Tercera tarea de Matematicas IV (17 de octubre de 2017)

En las siguientes paginas hay ejercicios resueltos y problemas del libro.
Revisar los problemas resueltos listados abajo, entenderlos y escribir las solu-
ciones con sus palabras.

Resolver los ejercicios listados abajo.

= Ejemplos 5.6.2 y 5.6.3

= Fjercicios 5.6: 1, 2, 3,4, 6

= Ejemplo 6.2.1

= Ejercicios 6.2: 1, 2, 3,6, 7, 8
= Ejemplo 6.3.2

= Ejercicios 6.3: 1, 2, 3, 7

= Ejemplo 6.4.2

= KEjercicio 6.4: 1

= Ejemplo 6.5.2

= Ejercicios 6.5: 1, 2, 3
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“This differential equation is exact since M, = N, = 1. The solution is ob-
viously xy = k, where k is an arbitrary constant. The trajectories form mnow.rnn
family of hyperbolas. The original family and the @BE\ of orthogonal trajec-
tories are indicated in Fig. 29. Note that xy = 0 is a member of the family of
trajectories.

EXAMPLE 5.6.2 An object of mass m is dropped with zero initial velocity.
The air resistance is assumed to be proportional to the square of the velocity.
At what velocity will the object drop, and what distance will it travel in time
t? The acceleration of the object is dv/d?, and m times this is to be put equal
to the force of gravity mg minus kv?, where k is a constant. Hence, if s is the
distance from the starting point, the differential equation is

d3s dv 2

m—=m-—=mg — ko

dt* dt
The initial conditions are at ¢ = 0, v'= 0, and s = 0. The differential equation
is separable and we can write

dv

a® — v?

= bdt
where a* = mg/k and b = k/m. Integrating, we have
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where ¢ is arbitrary. Whent = 0,7 = 0 and this implies that ¢ = 0. Therefore,
we have

122 ogp
a—v
Solving for » we have
mwhﬁ -1
v = QNES 1 = g tanh ab¢

meommwm.wmmdl — o0, v — a, which is usually called the terminal velocity.
_ |m
k

a

Finally,

= g tanh abt -

<
o
ala

—

s = — In cosh abt

o

using the fact that s = O when ¢ = 0.

EXAMPLE 5.6.3 Consider the following pursuit problem. An airplane  is
flying in a straight line with a constant speed of 200 miles per hour. A second

plane is initially flying directly toward the first on a line perpendicular to its -

path. The second plane continues to pursue the first in such a way that the
distance between the planes remains constant (5 miles) and the pursuing plane
is always headed toward the other; that is, the tangent to the path of the pursuer
passes through the other. Consider the problem in the xy plane (see Fig. 30).
Let the coordinates of the pursuing plane be (x,7) and the coordinates of the

oEn:uo?Q.,Eﬁoose.monmom‘&mEoEnBomuwomﬁmﬁoagﬁo H,ozoﬁ.bm
equations :

(s—x?+ y>=25
o =y
dx s—x
s =200t

We wish to find x and y as functions of ¢ subject to the initial conditions at
I=0;5s=0,x=0,y = 5. Differentiating the first equation, we have

Awlxvmmoolmlwv.remkuo
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4 . ) When ¢ = 0, y = 5, which gives us \..
y = 5 sech 40¢

0,5)
EXERCISES 5.6

1 A ball'is thrown straight up with initial velocity v,. Neglecting air resistance,

x, %) - determine how high the ball will rise.

2 A ball is thrown straight up with: initial velocity v,. Suppose air resistance is

e i _proportional to the speed (magnitude of velocity). How high will the ball rise?

- 3 At a point 4,000 miles from the center of the earth a rocket has expended all its
fuel and is moving radially outward with a velocity v,. Let the force on the rocket
due to the earth’s gravitational attraction be 103m/r?, where m is the mass of the
rocket, r is the distance to the center of the earth measured in miles, and time is

From the second equation we have measured in seconds: Find the minimum v, such that the rocket will not return to

; * the earth, sometimes called the escape velocity. If v, is less than the 80%0 velocity,

ﬁ ) dy —y? dx _ Q —x)? =25 dx find the maximum altitude attained by the rocket.

