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Context

Field theories – for a large class of systems –
Covariant and local (GBFT)
(spacetime M differentiable manifold, NOT necessarily metric)

Effective Field Theory (EFT) at a given scale
{EFTSc}Scales in M −→ EFTM

Construct EFTSc as the limit of a correction procedure

EFTSc = lim
Sc′→M

CorrFTSc (Sc’)

where CorrFT(βSc (Sc’)) = RG(PrimeFT(βSc’))

Key concepts:
Scale, coarse graining, EFTSc , observables, spacetime “locality”
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Scale
A history φ is a local section of Y π−→ M .

In a lagrangian formulation, L = L(x, φ,Dφ), we need
Partial Observables that talk about J 1Y 3 (x, φ,Dφ).

Measuring scale ←→ discrete collection of measuring devises
Definition A scale is a faithful structure of local subalgebras:
to every chart U ∈ C corresponds a subalgebra

PO∆(U ) ∼ C∞(U ×F ,R or C)

such that {Evalφα : PO∆(Uα)→ R or C}Uα∈C determines:
(i) the bundle Y π−→ MC up to equivalence
(ii) each φα ∈ Γ(Y ) up to “microscopical details” (homotopy
relative to Eval)
–
A notion of kth order agreement of sections leads to J kY∆
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Ex.1) 1st order scalar field theory with F = Rk

Scale defined with the aide of a triangulation, U ⊂ M → (U ,∆)

x j1φ7−→ j1φ(x) = (x, φ,Dφ) decimated to

ν
φ̃7−→ φ̃(ν) = (x(Cν), φν ∈ F , {x(Cτ), φτ ∈ F}τ⊂∂ν) or

ν
φ̃7−→ φ̃(ν) = (ν, φν ∈ F , {φτ ∈ F}τ⊂∂ν)
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Other classes of examples

Ex.2) Sigma models; scalar fields on a G-principal bundle

Ex.3) Gauge fields on a G-principal bundle
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Coarse graining

Definition ∆′ ≥ ∆ means that there is a coarse graining map
cg consisting of an assignment of a a homomorphism cg(U ) to
every open set U ⊂ M

PO∆(U ) cg(U)−→ PO∆′(U )
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Modelling physical observables
Strategy:

Operational notion of measuring scale −→ Algebraic def.
PO∆(U )

{PO∆(Uα)}Uα∈C −→ Geometrical framework for PrimeFT∆

Physical observables at scale ∆
I from the integration of observable currents
I from integration of (equivalence classes of) bulk densities
−→ Algebraic structure for observable currents at scale ∆

Physical observables in the continuum are defined as
physical observables at some scale ∆
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Geometric framework for classical field theories at scale ∆

Prologue
I The first order effective field bundle, J 1Y∆,

is a finite dimensional manifold
(with the str. of a fiber bundle over a simplicial complex)

I Local objects are defined on J 1Y∆

I Histories are local sections, among them we have
“solutions”

I Geometric structure emerges as relations among local
objects that hold when evaluated on “solutions”
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Simplicial first order effective field bundle (scalar field)

Decimated local record of a history in 1st order format

ν
φ̃7−→ φ̃(ν) = (ν, φν ∈ F , {φτ ∈ F}τ⊂∂ν)

A variation δφ̃(ν) = ṽ(ν) = (vν ∈ TφνF , {vτ ∈ TφτF}τ⊂∂ν)

Notation: (M ,∆), ν ∈ U n
∆, τ ∈ (∂U )n−1

∆ , or τ ∈ U n−1
∆ ,

φ̃(ν) ∈ J 1Y∆, φ̃ ∈ HistsU , ṽ ∈ Tφ̃HistsU , or ṽ ∈ X(J 1Y∆|U )
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Variational principle, field eqs. and geometric structure

S(φ̃) =
∑
ν∈Un

∆

L(φ̃(ν))

⇒
dS(φ̃)[ṽ] =

∑
U−∂U

φ̃∗ iṽEL +
∑
∂U

φ̃∗ iṽΘL

where

ΘL(·, φ̃(τν)) = ∂L
∂φτ

(φ̃(ν))dφτ [1 form, n-1 cochain] on J 1Y∆,

EL(·, φ̃(ν)) = ∂L
∂φ

(φ̃(ν))dφν +
∑

τ∈(∂ν)n−1

∂L
∂φτ

(φ̃(ν))dφτ

Hamilton’s principle: (i) field equations, (ii) geometric str.
Field eqs: (i.a) internal to each ν,
(i.b) gluing (momentum matching) at each τ = ν ∩ ν ′

† Sigma models and gauge theory also available
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The (pre)multisymplectic form

ΩL(ṽ(ν), w̃(ν), φ̃(τν)) .= −d(ΘL|φ̃(τν))(ṽ(ν), w̃(ν))

assigns (pre)symplectic structures to spaces of data over
codimension 1 domains Σ 7→ ΩΣ

ΩΣ,φ̃(ṽ, w̃) =
∑
Σ
φ̃∗ iw̃iṽΩL

E.g. scalar field Σ spacelike ΩΣ,φ̃(ṽ, w̃) = 2k
h

∑
Σ dφν ∧ dφτ (ṽ, w̃)

