleright amplitude with source field $\mu(x)$, Feynman propagator $G_{\rm F}$

$$\begin{split} \rho_{[\tau_1,\tau_2]}^{\mathbf{S},\mu} \Big(\psi_{\Sigma_{\tau_1}}^{\mathbf{D},\eta} \otimes \overline{\psi_{\Sigma_{\tau_2}}^{\mathbf{D},\zeta}} \Big) &= \rho_{[\tau_1,\tau_2]}^{\mathbf{S},0} \Big(\psi_{\Sigma_{\tau_1}}^{\mathbf{D},\eta} \otimes \overline{\psi_{\Sigma_{\tau_2}}^{\mathbf{D},\zeta}} \Big) \exp \biggl(\mathbf{i} \int_{\mathbb{M}_{[\tau_1,\tau_2]}} d^4x \sqrt{|g|} \ \mu(x) \ \phi^{(\eta,\zeta)}(x) \biggr) \\ & \exp \biggl(\frac{\mathbf{i}}{2} \int_{\mathbb{M}_{[\tau_1,\tau_2]}} d^4x \int_{\mathbb{M}_{[\tau_1,\tau_2]}} d^4x' \sqrt{|g(x)g(x')|} \ \mu(x) \ G_{\mathbf{F}}(x,x') \ \mu(x') \biggr) \end{split}$$

 \implies amplitude with source field is independent of $\tau_{1,2}$, too!

17 / 28

SFQ: amplitudes for rod hypercylinder \mathbb{M}_{r_0} [CoIDo:2010]

• free amplitude with $\hat{\mathcal{B}} = \left(2\left|\hat{\Upsilon}(r)\right|^2 \hat{A}_{\Sigma_r}^{\mathbb{R}}\right)^{-1}$ is independent of r_0

$$\rho_{\Sigma_{r_0}}^{\mathrm{S},0}\left(\,\overline{\psi_{\Sigma_{r_0}}^{\mathrm{D},\xi}}\,\right) \,=\, \exp\!\left(\!-\frac{1}{2}\int\!\!\mathrm{d}t\,\mathrm{d}^2\Omega\,\left\{\overline{\xi}\,\frac{\overline{\hat{c}^b}}{\hat{c}^b}\,\hat{\mathcal{B}}\,\overline{\xi}+\overline{\xi}\,\hat{\mathcal{B}}\,\xi\right\}\right)$$

 \blacktriangleright amplitude with source field $\mu(x)$, Feynman propagator $G_{\rm F}$

 \implies amplitude with source field is independent of r_0 , too!

SFQ: interacting theory [ColOe:2008]

 \blacktriangleright action for general field interaction with potential V:

$$S_{R,V}(\phi) = S_{R,0}(\phi) + \int_{\rho < R} d^4 x \ V(x,\phi(x))$$

$$\exp iS_{R,V}(\phi) = \left[\exp i \int_{\rho < R} d^{d+1} x \sqrt{|g(x)|} \ \hat{V}\left(x, -i\frac{\delta}{\delta\mu(x)}\right) \right] \ \exp iS_{R,\mu}(\phi) \Big|_{\mu = 0}$$

▶ amplitude:

$$\rho_{R,V}(\psi) = \left[\exp i \int_{\rho < R} d^4 x \sqrt{|g(x)|} \hat{V}\left(x, -i \frac{\delta}{\delta \mu(x)}\right) \right] \rho_{R,\mu}(\psi) \bigg|_{\mu = 0}$$

 \Rightarrow amplitude again independent of hypercylinder's radius R

SFQ: rod-slice correspondence [ColOe:2008]