Y M = = xdt S — X At -4— Find-the-family-of-orthogonal trajectories-for each-of-the-given families:

FIGURE 30 50 - x
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Eliminating y, we have . : @ i T T T W x? F G
(s — x)? = 8(200t — %) : 4 9
, dt © x*—xy+y*=¢* @ x*—2ex+3y*=1

‘We introduce the new <mdeo u = 200r — x. Then 5 Anairplane with a constant airspeed of 200 miles per hour starts out to a destination
300 miles due east. There is a wind out of the north of 25 miles per hour. The
m&lum = 200 — &l: = 8u? plane always flies so that it is headed 982@ at the destination. Find the path of the
dt dt airplane. .
6 Find the curve passing ansmr the point (3,4) such that the tangent to the curve
N_m = 200 — 8u? and the line to the origin are always perpendicular.
dt 7 Find the equation of the curve passing through (2,4) such that the segment of the
This equation is separable. Hence, a2 tangent line between the curve and the x axis is bisected by the y axis.
du = 8 dr . 8 A ball is dropped from a great height. Assuming that the acceleration of gravity
25 — u? is constant and that air resistance is proportional to the square root of the speed,

& Ga 5+ ) — In(5 — &u —8t+ec find the terminal velocity.

I
:-/ng

When ¢ = 0,u = 0, which implies that ¢ = 0. Solving for u, we have 57 NUMERICAL METHODS

= 200t — u = 200¢ — 5 tanh 40 Out of all the nonlinear first order differential equations with solutions, only a

relatively small number can be solved in closed form. Therefore, it is very

dy _ =y dx _ —8u important that there be numerical methods for solving differential equations.
y p q :

dt u dt In this section, we give a very brief introduction to a very large subject, which is

dy — —8udi = —40 tanh 40z dt Emﬁum an increasingly H.B@ozmz.ﬁ role in wmwcmm mathematics as nonlinear

y : ) - ' analysis becomes more and more inescapable in modern technology. Of course

—1n cosh 40f + k | this development has been aided and abetted by the invention of large-scale g

Finally,

Iny
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EXAMPLE 6.2.1 Consider the differential equation ¥ — y = 1. Find a
solution of this equation satisfying ¥0) = 1,5(0) = —1, 5(0) = 0. In this case,
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L(y) = ¥ — J, and the associated homogeneous equationis ¥ —y = 0. We
shall see later that when L is an operator with constant coefficients, the homo-
geneous onuw.aou usually has exponential solutions. Therefore, let us sub-
stitute ™ into the equation L(y) = 0:

L™ = me™ — me™ = m(m — Dm + De™

Now if m = 0, 1, or —1, the equation L(y) = 0 is satisfied by y = %.5. We
shall then take y, =1, y, = €', and y; = e~ ". Let us check to see if these

three functions are independent by computing their WronsKian.

1 e* e’

W) =0 & —e'|=2

0 e et
Therefore, 1, ¢, ¢~ are independent and form a basis for the null space of L.
Any solution of the homogeneous equation can be written in the form
¢y F eyt F 656" Next we look for a particular -solution-of-the nonheme-
geneous ,.m.@mmg L(y) = 1. In this case it is fairly.casy to manmm a moEco.u
since a constant times ¢ will yield a constant upon one &m.m.ﬂgﬁwawb and will
yield zero upon three differentiations. Thefefore, Lkt) = lw = 1ifk = -1,
and a solutionis —z. We now know that the solution of the initial-value problem
can be found among functions of the form

N W) = ¢y + et +czeTT — 1

To evaluate the constarits ¢;, ¢,, and ¢3 so must solve the system of equations
v.AoVH 1l=1c¢ + ¢+ ¢

)

