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Holographic quantization

Holographic quantization

Consider a classical �eld theory with a given set of �elds φ(x) and an
action S[φ]. Let KS be the space of �eld con�gurations on a
hypersurface S as a boundary of a region M . The amount of boundary
data encoded in KS should be such that it essentially uniquely
determines a classical solution inside M in a generic situation.

(Q1) The space of states HS associated with S is the space of complex
valued functions C(KS) on KS .

(Q2) The amplitude ρM for a state ψ ∈ Hs is given by the expression

ρM (ψ) =

∫
KS

Dφ0 ψ(φ0)

∫
φ|S=φ0

Dφ e
i
~S[φ].
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Holographic quantization

From (Q1)

There is a vector space HS of states associated with S.

S = S1 ∪ S2 a disjoint union, KS = KS1 ×KS2 and hence
C(KS) = C(KS1)⊗ C(KS2).

From (Q2)

The dualization of boundaries corresponds simply to leaving the
evaluation with a state on those boundaries open. Let M have
boundaries S1 and S2 and consider states ψ1 ∈ HS1 and ψ2 ∈ HS2 .
Then ρM (ψ1) is an element of H∗S2

, i.e. a linear map HS2 → C by
mapping ψ2 to∫

KS1
×KS2

Dφ1Dφ2 ψ1(φ1)ψ2(φ2)

∫
φ|S1

=φ1
φ|S2

=φ2

Dφ e
i
~S[φ].

The composition property is also rather obvious: Consider an
integral over all �eld con�gurations in two regions with �elds �xed
on a common boundary and integrate also over the boundary
values. Then this is the same as doing the unrestricted integral
over �eld con�gurations in the union of the regions.
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Reformulated QM

Reformulated QM

Space-time is Euclidean or Minkowski space. A point in space-time can
be denoted by coordinates (−→x , t). The regions R are time intervals
[t1, t2] extended over all of space. The boundaries S are thus pairs of
time-slices S = S1 ∪ S2 with S1 at t1 and S2 at t2.

HS = HS1 ⊗HS2 and HS2 = H∗S1
.

Let HS1 = H be the Hilbert space of quantum mechanics. Then a state
in HS corresponds to a pair of states ψ ∈ H at time t1 and η ∈ H∗ at
time t2 or a linear combination of such pairs.
Let de�ne ρR : H → H to be the time-evolution operator e−i/~H(t2−t1).
The transition amplitude between ψ and η is given by ρR via

〈η|e−
i
~H(t2−t1)|ψ〉 = ρR(ψ ⊗ η).

The composition property of GBF encodes the composition of time
evolutions.
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NRQM of scalar particle

NRQM of scalar free particle

The action is S[−→x ] =
∫

dt 1
2m
−̇→x

2
(t) for a path −→x (t). A classical

solution of the equations of motions intersects each time-slice exactly
once. For a region R determined by a time interval [t1, t2], denote the
intersections with the boundaries S1, S2 by −→x 1,

−→x 2. The con�guration
space on the boundary KS associated with S = S1 ∪ S2 which
determines a classical solution uniquely is the space of pairs (−→x 1,

−→x 2),
i.e. R3 × R3.
According to (Q1) we should set HS = C(KS) = C(R3 × R3). For the
disconnected components we get that HS1 and HS2 can be identi�ed
with C(R3). An element Ψ(−→x 1,

−→x 2) of HS is generally a linear
combination of products ψt1(−→x 1)ηt2(−→x 2).
(Q2) tells us that ρ(ψ ⊗ η) is given by∫

R3×R3

d−→x 1d
−→x 2 ψ(−→x 1)η(−→x 2)

∫
−→x (t1)=

−→x 1−→x (t2)=
−→x 2

D−→x e
i
~S[
−→x ].
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NRQM of scalar particle

Note that we can easily generalize the above amplitude to include a
potential in the action. Also, the extension to several particles is rather
obvious. For example, for two distinguishable particles, KS would be
the space of quadruples (−→x 1,

−→y 1,
−→x 2,
−→y 2), while KS1 would be given

by pairs (−→x 1,
−→y 1) etc. HS1 would be given by C(KS1) = C(R3 × R3),

i.e. �xed-time wave functions ψ(−→x ,−→y ) of two particles. The amplitude
is also generalized in the obvious way with the path integral now over
one path for each particle.
For identical (and bosonic) particles we have to take for HS1 the
subspace of symmetric functions in (−→x ,−→y ). A di�erent way to look at
this is to replace the space KS1 of ordered pairs by the space of
unordered pairs. Of course this is not something coming out of the
quantization prescription sketched above, but compatible with it.
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Extending NRQM of particles to GBF

Extending NRQM of particles to GBF

Consider a 4-ball shaped region B in space-time with boundary S. As
with the spatial slices, a classical particle trajectory intersects S exactly
twice. Thus, the con�guration space is essentially KS = S × S.
However, the entry time of the particle into B is necessarily earlier than
the exit time. Thus KS is really the subspace of S × S where one point
(say the �rst one) has a smaller time coordinate.
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Extending NRQM of particles to GBF

By (Q1) then HS is the space of functions ψ(zin, zout) on S×S with this
restriction. Here z denotes a parameterization of the hypersurface S.
By (Q2) then we have a function ρB that associates amplitudes with
such a generalized wave function ψ. The physical interpretation is that
of the amplitude of a particle being sent into the region B at zin (x′, t′)
and being observed emerging from B at time and place zout(x”, t”).
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Extending NRQM of particles to GBF

A problem!

Choose a time interval [t1, t2] containing B and the region of space-time
R de�ned by it with boundaries S1 at t1 and S2 at t2. Since R = A ∪B
the composition rule requires that ρR equals the composition of ρA and
ρB. Consider a one-particle state on S1 ∪ S2. Then ρR contains an
integral over paths from S1 to S2. Such a path may cross the inner
region B an arbitrary number of times. However, we have taken the
state space HS associated with the boundary S the one for one particle.
This only accounts for the paths in the integral that cross B exactly
once and the composition rule seems to be violated.
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Extending NRQM of particles to GBF

The path integral in the expression for ρB only constrains paths at their
starting point and end point. There is no a priori restriction for them
to lie entirely inside B. However, we only want to allow to integrate
inside B. Thus, how do we deal with paths that would leave B in
between? The answer is rather obvious now. This corresponds to states
with several particles on B. We need to let HS be a direct sum of state
spaces for any number of particles, i.e. HS = H0

S ⊕H1
S ⊕H2

S ⊕ · · · .
Now one may restrict the path integral to paths inside B. The
occurrence of all paths in a composition (such as with A) is ensured by
the summation over all numbers of particles on S. This way we do
obtain a consistent formalism, as guaranteed by the composition rule.
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Extending NRQM of particles to GBF

In the con�guration spaces for the multi-particle states, one has to keep
track which classical endpoint is connected to which other one by paths
in the integral. If we remove this restriction we introduce pair creation
and annihilation of particles.
Physical reason to keep those paths

An observer on S, sees a particle coming into B at a and c and a
particle emerging at b and d. If the particles are identical s/he has
no way to say if it was the same particle that crossed S twice or
two di�erent particles.
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