- \blacktriangleright let rod and time-slice cover all of spacetime
- ▶ exponentials quadratic in μ agree in $\rho_{[t_1,t_2]}^{\mathbf{S},\mu}$ and $\rho_{r_0}^{\mathbf{S},\mu}$
- \blacktriangleright exponentials with coupling of μ and special KG solution agree if $\phi^{(\xi)}=\phi^{(\eta,\zeta)}$
- ▶ Minkowski: this induces relation $\xi \Leftrightarrow (\eta, \zeta)$ such that free amplitudes agree:

$$\rho^{\mathrm{S},0}_{[\tau_1,\tau_2]}\Big(\psi^{\mathrm{D},\eta}_{\Sigma_{\tau_1}}\otimes\overline{\psi^{\mathrm{D},\zeta}_{\Sigma_{\tau_2}}}\Big)\,=\,\rho^{\mathrm{S},0}_{\Sigma_{r_0}}\Big(\,\overline{\psi^{\mathrm{D},\xi}_{\Sigma_{r_0}}}\,\Big)$$

▶ thus in Minkowski rod and time-slice amplitudes with source are equivalent!

Can we contruct the same for AdS?

Outline

1 Motivation

2) Classical Klein-Gordon theory on AdS and Minkowski

3 Schrödinger-Feynman Quantization (SFQ)

Holomorphic quantization [Oeckl:2012]

- \blacktriangleright associate to any hypersurface Σ space L_{Σ} of solutions near Σ
- ▶ symplectic structure: ω_{Σ} : $L_{\Sigma} \times L_{\Sigma} \rightarrow \mathbb{R}$
- complex structure: J_{Σ} : $L_{\Sigma} \rightarrow L_{\Sigma}$ with $J_{\Sigma}^2 = -1$ and $\omega_{\Sigma}(\cdot, \cdot) = \omega_{\Sigma}(J_{\Sigma} \cdot, J_{\Sigma} \cdot)$
- ▶ field metric: $g_{\Sigma}(\cdot, \cdot) = 2\omega_{\Sigma}(\cdot, J_{\Sigma} \cdot)$
- ▶ inner product: $\{\cdot, \cdot\}_{\Sigma} = g_{\Sigma}(\cdot, \cdot) + 2i \omega_{\Sigma}(\cdot, \cdot)$
- ► states are holomorphic function(al)s: $\psi_{\Sigma}^{\mathrm{H}}$: $\mathrm{L}_{\Sigma} \to \mathbb{C}$
- ► coherent states determined by characteristic solution $\phi \in L_{\Sigma}$ via $\psi_{\Sigma}^{H,\phi}(\lambda) = \exp \frac{1}{2} \{\phi, \lambda\}_{\Sigma}$
- ▶ amplitude for region M with boundary ∂M (rigorous path integral) $\rho_M^{H,0}(\psi_{\partial M}^{H,\phi}) = \exp\left(-\frac{i}{2}g_{\partial M}(\phi^{\mathbb{R}},\phi^{\mathbb{I}}) - \frac{1}{2}g_{\partial M}(\phi^{\mathbb{I}},\phi^{\mathbb{I}})\right)$

Invariance under isometry actions

- $\begin{aligned} & \blacktriangleright \text{ isometry } K: \\ & K: \quad \mathbf{M} \ \rightarrow \ K \triangleright \mathbf{M} \\ & K: \ \partial \mathbf{M} \ \rightarrow \ K \triangleright \partial \mathbf{M} \ = \ \partial(K \triangleright \mathbf{M}) \end{aligned}$
- ▶ isometry invariance of amplitude requires two properties:
- 1. symplectic structure K-invariant: $\omega_{K \triangleright \partial \mathcal{M}}(K \triangleright \lambda, K \triangleright \phi) \stackrel{!}{=} \omega_{\partial \mathcal{M}}(\lambda, \phi)$
- 2. complex structure commutes with K: $J_{K \triangleright \partial M} (K \triangleright \lambda) \stackrel{!}{=} K \triangleright (J_{\partial M} \lambda)$ for all $\lambda, \phi \in L_{\partial M}$