JO)y= 0=c, +,. C3

I

—1=c¢ —c3—1

The solution is ¢; = 1 and ¢, = ¢; = 0, -and W) =1 - t is ,Ew unique
solution to the initial-value problem. Note that the coefficient matrix of the

system is . : :
above sy 11

0 1 -1
0 1 1

and its mm_...ﬂ&nwﬁ is W(0) = 2. This “.w,:mnmu,ﬁwnm that .apo equations aoﬁ.on.
mining the ¢’s have a unique solution. This underlines .num :u@onmbwo of ES:.m
a systeni of solutions of the roBomnbooi equation énr .m Wronskian which HM
never zero in an interval where we wish to solve the initial-value problem an
shows the importance of Theorem 6.2.3.

o,
—y
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e
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We conclude this section .with some terminology which we shall use in
what is to follow. It should be clear by now that a scheme for solving a given
initial-value problem is the following:

1 Find » independent solutions of the homogeneous #th order equation
L(y) = 0. We shall refer to such a set as a fundamental system of solutions.

o 2 Form an arbitrary solution of the homogeneous equation by forming

a linear combination of a fundamental system with 7 arbitrary constants.
oo We shall call this-a_complementary solution and denote it by y.(z).

3 Find.any particular solution of the nonhomogeneous equation

L(y) = f(t). We shall call this a particular solution and denote it by y,(z).

4 Add y.(t) and y,(r) and call the sum the general solution.

5 Evaluate the » constants in ye(t) so that y(r) = y,(t) + y,(¢) satisfies

the initial conditions. :

EXERCISES 6.2

1 Show that y; = e*and y, = ¢~* form a basis for the null space of the operator
L»y) =5 — ».

2 Show that yi = 1, y, = €, y; = te?* form a basis for the null space of the
operator L(y) = ¥ + 45 + 4j. )

3 Showthaty, = sin wt, y, = cos wtform a basis for the null space of the operator
L(y) = 3 + o®». : .

4 Show that-y;-= 7, y, = r~* form a basis for the null space of the operator
L(y) = 1*5 + 1 — y on the interval {t|0 < a < ¢ < b}.

5 Consider the differential equation L(y) = 3 — 59 + 6y = 0. Look for solutions
of the form y = €™, Find a basis for the null space of the operator L.

6 Find the general solution of # — y = 1 (see Exercise 1.
7 Find the general solution of j + 4y =1 (see Exercise 3).
8 Find the general solution of 3 + 45 + 4 = 1 (see Exercise 2). :
9 Find the general solution of #2j + ¢ — y = 1 on the interval AL 1<ir<2}
10 Find the solution of the initial-value problem § — y = 1, ¥(0) = y(0) = 1
(see Exercise 6). . :
11 Find the solution of the initial-value problem 3 + 4y = 1, »(0) = 1, 70) = 0

(see Exercise. 7). '

12 Find the solution of the initial-value problem 5 + 45 + 49 = 1, 3(0) = 7(0) =
3(0) = 1 (see Exercise 8).

I3 Find the solution of the initial-value problem %5 + ty — y = 1, y(1) =
(1) = 1 (see Exercise 9).

14 Consider two solutions* ¥y and y, of the differential equation j -+ p(f)y +
g(t)y = 0 on the interval Q_ a < t < b}, where p and ¢ are continuous. Show
that the Wronskian of y; and v, satisfies the differential equation W + pW = 0.
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Continuing in this way, we finally have = . o

7 = Ay, ® + Ay,

+.‘.+kA.<:¢.u +\~Hu\? 1 +\wwv~§l5+...+$..= M:l:

Substituting in the differential equation, we find that all the terms which involve
the undifferentiated 4’s will drop out. This is because the functions yy, ¥5, .- .,
, are all solutions of the associated WOEomoBmocm equation. This leaves us with
_ the following system of equations to solve for Ay, Agyees A,

Ayyg + Asys + 0 + Ay =10

prp+kwwu+...+maw\=ﬂo
\»H%? 2) + \_N.«»? 2) 4 cee \w ?lnv =0
f(®)
a,(t)

This is a system of » equations in 7 unknowns with the determinant of the

A, y8" :+\_Zm_ D4y Ay =

coefficient matrix

Y1 Y2 V3 Tt
way=| 2
EQ_ 1) ‘<? 1) %:_ 1y ... M.alc

which is the Wronskian of the fundamental system of solutions V1> Vasevs Ve
This éaou&cmu is never zero. Therefore, we can always solve :E@so_w for
Ay, Ay, i, A, Infact,fork=1,2,...,7
PIR0LA0)
=

a, ()W (2)

where W,(?) is the determinant obtained from W (¢) by replacing the kth column
by (0,0,0,...,0, 1). Aparticular solution of the nonhomogeneous equation is

then

. FEOW)
yet) = 2 AN = M »lt) % e

"The lower limit of integration need not be a since any set of integrals of the A’s
will do. .

