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Overview

So far in this seminar all talks have been essentially limited to the
treatment of purely bosonic theories. Today (as last week) we
shall consider fermionic theories. We restrict ourselves to the
simplest case of free field theory.
In contrast to the bosonic case we can not directly use the
powerful holomorphic quantization approach since there is no
comparable notion of coherent state. Instead we shall use a Fock
space approach. It turns out that bosonic and fermionic theories
can then be treated in a unified way. Moreover, in the bosonic
case, both approaches are equivalent.
As in the bosonic case the basic ingredients in the fermionic case
ca be motivated from geometric quantization.
As with holomorphic quantization this leads to a rigorous and
functorial quantization scheme.
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Surprising results
Carrying out the program outlined on the previous slide leads to a
number of striking and unexpected results about fermionic quantum
field theory that do not hold in the bosonic case:

The gluing anomaly can be renormalized.
This means that no integrability condition needs to be imposed for
the main gluing axiom to hold.

Hilbert spaces are generalized to Krein spaces.
This arises both from consistency conditions and from standard
examples. It turns out to be compatible with the probability
interpretation in the presence of superselection rules.

A notion of time emerges without necessity for a metric.
This is true both in the classical and in the quantum theory.
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Today: Quantum theory

Last week we dealt with the semiclassical theory. Today we consider
the quantum theory.
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Bosonic semiclassical linear field theory

Spacetime is modeled by a collection of hypersurfaces and regions.

L∂M

LMM

LΣ, ωΣ, JΣ

Σ

∂M

To these geometric structures
associate the classical data,

per hypersurface Σ :
a symplectic vector space
(LΣ, ωΣ),
per region M :
a Lagrangian subspace
LM ⊆ L∂M.

In addition,
per hypersurface Σ :
a complex structure JΣ .
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Fermionic semiclassical linear field theory

Spacetime is modeled by a collection of hypersurfaces and regions.

L∂M

LMM

LΣ, gΣ, JΣ

Σ

∂M

To these geometric structures
associate the classical data,

per hypersurface Σ :
a real Krein space (LΣ, gΣ),
per region M :
a hypermaximal neutral
subspace LM ⊆ L∂M.

In addition,
per hypersurface Σ :
a complex structure JΣ .
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Krein space

Recall that a Krein space V is a complete indefinite inner product
space with an orthogonal decomposition

V = V+
⊕ V−.

The positive part V+ is positive definite and the negative part V− is
negative definite. Denote by V− the space V− with minus its inner
product. Then, V+ and V− are both Hilbert spaces. For v ∈ V define
the signature,

[v] :=

0 if v ∈ V+

1 if v ∈ V−
.

All Krein spaces considered are separable. An ON-basis of V is the
union of an ON-basis of V+ with an ON-basis of V−.

Robert Oeckl (CCM-UNAM) Free fermions – quantum CCM 20130612 8 / 24



Structures of quantum field theory in the GBF
Spacetime is modeled by a collection of hypersurfaces and regions.

H∂M

ρMM

HΣ

Σ

∂M

To these geometric structures
associate the quantum data,

per hypersurface Σ :
an f-graded Krein space
HΣ,
per region M :
a linear f-graded
amplitude map
ρM : H∂M → C.

Compared to the purely bosonic case we have a Z2-grading called
f-grading on all structures. Moreover, instead of Hilbert spaces we
have Krein spaces.

Robert Oeckl (CCM-UNAM) Free fermions – quantum CCM 20130612 9 / 24



Core axioms (I)
The generalization of the core axioms to include the fermionic case is
now relatively straightforward.

T1b There is an antilinear f-graded involutive isometry ιΣ : HΣ →HΣ.
T2 (Decomposition rule) Let Σ = Σ1 ∪Σ2 be a disjoint union. There is

an isometric isomorphism τΣ1,Σ2;Σ : HΣ1 ⊗HΣ2 →HΣ. Moreover,
τ−1

Σ2,Σ1;Σ ◦ τΣ1,Σ2;Σ : HΣ1 ⊗HΣ2 →HΣ2 ⊗HΣ1 is the f-graded
transposition

ψ1 ⊗ ψ2 7→ (−1)|ψ1|+|ψ2|ψ2 ⊗ ψ1.

