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Overview

So far in this seminar all talks have been essentially limited to the
treatment of purely bosonic theories. Today we shall consider
fermionic theories. We restrict ourselves to the simplest case of
free field theory.
In contrast to the bosonic case we can not directly use the
powerful holomorphic quantization approach since there is no
comparable notion of coherent state. Instead we shall use a Fock
space approach. It turns out that bosonic and fermionic theories
can then be treated in a unified way. Moreover, in the bosonic
case, both approaches are equivalent.
As in the bosonic case the basic ingredients in the fermionic case
ca be motivated from geometric quantization.
As with holomorphic quantization this leads to a rigorous and
functorial quantization scheme.
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Surprising results
Carrying out the program outlined on the previous slide leads to a
number of striking and unexpected results about fermionic quantum
field theory that do not hold in the bosonic case:

The gluing anomaly can be renormalized.
This means that no integrability condition needs to be imposed for
the main gluing axiom to hold.

Hilbert spaces are generalized to Krein spaces.
This arises both from consistency conditions and from standard
examples. It turns out to be compatible with the probability
interpretation in the presence of superselection rules.

A notion of time emerges without necessity for a metric.
This is true both in the classical and in the quantum theory.
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Semiclassical theory

Today, we shall limit ourselves to semiclassical theory. Next time we
shall consider the quantum theory.
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Mini-review: Bosonic field theory (I)

Formulate field theory in terms of first order Lagrangian density
Λ(ϕ, ∂ϕ, x). Recall the symplectic form,

(ωΣ)φ(X,Y) = −
1
2

∫
Σ

(
(XbYa

− YbXa) ∂µy
δ2Λ

δϕbδ ∂µϕa
(φ)

+(Ya∂νXb
− Xa∂νYb) ∂µy

δ2Λ

δ ∂νϕbδ ∂µϕa
(φ)

)
.

In the case of linear field theory this is a bilinear form on the space LΣ

of germs of solutions on the hypersurface Σ. We suppose that ωΣ is
non-degenerate.

The symplectic form arises from the integral of a (d − 1)-form on a
hypersurface. Its sign thus depends on orientation: ωΣ = −ωΣ .
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Mini-review: Bosonic field theory (II)
The key additional ingredient for the geometric quantization on a
hypersurface is the complex structure JΣ : LΣ → LΣ. Recall that this has
to satisfy J2

Σ
= −1 and ωΣ(JΣ·, JΣ·) = ωΣ(·, ·).

The complex structure encodes a kind of global orientation. Its sign
thus depends on orientation: JΣ = −JΣ .

Let M be a region and LM the space of solutions in M. Then we have a
natural map LM → L∂M by “forgetting” the solution in the interior of M.
Recall the following key property for encoding the classical dynamics.

LM induces a Lagrangian subspace of L∂M:

ω∂M(φ,φ′) = 0 for all φ,φ′ ∈ LM.
If φ < LM then there is φ′ ∈ LM such that ω∂M(φ,φ′) , 0.
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Fermionic field theory (I)

Starting with a Lagrangian density Λ we obtain a symplectic form ω̃Σ

associated to any hypersurface Σ as in the bosonic case.

A fermionic field is generally a section of a complex vector bundle
(associated with the spin bundle). The associated complex structure
can be used to produce a symmetric bilinear form gΣ from ω̃Σ. This
(and not ω̃Σ) is the “correct” object to encode fermionic field theory:

gΣ(X,Y) = 2ω̃Σ(X, iY)

(gΣ can be also be derived directly by already taking into account the
“anti-commuting” nature of the fermionic field at the classical level.)

The symmetric form gΣ arises from the integral of a (d − 1)-form on a
hypersurface. Its sign thus depends on orientation: gΣ = −gΣ .
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Fermionic field theory (II)
As in the bosonic case the additional ingredient for the geometric
quantization on a hypersurface is the complex structure JΣ : LΣ → LΣ.
This has to satisfy J2

Σ
= −1 and gΣ(JΣ·, JΣ·) = gΣ(·, ·).

As in the bosonic case, the complex structure encodes a kind of global
orientation. Its sign thus depends on orientation: JΣ = −JΣ .

Let M be a region and LM the space of solutions in M. Then we have a
natural map LM → L∂M by “forgetting” the solution in the interior of
M. The following key property encodes the classical dynamics.

LM induces a hypermaximal neutral subspace of L∂M:

g∂M(φ,φ′) = 0 for all φ,φ′ ∈ LM.
If φ < LM then there is φ′ ∈ LM such that g∂M(φ,φ′) , 0.