Given any φ̃ ∈ SolsU , ṽ, w̃ ∈ Tφ̃SolsU and U ′ ⊂ U
the multisymplectic formula holds:∑

∂U ′
φ̃∗ iw̃iṽΩL = 0

Proof.
0 = −ddS = −d(

∑
∂U φ̃∗ ΘL) =

∑
∂U φ̃∗ ΩL
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The space of first variations

Consider φ̃ ∈ SolsU .
First variations of φ̃ are elements of

Tφ̃SolsU ⊂ Tφ̃HistsU ,

and they may be induced by vector fields on J 1Y∆.
I They are characterized by satisfying LṽEL = 0

(Recall dS(φ̃) =
∑

U−∂U φ̃∗ EL +
∑
∂U φ̃∗ ΘL)

I They define a lagrangian2 subspace of Ω∂U ′,φ̃ for all U ′ ⊂ U

2
qua qua qua, la la la, blu blu blu qua qua qua, la la la, blu blu blu
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Observable currents
F ∈ OCU iff it is an n-1 cochain on J 1Y∆ ·st· ∀ φ̃ ∈ SolsU

F(φ̃(τν)) .= F(τ, φτ , φν) = −F(φ̃(τν′)) = F(−τ, φτ , φν′),∑
∂U ′

φ̃∗ F =
∑

ν⊂∂U ′
F(φ̃(ν)) = 0 ∀ U ′ ⊂ U

Observables
QF ,Σ(φ̃) .=

∑
ν⊂Σ

F(φ̃(ν))

Notice that if Σ′ is homologous to Σ and φ̃ ∈ SolsU

QF ,Σ′(φ̃)−QF ,Σ(φ̃) = QF ,Σ′−Σ(φ̃) = QF ,∂U ′(φ̃) = 0

Notice that OCU is a vector space.

† Sigma models and gauge theory also available 14 / 26



Family of examples: “pointwise” measurement

Given a place in the region of interest, say ν ⊂ U
we can construct an observable current F that gives an estimate
for either the evaluation of the field at that place φν or
any of its derivatives (φν , φτ )

F = Fφnu or F = F(φν ,φτ ).

In a few slides we will see how this can be done.
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Family of examples: Noether currents ∗100th anniversary∗
The Lie group G acts on J 1Y∆ and on histories in 1st order format

(g̃φ)(ν) = (ν, gν(φν), {gτ (φτ )}τ⊂∂ν)

If L(gφ̃(ν)) = L(φ̃(ν)) ∀ ν, φ, g =⇒ S and SolsU are G inv.

Thus, ξ ∈ g induces a first variation ṽξ of any solution φ̃.
We associate to it a Noether current

Nξ = −iṽξ
ΘL

• Thm. (Noether)
Nξ ∈ OCU , dNξ = −iṽξ

ΩL , {Nξ,Nξ} = N[ξ,η]

Proof. Let φ̃ ∈ SolsU and U ′ ⊂ U , then

0 = dS |U ′(φ̃)[ṽξ] = −
∑
∂U ′

φ̃∗ Nξ , ...
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Can observable currents distinguish neighboring solutions?
Consider a curve of solutions γ(s) ∈ SolsU with

γ(0) = φ̃ ∈ SolsU , γ̇(0) = w̃ ∈ Tφ̃SolsU .

** Is OCU large enough to resolve Tφ̃SolsU ? **
QF ,Σ separates φ̃ from nearby solutions in γ if

d
ds |s=0QF ,Σ(γ(s)) =

∑
Σ
φ̃∗ dF [w̃] 6= 0

If the observable current has an associated hamiltonian vector field

dF = −iṽΩL

(let us call such an OC a hamiltonian OC, F ∈ HOCU )
the separability condition reads∑

Σ
φ̃∗ iw̃iṽΩL 6= 0.
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Separating neighboring solutions and
“pointwise measurement”

Separability measuring in the bulk
Assume ΩL is non degenerate.
Then for any φ̃ ∈ SolsU there is a hamiltonian OC F that can
be used to separate φ̃ from any neighboring solution.
Sketch of proof.
Given any non constant curve γ(s) ∈ SolsU as above,
ΩL non deg. ⇒ ∃ ṽ and τ ⊂ U ·st·

ΩL(ṽ, w̃ = γ̇(0), φ̃(τ)) 6= 0.

Construct F from ṽ (slides 22, 23). (dF = −iṽΩL)
–

** Such an F yields a “pointwise measurement” **
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Separating neighboring solutions and
“pointwise measurement”

Separability integrating in the boundary
Assume ΩL satisfies a non deg. condition.
Then for any φ̃ ∈ SolsU there is F ∈ HOCU that separates φ̃
from any neighboring solution measuring at Σ ⊂ ∂U .
Sketch of proof.
ΩL non deg.’ ⇒ ∃ ṽ and Σ′ ⊂ U with ∂Σ′ ⊂ ∂U ·st·

d
ds |s=0QF ,Σ′(γ(s)) = −

∑
Σ′
φ̃∗ iw̃iṽΩL 6= 0.