T3x The inner product for a hypersurface Σ is determined by the
amplitude for the slice region Σ̂ with ∂Σ̂ = Σ ∪ Σ′:

〈ψ,ψ′〉Σ = ρΣ̂(ιΣ(ψ) ⊗ ψ′).
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Core axioms (II)

T5 (Gluing rule) If M1 and M2 are adjacent regions, then:

M1

M2

Σ1
Σ2

ψ1 ψ2

M1

M2

Σ Σ

Σ1
Σ2

ξ∗iξi
ψ1 ψ2

ρM1∪M2(ψ1 ⊗ ψ2) · cM1,M2 =
∑
i∈N

(−1)[ξi]ρM1(ψ1 ⊗ ξi)ρM2(ιΣ(ξi) ⊗ ψ2)

Here, ψ1 ∈ HΣ1 , ψ2 ∈ HΣ2 and {ξi}i∈N is an ON-basis ofHΣ.
cM1,M2 is the gluing anomaly factor.
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Fock space (I)
We distinguish bosonic and fermionic case via

κ := 1 in the bosonic case, κ := −1 in the fermionic case.

Given a Krein space L, the Fock space F (L) over L is the completion of
anN0-graded Krein space,

F (L) =

∞̂⊕
n=0

Fn(L),

Fn(L) := {ψ : L × · · · × L→ C n-lin. cont. : ψ ◦ σ = κ|σ|ψ,∀σ ∈ Sn
}.

There is a natural Z2-grading. In the bosonic case it is trivial, i.e.,
|ψ| = 0 for all ψ ∈ F (L). In the fermionic case it is,

|ψ| :=

0 ifψ ∈ Fn(L),n even
1 ifψ ∈ Fn(L),n odd.
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Fock space (II)

Given ξ1, . . . , ξn ∈ L define a generating state in Fn(L) as

ψ[ξ1, . . . , ξn](η1, . . . , ηn) :=
1
n!

∑
σ∈Sn

κ|σ|
n∏

i=1

{ξi, ησ(i)}.

The inner product in Fock space is determined by the inner product of
generating states,

〈ψ[η1, . . . , ηn], ψ[ξ1, . . . , ξn]〉 := 2n
∑
σ∈Sn

κ|σ|
n∏

i=1

{ξi, ησ(i)}.

This makes F (L) into a Krein space as well.
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Quantization: State spaces
For each hypersurface Σ we define the corresponding state spaceHΣ

to be the Fock space F (LΣ).

For all n ∈N0 define ιΣ,n : Fn(LΣ)→ Fn(LΣ) by,

(ιΣ,n(ψ))(ξ1, . . . , ξn) := ψ(ξn, . . . , ξ1).

Taking these maps together for all n ∈N0 defines ιΣ : F (LΣ)→ F (LΣ).

A decomposition Σ = Σ1 ∪ Σ2 induces a direct sum of Krein spaces
LΣ = LΣ1 ⊕ LΣ2 . This induces an isomorphism of Fock spaces

τΣ1,Σ2;Σ : F (LΣ1) ⊗ F (LΣ2)→ F (LΣ).

This also yields the f-graded transposition,

F (LΣ1)⊗F (LΣ2)→ F (LΣ2)⊗F (LΣ1) : ψ1 ⊗ψ2 7→ (−1)|ψ1|+|ψ2|ψ2 ⊗ψ1.
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Quantization: Amplitudes

Given a region M we recall the real orthogonal decomposition
L∂M = LM ⊕ J∂MLM giving rise to the map uM : L∂M → L∂M,

uM(ξ + J∂Mη) = ξ − J∂Mη, ∀ξ, η ∈ LM.

The amplitude for a generating state is now defined as,

ρM(ψ[ξ1, . . . , ξ2n]) :=
1
n!

∑
σ∈S2n

κ|σ|
n∏

j=1

{ξσ(j),uM(ξσ(2n+1−j))}∂M.

The amplitude vanishes for states with odd particle number.
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Main result

This quantization scheme yields the data of a quantum theory in
terms of the GBF.

Theorem
With an additional integrability assumption, the GBF core axioms as
well as the vacuum axioms are satisfied.

The quantization prescription may be viewed (in various ways) as a
functor from semiclassical field theories to general boundary quantum
field theories.

The integrability assumptions amounts to requiring the finiteness of
the gluing anomaly factor. Without it, gluing axiom T5b may be
violated.
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Comparison to holomorphic quantization

Theorem
In the bosonic case this quantization scheme is equivalent to
holomorphic quantization.

The underlying isomorphism T : F (LΣ)→ H2(L̂Σ, νΣ) of state spaces is
given by,

(T(ψ))(ξ) := ψ(ξ, . . . , ξ).