Invariance under isometry actions

- $\begin{aligned} & \blacktriangleright \text{ isometry } K: \\ & K: \quad \mathbf{M} \ \rightarrow \ K \triangleright \mathbf{M} \\ & K: \ \partial \mathbf{M} \ \rightarrow \ K \triangleright \partial \mathbf{M} \ = \ \partial(K \triangleright \mathbf{M}) \end{aligned}$
- ▶ isometry invariance of amplitude requires two properties:
- 1. symplectic structure K-invariant: $\omega_{K \triangleright \partial \mathcal{M}}(K \triangleright \lambda, K \triangleright \phi) \stackrel{!}{=} \omega_{\partial \mathcal{M}}(\lambda, \phi)$
- 2. complex structure commutes with K: $J_{K \triangleright \partial M} (K \triangleright \lambda) \stackrel{!}{=} K \triangleright (J_{\partial M} \lambda)$ for all $\lambda, \phi \in L_{\partial M}$

► then we have: $g_{K \triangleright \partial M}(K \triangleright \lambda, K \triangleright \lambda)$ $= \omega_{K \triangleright \partial M}(K \triangleright \lambda, J_{K \triangleright \partial M}(K \triangleright \lambda))$ $= \omega_{K \triangleright \partial M}(K \triangleright \lambda, K \triangleright (J_{\partial M} \lambda))$ $= \omega_{\partial M}(\lambda, J_{\partial M} \lambda)$ $= g_{\partial M}(\lambda, \lambda)$

Rod hypercylinder \mathbb{M}_{ρ_0} in AdS: Symplectic structure [Dohse:2013]

▶ boundary $\partial \mathbb{M}_{\rho_0}$ is hypercylinder Σ_{ρ_0} , KG solutions near boundary: $L_{\Sigma_{\rho_0}}$

$$\phi(t,r,\Omega) = \int \! \mathrm{d}\omega \sum_{l,m_l} \left\{ \phi^{S,a}_{\omega lm_l} \,\mathrm{e}^{-\mathrm{i}\omega t} \, Y^{m_l}_l(\Omega) \, S^a_{\omega l}(\rho) + \phi^{S,b}_{\omega lm_l} \,\mathrm{e}^{-\mathrm{i}\omega t} \, Y^{m_l}_l(\Omega) \, S^b_{\omega l}(\rho) \right\}$$

▶ symplectic structure induced by Lagrange density turns out to be:

$$\begin{split} \omega_{\Sigma_{\rho}}(\eta,\zeta) &= \frac{1}{2} \int \! \mathrm{d}t \, \mathrm{d}^2 \Omega \; R_{\mathrm{AdS}}^2 \tan^2 \rho \; \left(\eta \, \partial_{\rho} \zeta - \zeta \, \partial_{\rho} \eta \right) \\ &= \pi R_{\mathrm{AdS}}^2 \int \! \mathrm{d}\omega \sum_{l,m_l} (2l\!+\!1) \Big\{ \eta^{S,a}_{\omega lm_l} \, \zeta^{S,b}_{-\omega,l,-m_l} - \eta^{S,b}_{\omega lm_l} \, \zeta^{S,a}_{-\omega,l,-m_l} \Big\} \end{split}$$

- isometry actions: $(K \triangleright \omega)(\eta, \zeta) = \omega(K^{-1} \triangleright \eta, K^{-1} \triangleright \zeta)$ with $(K^{-1} \triangleright \eta)(x) = \eta(Kx)$
- ▶ to show isometry invariance of ω , we translate action of K on coordinates into action in solution space: $K: \eta_{\omega lm_l}^{S,a} \to (K \triangleright \eta)_{\omega lm_l}^{S,a}$ which gives

$$\left(K \triangleright \omega_{\Sigma_{\rho}}\right)(\eta,\zeta) = \pi R_{\mathrm{AdS}}^{2} \int \mathrm{d}\omega \sum_{l,m_{l}} (2l+1) \left\{ (K \triangleright \eta)_{\omega lm_{l}}^{S,a} \left(K \triangleright \zeta\right)_{-\omega,l,-m_{l}}^{S,b} \right\}$$

$$-\left(K\triangleright\eta\right)^{S,b}_{\omega lm_l}\left(K\triangleright\zeta\right)^{S,a}_{-\omega,l,-m_l}\Big\}$$

 $= \omega_{\Sigma_{\rho}}(\eta, \zeta)$ for all isometries of AdS

Max Dohse (CCM-UNAM, Morelia)