There is a compatibility condition between J∂M and LM.
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Comparison of structures per hypersurface

In the bosonic and fermionic case a complex inner product is induced:

gΣ(φ,φ′) = 2ωΣ(φ, JΣφ
′) ωΣ(φ,φ′) =

1
2

gΣ(JΣφ,φ
′)

{φ,φ′}Σ := gΣ(φ,φ′) + 2iωΣ(φ,φ′)

bosonic theory fermionic theory
basic structures ωΣ, JΣ gΣ, JΣ

derived structures gΣ, {·, ·}Σ ωΣ, {·, ·}Σ
orientation change JΣ = −JΣ,

ωΣ = −ωΣ, gΣ = gΣ,
{·, ·}Σ = {·, ·}Σ

JΣ = −JΣ,
ωΣ = ωΣ, gΣ = −gΣ,
{·, ·}Σ = −{·, ·}Σ

The inner products gΣ and {·, ·}Σ cannot be positive definite for all
hypersurfaces Σ in the fermionic case.

Robert Oeckl (CCM-UNAM) Free fermions – semiclassical CCM 20130606 10 / 22



Comparison of structures per hypersurface

In the bosonic and fermionic case a complex inner product is induced:

gΣ(φ,φ′) = 2ωΣ(φ, JΣφ
′) ωΣ(φ,φ′) =

1
2

gΣ(JΣφ,φ
′)

{φ,φ′}Σ := gΣ(φ,φ′) + 2iωΣ(φ,φ′)

bosonic theory fermionic theory
basic structures ωΣ, JΣ gΣ, JΣ

derived structures gΣ, {·, ·}Σ ωΣ, {·, ·}Σ
orientation change JΣ = −JΣ,

ωΣ = −ωΣ, gΣ = gΣ,
{·, ·}Σ = {·, ·}Σ

JΣ = −JΣ,
ωΣ = ωΣ, gΣ = −gΣ,
{·, ·}Σ = −{·, ·}Σ

The inner products gΣ and {·, ·}Σ cannot be positive definite for all
hypersurfaces Σ in the fermionic case.

Robert Oeckl (CCM-UNAM) Free fermions – semiclassical CCM 20130606 10 / 22



The appearance of Krein spaces
The spaces LΣ are not in general Hilbert spaces. Instead, they are Krein
spaces, a special version of indefinite inner product spaces that
decompose as

LΣ = L+
Σ ⊕ L−Σ.

Here, L+
Σ

is positive definite and L−
Σ

is negative definite. (This
decomposition also provides for a topology on LΣ.)

Given a region M, there is a unique real linear map uM : L∂M → L∂M
such that uM is (a) involutive, (b) is an anti-isometry, (c) interchanges
L+
∂M and L−

∂M and (d) is the identity on LM. This map uM plays the role
of a complex conjugation, as in the bosonic case (compare talk
Holomorphic quantization).

The compatibility condition for a complex structure J∂M is that it has to
anti-commute with uM. Given such a complex structure uM equals
minus the identity on J∂MLM, which is a real complement of LM in L∂M.
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An algebraic notion of time
As in the bosonic case, the map uM also plays the role of a generalized
evolution map. Let ∂M = Σ1 ∪ Σ2. The classical dynamics of the
theory in M can be described as an evolution between the
hypersurfaces Σ1 and Σ2 precisely if uM restricted to
LΣ1 ⊆ L∂M = LΣ1 ⊕ LΣ2 has image LΣ2 ⊆ L∂M. In this case

uM(φ1 + φ2) = t−1(φ2) + t(φ1) where φ1 ∈ LΣ1 , φ2 ∈ LΣ2

with t : LΣ1 → LΣ2 the classical evolution map. We can talk more
generally about a evolution even if a decomposition L∂M = L1 ⊕ L2 is
not induced geometrically, as long as uM interchanges L1 and L2.

In contrast to the bosonic case, there exists a preferred decomposition
with this property in the fermionic case. This is LΣ = L+

Σ
⊕ L−

Σ
. uM thus

gives rise to an evolution map ũM : L+
Σ
→ L−

Σ
. We shall see in the

example of the Dirac field that this algebraic notion of time coincides
there with the usual geometric notion of time.
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Encoding fermionic semiclassical linear field theory

A fermionic semiclassical linear field theory is encoded as:
For each hypersurface Σ there is a real vector space LΣ (of classical
solutions near Σ). LΣ carries a non-degenerate symmetric bilinear
form gΣ. Moreover, LΣ carries a compatible complex structure JΣ.
LΣ is a real Krein space with gΣ and a complex Krein space with
{·, ·}Σ.
For each region M there is a real vector space LM (of classical
solutions in M) and a real linear map rM : LM → L∂M.
The subspace rM(LM) ⊆ L∂M is a real hypermaximal neutral
subspace with respect to g∂M. Moreover, the induced map uM
anti-commutes with J∂M.
These structures are compatible with orientation change,
decomposition of hypersurfaces and gluing of regions.
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Example: The Dirac field

The Dirac field in Minkowski spacetime is a 4-dimensional complex
vector field X. Its free Lagrangian is,

L(X) = −=
(
X†γ0γµ∂µX

)
−mX†γ0X.