For a coherent state we have,

Kξ = T

 ∞∑
n=0

1
n!2nψ[ξ, . . . , ξ]

 .
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Complex conjugation

Given a region M we recall the map uM : L∂M → L∂M. It has a quantum
counter part UM : H∂M →H∂M given by

(UMψ)(ξ1, . . . , ξn) := ψ(uMξn, . . .uMξ1).

The maps uM and UM have remarkable properties. They are involutive
(i.e, square to the identity), conjugate linear and f-graded isometric. In
fact, they act like a complex conjugation in the classical respectively
quantum setting. In particular,

ρM(UM(ψ)) = ρM(ψ).
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Algebraic time
Recall that uM also plays the role of a generalized evolution map in
the classical theory. Moreover, remember from last week that its gives
rise in the fermionic case to an algebraic notion of time. Given the
canonical decomposition L∂M = L+

∂M ⊕ L−
∂M, we obtain an “evolution”

from “initial data” L+
∂M to “final data” L−

∂M via uM restricted to

ũM : L+
∂M → L−∂M.

We saw that in the Dirac field theory, this coincides with the geometric
notion of time for the time-interval geometry.

In the quantum theory we have a decomposition

HΣ = F (L+
∂M ⊕ L−∂M) = F (L+

∂M) ⊗ F (L−∂M).

This induces from UM an f-graded isometric isomorphism,
representing the quantum version of the algebraic time evolution,

ŨM : F (L+
∂M)→ F (L−∂M).
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Probabilities and superselection (I)

We recall the probability rule for the bosonic GBF, where all state
spaces are Hilbert spaces. A measurement is determined by two
subspaces ofH∂M,
S, representing the preparation and
A ⊆ S, representing the question asked .

The probability for an affirmative answer is then,

P(A|S) =

∑
i∈J |ρM(ξi)|2∑
i∈I |ρM(ξi)|2

.

Here {ξ}i∈I is an ON-basis of S and {ξ}i∈J is an ON-basis ofA, with J ⊆ I.
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Probabilities and superselection (II)
The very same formula works for Krein spaces. But there are some
differences.

The notion of ON-basis is more restrictive in the Krein space case. It
implies that the subspaces S andAmust decompose as direct sums
S = S+

⊕ S
− andA = A+

⊕A
−, where S±,A± ⊆ H±

∂M. This amounts
to a signature superselection rule.

In the fermionic case this superselection rule is not invariant under
orientation change. But the physics should be. But for fermionic
theories there is also the fermionic superselection rule [Wick,
Wightman, Wigner 1952] that forbids the mixing of states with even and
odd fermion number. This amounts to requiring decompositions
S = S0 ⊕ S1 andA = A0 ⊕A1 in terms of the f-grading ofH∂M.

In combination with the fermionic superselection rule, the signature
superselection rule becomes orientation invariant.
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Renormalizing the gluing anomaly (I)

Recall the main gluing identity of the gluing axiom T5b:

ρM1(ψ) · c =
∑
i∈N

(−1)[ξi]ρM(ψ ⊗ ξi ⊗ ιΣ(ξi))

If all state spaces are finite-dimensional the sum on the right hand
side is finite. The axiom is then satisfied without any additional
integrability condition with finite gluing anomaly factor c (Theorem).
This can only happen in the fermionic case. There, if LΣ is
finite-dimensional so is the Fock space F (LΣ).

Consider now the set {LΣ,α}α∈A of all finite-dimensional subspaces of
LΣ. This is an injective system with the inclusion. Moreover, it induces
an projective system {F (LΣ,α)}α∈A of the corresponding Fock spaces.
Define Pα as the orthogonal projector F (LΣ)→ F (LΣ,α).
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Renormalizing the gluing anomaly (II)

Consider a “reduced version” of the gluing identity,

ρM1(ψ) · cα =
∑
i∈N

(−1)[ξi]ρM(ψ ⊗ Pαξi ⊗ ιΣ(Pαξi)). (1)

This of course will not hold for arbitrary states ψ if we fix α.

But, (Theorem) there exists a set {cα}α∈A such that for any state ψ there
is β ∈ A such that for all γ ≥ β the identity (1) holds. The limit lim

−−→α
cα

does not exist. But the following limit does,

lim
−−→
α

ρM1(ψ) · cα −
∑
i∈N

(−1)[ξi]ρM(ψ ⊗ Pαξi ⊗ ιΣ(Pαξi))

 = 0.

This is the renormalized gluing identity. It is satisfied in the fermionic
theory without any integrability condition.
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