EXAMPLE 6.3.2 Find the general solution of 5 + 3y + 2y = —e™". To find
solutions of the homogeneous equation ¥ + 3j + 2y = 0 we try y =

@

"
Ah
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Substituting, we have e”(m® + 3m? + 2m) =
m =0, —1, or =2. The ?bonoa Y =

dent since their Wronskian

0. We shall have solutions ;.

1,y, = e7%, y; = ¢~*" are indepen-

H Nlﬂ Nan
W) =|0 —e™t! —2¢72 = 2¢73
0 et 4e2

never vanishes. To find y, we must evaluate

T 10T e -2t

Wi(t) = [0 —e ' —2e7% = —¢73¢
1 e”!? 4o~ 21
1 0 e

Wo(t) =0 0 —2e7%| = 2e2¢
0 1 4em?
1 et 0

Walt) = |0 —e7h - 0] = —e ™t an
O Nln H .

Therefore,

5” 1.‘, Almﬂ+mmilw_m|~d&a
4 N 0
=3e -1+ 2te7 — et 4 7
— NWI~ + .W.&INn — W
The general solution is therefore
: y=c + ce”t + cze”? 4 te!

We do not include terms in the particular solution if they already appear in the
complementary solution.

EXERCISES 6.3

1 Find the general solution of j — y = e™%.

2 Find the general solution of ¥ + @ + 4y = 2¢* (see Exercise 6.2.2). ‘

3 Find the general solution of § + w?y = 2 cos wt (see Exercise 6.2.3).

4 Find the general solution of #%5 + £ — y = tontheinterval {0 < a < t < b}
(see Exercise 6.2.4). .

5 Find the general solution of j V- mu\ + 6y = 2t + 3.

6 Find the solution of  — y = e~ 7 satisfying y(0) = 1, 3(0) =

7 Find the solution of ¥ + 45 + 45 = 2e* satisfying (0) = 7(0) = y(0) =-1.
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solutions of P(z) = 0 and let sy, 54, 52, 52, - - - » 55 5, be the distinct complex
solutions. Then P(D) can be factored as follows:
PD) = (D — r) -+ (D — r (D = ag)? + 2T+ [(D — a,)* + b,T> !

where k; + kp + -+ ky, + 2, + 2, + -+ 2, = n, and where
s;=a; +ib;,j=1,2,...,p. ‘

We shall solve the homogeneous equation [(D — @)* + 4*]y = 0,
where @ and b are real and [ is a positive integer. The operator can be factored M

|

[(D—a? + 5T =D —a—BD - a+1b)

Therefore, there are complex solutions of the form

e,
o

@+ Y polatitl y2p@riby ¢1= 1 atiby

@30 ppla=ivy 2,(@=ib)t 1= 1pa=ib)

seeey

By the linearity of the nmammo.u we can add and subtract solutions and obtain

solutions. Hence,

mn=+_.3.“ + m@lmvﬁ
2
&?.I.Sa _ Nﬁnlm&a

2i

< ¢% cos bt

e” sin bt

1

are both solutions. Similarly
1e*t cos bt, t2° cos bt, . . ., 1" e cos bt
1 sin bt, t%e** sin bt, . . ., =165 sin bt
are all solutions. It is possible to show that these 2/ solutions are independent.
In the general case, where we have p operators of the form