Here, γµ are the usual γ-matrices of high energy physics.
The Lagrangian leads to the symplectic structure,

ω̃Σ(X,Y) =

∫
Σ

=

(
X†γ0γµY

)
nµd3x.

This in turn leads to the symmetric bilinear form,

gΣ(X,Y) = 2ω̃Σ(X, iY) = 2
∫

Σ

<

(
X†γ0γµY

)
nµd3x.
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Decomposing the inner product
Rewrite this as

gΣ(X,Y) = 2
∫

Σ

<

(
X†PY

)
d3x,

with P(x) = γ0γµnµ(x) an operator valued function. Since P(x) is
self-adjoint we can decompose it as,

P(x) = P+(x) + P−(x)

where P+(x) has only non-negative and P−(x) only non-positive
eigenvalues. Restricting to eigenspaces of P+(x) or P−(x) at each point
x ∈ Σ leads to subspaces L+

Σ
and L−

Σ
of the space LΣ of fields on Σ.

Moreover, gΣ is then positive definite on L+
Σ

and negative definite on
L−

Σ
. If P(x) is non-degenerate (almost) for all x ∈ Σ, then LΣ is a Krein

space,
LΣ = L+

Σ ⊕ L−Σ.
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Spacelike hypersurfaces
Consider an equal time hypersurface Σ in Minkowski space. Its future
pointing normal vector is,

n(x) = (1, 0, 0, 0). (1)

This yields P(x) = γ0γ0 = 1. Thus, P+(x) = P(x) and L+
Σ

= LΣ. That is, gΣ

is purely positive definite and LΣ is a real Hilbert space.

The normal vector to an arbitrary future oriented spacelike
hypersurface Σ can be locally brought into the form (1) by a Lorentz
transformation. Since by continuity arguments the rank of P(x) cannot
change, it must be positive as for (1). That is, P+(x) = P(x) and LΣ is a
real Hilbert space.

Restricting to spacelike hypersurfaces with future orientation yields
only Hilbert spaces. This explains why Krein spaces do not appear in
the standard approach.

The opposite orientation yields negative definite spaces.
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Timelike hypersurfaces
Consider a timelike hyperplane Σ in Minkowski space characterized
by the normal vector,

n(x) = (0, 0, 0, 1). (2)

This yields (using the standard or the chiral representation) the operator

P(x) = −γ0γ3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .
Thus P+(x) and P−(x) have both rank 2 and eigenvalues 1 and −1
respectively. LΣ decomposes non-trivially with the positive and
negative definite parts consisting of spinors of rank 2 at each point.
Since Lorentz transformations cannot change the rank, an argument
analogous to that of the spacelike case shows that this type of
decomposition applies to any timelike hypersurface.
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Algebraic time versus geometric time
spacelike hypersurfaces
t

x

ũ

ũ

The algebraic arrow of time
coincides with the geometric
one.

timelike hypersurfaces
t

x

ũ

The algebraic arrow of time
does not have a definite
direction in geometric terms.
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Plane waves

Expand solutions of the Dirac equation in Minkowski space in terms of
plane waves:

X(t, x) =

∫
d3k

(2π)32E

∑
s=1,2

(
Xs

a(k)us(k)e−i(Et−kx) + Xs
b(k)vs(k)ei(Et−kx)

)
.

Here, us and vs with s ∈ {1, 2} are the usual spinors in momentum space.
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Real inner product on plane waves
Consider an equal-time hypersurface located at time t. We take the
space Lt of solutions near this hypersurface to be the space of global
solutions in terms of plane waves. The positive definite real inner
product on Lt is,

gt(X,Y) = 2
∫

d3k
(2π)32E

∑
s=1,2

<

(
Xs

a(k)Ys
a(k) + Xs

b(k)Ys
b(k)

)
.

Consider now a constant x3 hypersurface. (Set z := x3.) Again we set Lz
to be the global solution space, excluding thus evanescent waves. The
indefinite real inner product on Lz is,

gz(X,Y) = 2
∫

d3k
(2π)32E

k3

|k3|

∑
s=1,2

<

(
Xs

a(k)Ys
a(k) + Xs

b(k)Ys
b(k)

)
.

The subspaces L+
z and L−z are distinguished by the direction of the

momentum component k3 that is perpendicular to the hypersurface.
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Complex structure

The complex structure encodes the distinction between “positive
energy” and “negative energy” solutions. More generally we can think
of it as distinguishing between propagation in the two opposed
normal directions to the hypersurface. This leads to,

(JtX)s
a(k) = iXs

a(k), (JtX)s
b(k) = iXs

b(k)

(JzX)s
a(k) = i

k3

|k3|
Xs

a(k), (JzX)s
b(k) = i

k3

|k3|
Xs

b(k).

Remarkably the induced symplectic form is the same for both types of
hypersurfaces,

ω(X,Y) =

∫
d3k

(2π)32E

∑
s=1,2

=

(
Xs

a(k)Ys
a(k) + Xs

b(k)Ys
b(k)

)
.
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