Rod hypercylinder \mathbb{M}_{ρ_0} in AdS: Complex structure J

▶ KG solutions $L_{\Sigma_{\rho_0}}$

1

$$\phi(t,r,\Omega) = \int d\omega \sum_{l,m_l} \left\{ \phi^{S,a}_{\omega lm_l} e^{-i\omega t} Y_l^{m_l}(\Omega) S^a_{\omega l}(\rho) + \phi^{S,b}_{\omega lm_l} e^{-i\omega t} Y_l^{m_l}(\Omega) S^b_{\omega l}(\rho) \right\}$$
$$(J\phi)(t,r,\Omega) = \int d\omega \sum_{l,m_l} \left\{ \left(J\phi \right)^{S,a}_{\omega lm_l} \mu^{(S,a)}_{\omega lm_l}(t,\rho,\Omega) + \left(J\phi \right)^{S,b}_{\omega lm_l} \mu^{(S,b)}_{\omega lm_l}(t,\rho,\Omega) \right\}$$

Rod hypercylinder \mathbb{M}_{ρ_0} in AdS: Complex structure J

▶ KG solutions $L_{\Sigma_{\rho_0}}$

$$\phi(t,r,\Omega) = \int d\omega \sum_{l,m_l} \left\{ \phi^{S,a}_{\omega lm_l} e^{-i\omega t} Y^{m_l}_l(\Omega) S^a_{\omega l}(\rho) + \phi^{S,b}_{\omega lm_l} e^{-i\omega t} Y^{m_l}_l(\Omega) S^b_{\omega l}(\rho) \right\}$$

$$(\mathrm{J}\phi)(t,r,\Omega) = \int \! \mathrm{d}\omega \sum_{l,m_l} \left\{ \left(\mathrm{J}\phi \right)^{S,a}_{\omega lm_l} \mu^{(S,a)}_{\omega lm_l}(t,\rho,\Omega) + \left(\mathrm{J}\phi \right)^{S,b}_{\omega lm_l} \mu^{(S,b)}_{\omega lm_l}(t,\rho,\Omega) \right\}$$

 \blacktriangleright most general ansatz for action of J:

$$\begin{split} \left(\mathbf{J}\phi\right)_{\omega l m_{l}}^{S,a} &= \int \!\!\mathrm{d}\omega' \sum_{l',m_{l}'} \left\{ j^{S,aa} \begin{pmatrix} \omega \ l \ m_{l} \\ \omega' \underline{l}' m_{l}' \end{pmatrix} \phi_{\omega' l' m_{l}'}^{S,a} + j^{S,ab} \begin{pmatrix} \omega \ l \ m_{l} \\ \omega' \underline{l}' m_{l}' \end{pmatrix} \phi_{\omega' l' m_{l}'}^{S,b} \\ &+ \tilde{\jmath}^{S,aa} \begin{pmatrix} \omega \ l \ m_{l} \\ \omega' \underline{l}' m_{l}' \end{pmatrix} \overline{\phi}_{\omega' l' m_{l}'}^{S,a} + \tilde{\jmath}^{S,ab} \begin{pmatrix} \omega \ l \ m_{l} \\ \omega' \underline{l}' m_{l}' \end{pmatrix} \overline{\phi}_{\omega' l' m_{l}'}^{S,b} \\ \left(\mathbf{J}\phi\right)_{\omega l m_{l}}^{S,b} &= \int \!\!\mathrm{d}\omega' \sum_{l',m_{l}'} \left\{ j^{S,ba} \begin{pmatrix} \omega \ l \ m_{l} \\ \omega' \underline{l}' m_{l}' \end{pmatrix} \phi_{\omega' l' m_{l}'}^{S,a} + j^{S,bb} \begin{pmatrix} \omega \ l \ m_{l} \\ \omega' \underline{l}' m_{l}' \end{pmatrix} \phi_{\omega' l' m_{l}'}^{S,b} \\ &+ \tilde{\jmath}^{S,ba} \begin{pmatrix} \omega \ l \ m_{l} \\ \omega' \underline{l}' m_{l}' \end{pmatrix} \overline{\phi}_{\omega' l' m_{l}'}^{S,a} + \tilde{\jmath}^{S,bb} \begin{pmatrix} \omega \ l \ m_{l} \\ \omega' \underline{l}' m_{l}' \end{pmatrix} \overline{\phi}_{\omega' l' m_{l}'}^{S,b} \\ \end{split}$$