D — ap)* + bJ¥
\_.H 1,2,..., p, corresponding to the distinct pairs of complex numbers

s; = a; + ib; and §; = a; — ib;, we shall have 2/; independent solutions for
each operator as follows: A :

ia
»

v

€%t cos byt, e sin byt, ..., t" 7 e cos byt, 1117 1™ sin bt

€% c0s byt, €% sin byt, . .., 727 1e cos b,t, 227 1e™ sin byt

€% cos bt, e sin bt, ..., 127 e cos byt, t’2" e sin bt

This accounts for 2I; + 2I, + -+ + 2I, solutions, and, of course, the real
numbers 75, 75, . . . , 1, account for ky + k, + *+* + k, solutions. As we have
seen from above,

ky+ky+oc vk + 2+ 2L+ + 2, =n
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so we have achieved our goal of finding a fundamental system of Em%obaou.ﬂ
solutions of the homogeneous equation. We can complete the task of finding the
general solution of the nonhomogeneous equation by using the method of
variation of parameters. In the next section, we shall take up another method
for finding particular solutions when the right-hand side of the equation has the
form of a solution of some homogeneous linear differential equation with con-

"“stant coefficients.

EXAMPLE 6.4.2 Find the general solution of
(D¥ +D* — D% —~3D2 4 2)y =0

To solve this equation we must find all the distinct solutions of P(z) = z° +
z* — 2% — 3722 4 2 = 0. There is a theorem? from algebra which says that
if a polynomial equation with integer coefficients has a rational solution r = p/q,
“where p and q are integers, then p divides the constant term and ¢ divides the
coefficient of the highest power of z. In this case, the only possible rational roots

are —1, 1, —2, 2. By substituting we find that P(1) = P(—1) = 0. Therefore

P)=(z - Dz+ DE* + 22 -2
Let Q(z) = z*> + z> — 2. Then we find that Q(1) = 0. Hence,
PE)=@E -1+ DE +2z+2) =~ )¢+ D+ 1) + 1]
and the operator P(D) can be written
- P(D) = (D — 1> + D[(D + 1)* + 1]
and the general solution is

Y= ce "+ ce" + cyte’ + che”cost + cse”Psint

EXERCISES 6.4

I Let y be any twice-differentiable function. Show that (D — a)(D — by =
(D — b)(D — @)y = [D? = (a + b)D + ab]y where a and b are constants.
2 Let y be any three-times-differentiable function. Show that

D - [ - 5D~ ]y =[P - D - HID - oy

where g, b, and ¢ are constants.

+ The reader will be asked to verify this in Exercise 6.4.5,




262 INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

Hence, y, = ¢, + c;e* + cse”? + bt + ar’. Omitting the first three terms
because they are already in the complementary solution, we have y, = at® + b,
which is the form we know works.

EXAMPLE 6.5.2 Find the general solution of (D* — 5D + 6)y = €** + cos t.
Let f; = €%, and consider (D> — 5D + 6)y; = &' or (D — 2)(D — )y, =
&t _An mss__:_»:o: ‘operator for ¢*’ is D — 2. Hence

(D—-29D -3y =D -2 =0

V1 = ce®t + ¢t + ate®

Omitting the first two terms because they are already in the complementary
solution, we have y, = ate?’.. Then Dy, = ae®* + 2ate®’, Dy, = 4ae®* +
4ate**, and substituting gives . . B

" dge*t 4 date®t ~ 5ae** — 10ate?’ + 6ate®” = —ae?t = €'
and @ = —1. Next let f, = cos ¢, and consider (D> — 5D + 6)y, = cos £.
An annihilation operator for cos # is D? + 1. Hence,

(D? + 1)(D* — 5D + 6)y, = (D> + D cost =0

¥, = ci€* + ce®t + acost + bsint

Onmitting the first two terms because they are in the complementary solution of
the equation, we have y, = acos ¢ + bsint and Dy, = —asint + bcost,
D%y, = —acost — bsin ¢. Substituting, we have

—acost —bsint+ Sasint — 5hcost + 6acost + 6bsint = cos ¢

(5a — 5b) cos t + (5a + 5b)sin t = cos t
Therefore, 5a — 56 = 1 and 5a + 55 = 0, or @ = —b = {5. The general
solution to the problem is then