F may be measured at Σ ⊂ ∂U ·st· Σ′ − Σ = ∂U ′.
–

** F encodes a “pointwise measurement” for a bulk “point”
even when integrated at the boundary **
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Locally hamiltonian vector fields
We will investigate the space of hamiltonian observable currents.
Hamiltonian (or exact) vector fields

If − iṽΩL = dF

ṽ is said to be a hamiltonian vector field for F .
ṽ ∈ Ha(J 1Y∆|U ) ⊂ X(J 1Y∆|U ) and F ∈ HOCU ⊂ OCU .

Locally hamiltonian (or closed) vector fields
If −iṽΩL

.= σṽ with

dσṽ = 0 and
∑
∂U ′

φ̃∗ iw̃σṽ = 0

for all U ′ ⊂ U and (w̃, φ̃) ∈ TSolsU ,
ṽ is said to be a locally hamiltonian vector field.
ṽ ∈ LHa(J 1Y∆|U ) ⊂ X(J 1Y∆|U ).

20 / 26



Conditions for a vector field to be locally hamiltonian

dσṽ = 0 ⇐⇒ LṽΩL = 0∑
∂U ′

φ̃∗ iw̃σṽ = 0 ∀U ′, w̃ ⇐= LṽEL = 0∑
∂U ′

φ̃∗ iw̃σṽ = 0 ∀U ′, w̃ =⇒† LṽEL = 0

All evaluated at a φ̃ ∈ SolsU .

Notice that if LṽΩL = 0 holds at Σ,
the multisymplectic formula implies that it also holds at any
Σ′ = Σ + ∂U ′ if LṽEL = 0 holds inside U ′.

=⇒ The bulk condition is LṽEL = 0 (i.e. ṽ ∈ Tφ̃SolsU )

† If Tφ̃SolsU defines a lagrangian subspace of Ω∂U ′,φ̃ for all U ′ ⊂ U
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Observable currents and locally hamiltonian vector fields

I Some closed 1-forms may be integrated, revealing that they
are exact. This is the subject of the next slide.

LHa(J 1Y∆|U ) ⊃ Ha(J 1Y∆|U )

I If ΩL(·, ·; φ̃(τν)) is non degenerate ∀τν ∈ U

0 −→ OCU
Ω−1

L−→ Ha(J 1Y∆|U )

This contrasts with Multisymplectic Field Theory in the continuum,
where the n+1 form ΩL is not invertible.
The situation is closer to initial data formulations of field theory
where the symplectic form is invertible.
The difference arises from the fact that in the discrete setting there
is a predetermined set of codimension 1 faces on which ΩL may be
evaluated to induce a (collection of) 2 forms.
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Observable currents from LHVFs
ṽ ∈ LHa(J 1Y∆|U ) induces σṽ ,
integration on the fibers may lead to Fṽ,K ∈ OCU .
Integration requires the choice of
a system of integration constants K ;
an allowed choice of integration constants implies∑

∂U ′
φ̃∗ Fṽ,K = 0 ∀ φ̃ ∈ SolsU , U ′ ⊂ U

Adding a closed n-1 cochain C in U to a system of allowed
integration constants K yields a new system of allowed integration
constants K ′ = K + C .
Fṽ,K ∈ OCU and its physical meaning are determined by ṽ and K .

OCU is in correspondence with TSolsU ;
when ΩL is non deg. the corresp. is roughly 1 to 1
making OCs capable of separating neighboring solutions.
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Poisson brackets among observable currents

Given two observable currents Fṽ,K ,Gw̃,L ∈ OCU
their Poisson bracket is another observable current

{Fṽ,K ,Gw̃,L}(φ̃(τν)) = ΩL(w̃, ṽ, φ̃(τν))

whose hamiltonian vector field is [ṽ, w̃].

Recall ΩL = −dΘL and dS |Sols =
∑
∂U ΘL

Then {F , ·} is related to the variation of a solution φ̃ induced by
SU (φ̃)→ SU ,λ(φ̃) = S(φ̃) + λ

∑
∂U F φ̃.

Similar considerations for bulk obs. lead to Peierls’ bracket.
Peierls’ bracket defines an equivalence relation among bulk obs.
Using our bracket, the equivalence relation extends to bdary obs.
In fact, bdary obs. may be used to label equiv. classes of bulk obs.
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Summary and remarks
I Physical observables at scale ∆ induced by integrating over

hypersurfaces
QF ,Σ(φ̃) .=

∑
ν⊂Σ

F(φ̃(ν))

were studied within a multisymplectic framework for discrete
local field theories.
These physical obs. are capable of separating solutions/gauge.

I If the model at scale ∆ is corrected using a model for a finer
scale ∆′ the observables are inherited at the finer scale;
however, they have to be corrected as to retain their
“Σ-independence” property, QF ,Σ′(φ̃) = QF ,Σ(φ̃).

I Our observables are “equivalent” to bulk observables.
I There is a Poisson bracket for observable currents at scale ∆.
I Quantization of the multisymplectic framework for discrete

local field theories leads to spin foam models.
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Thank you for your attention!
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