Rod hypercylinder \mathbb{M}_{ρ_0} in AdS: Complex structure J

▶ KG solutions $L_{\Sigma_{\rho_0}}$

$$\begin{split} \phi(t,r,\Omega) &= \int \! \mathrm{d}\omega \sum_{l,m_l} \left\{ \phi^{S,a}_{\omega lm_l} \, \mathrm{e}^{-\mathrm{i}\omega t} \, Y^{m_l}_l(\Omega) \, S^a_{\omega l}(\rho) + \phi^{S,b}_{\omega lm_l} \, \mathrm{e}^{-\mathrm{i}\omega t} \, Y^{m_l}_l(\Omega) \, S^b_{\omega l}(\rho) \right\} \\ \left(\mathrm{J}\phi \right)(t,r,\Omega) &= \int \! \mathrm{d}\omega \sum_{l,m_l} \left\{ \left(\mathrm{J}\phi \right)^{S,a}_{\omega lm_l} \, \mu^{(S,a)}_{\omega lm_l}(t,\rho,\Omega) + \left(\mathrm{J}\phi \right)^{S,b}_{\omega lm_l} \, \mu^{(S,b)}_{\omega lm_l}(t,\rho,\Omega) \right\} \end{split}$$

• [J, K] = 0 with $J^2 = -1$ and $\omega_{\Sigma}(\cdot, \cdot) = \omega_{\Sigma}(J_{\Sigma} \cdot, J_{\Sigma} \cdot)$ imply

$$(\mathrm{J}\phi)^{S,a}_{\omega\underline{l}m_l} = j^S_{\omega l} \phi^{S,b}_{\omega\underline{l}m_l} \qquad (\mathrm{J}\phi)^{S,b}_{\omega\underline{l}m_l} = -(j^S_{\omega l})^{-1} \phi^{S,a}_{\omega\underline{l}m_l}$$

wherein $j^{S}_{\omega l}$ must fulfill

$$j^{S}_{\omega-1,l+1} = -j^{S}_{\omega l} \, \frac{(\widetilde{m}_{+} + \omega - l - 3)(\widetilde{m}_{+} - \omega + l)}{(2l+3)\,(2l+1)} \quad j^{S,ab}_{\omega+1,l+1} = -j^{S}_{\omega l} \, \frac{(\widetilde{m}_{+} - \omega - l - 3)(\widetilde{m}_{+} + \omega + l)}{(2l+3)\,(2l+1)}$$

candidate:
$$j_{\omega l}^{S} = (-1)^{l} \frac{\Gamma(\alpha^{S,a}) \Gamma(\beta^{S,a})}{\Gamma(\alpha^{S,b}) \Gamma(\gamma^{S,a}) \Gamma(\gamma^{S,a}-1)}$$
 we have many more...

Max Dohse (CCM-UNAM, Morelia)

Literature:

- [ColOe:2008] D. Colosi, R. Oeckl: Spatially asymptotic S-matrix...,
 - Phys.Rev.D 78:025020, 2008, [arxiv:0802.2274]
- [Colosi:2009] D. Colosi: On the structure of the vacuum state..., 2009, [arxiv:0903.2476]
- [ColDo:2010]
 D. Colosi, M.Dohse: On the structure of the S-matrix..., 2010, [arxiv:1011.2243]
- [Oeckl:2012] R. Oeckl: Holomorphic quantization..., SIGMA 8, 2012, [arxiv:1009.5615]
- [Dohse:2013]
 M. Dohse: Classical Klein-Gordon solutions...
 J.Geo.Phys. 70, p.130, 2013, [arxiv:1212.2945]