~

¥y = cie?t + ¢, — 1€t + 5 cost — fgsint

EXAMPLE 6.5.3 Find the general solution of (D* + 2D + 2)y =
tcos 2t + sin 2. This time the right-hand side is annihilated by (D* + 4)*

v

-

- ‘We must solve-- ——————
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Therefore,
(D + (D + 1)* + 1]y, = (D* + 4)%(t cos 2t + sin 2¢) =
Vp = cie " cost + ce”tsin ¢ + acos2t + bsin 2t + cf cos 2t + df sin 2¢

We omit the first two terms because they are in the complementary solution.

'Hence, we assume

Yp = acos 2t + bsin 2t + ct cos 2t + df sin 2¢t

and -
= (¢ + 2b) cos 2t + (d — 2a) sin 2¢ + 2df cos 2t — 2¢t sin 2t
= (4d — 4a) cos 2t + (—4b —~ 4c) sin 2¢ — 4et cos 2t — 4Adt sin 2t
(D* + 2D + 2)y, = (~2a + 4b + 2¢ + 4d) cos 2t

+ (—4a — 2b — 4c + 2d) sin 2¢

+ (—2¢ + A&vmoommu +A 4¢ — w&nm_nmu

. —2a+4b+2c+4d=0
—4a —2b —4e+2d=1

—2c+4d=1
—4c—-2d=0
The solutionis a = 4%, b = —%;, ¢ = —+%, d = 1, and the general solution is

y = cie""cost + ce” " sin t + &5 cos 2t — < sin 2f — &t cos 2¢ + 1t sin 2t

EXERCISES 6.5.

1 Find annihilation operators for each of the following functions:

@ 2t2+3t-5 ®) (2 + 2t + et

() te**cost + e?tsint (d) t3 *sin 3t + t%e* cos 3¢
2 Find the general solution of each of the wozocﬁuw differential gcmaoum

(@ D>+ 2D+ Dy = 3¢

(b) (D* — 5D + 6)y = 23 + cos ¢

© @-y=

d (D* + 4y = tcos2t + sin 2¢

(& (D* + 4D? + 4)y = cos 2¢ — sin 2¢

(f) (D?> — 2D + 5)y = te*sin 2t
3 Solve the initial-value problem (D? — 2D + 1)y = ¢, y(0) = 3(0) =
Solve the initial-value problem (D® + D)y = “,mﬂ ¥(0) = y(©0) = 0, $(0) =
5 If ris not a solution of P(z) = 0, show that ¥, = €[P(r) is a particular solution

of P(D)y = ,

AN




FIGURE 33

6.6 APPLICATIONS '
There are many-applications of linear differential equations. We shall illustrate
with one from the theory of mechanical vibrations and one from the theory of
m_ooﬁm networks. It will turn out that both problems lead to Qo.mwa basic
differential equation. This will illustrate the unification of two H:Ho different
fields of science through the study of a common differential equation.
Consider the following problem (see Fig. 33). A mass of m slugs is
hanging on a spring with spring constant k pounds per foot. The Bo:ou.y. of the
spring is impeded by a dashpot which exerts a force oowbﬁmw to .@5 motion and
proportional to the velocity. The constant of proportionality is c pounds per
. foot per second. There is a variable force of f(f) pounds aﬁ.ﬁ&nm the mass.
If we pick a coordinate Y(f) measured in feet b.onw .apo position of natural
length of the spring (unstretched), where Y(z) is positive downward, then the
forces on the mass are as follows:

myg = weight of mass )
—kY = restoring force of spring
—¢Y = resistive force of dashpot .
f(t) = driving force A

The sum of these forces gives the mass times the acceleration Y. ﬂonoou the

differential equation is ) )
7 myY = mg — kY — c¢Y + f()

Let us introduce a new coordinate y(t) = Y(¢) — mg/k, which is the displace-
ment measured from the equilibrium position (recall Sec, 5.2). In terms of y the

differential equation becomes )
my + ¢y + ky = f(t)

v

/4

>

S
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Resistance R " Capacitance C
|
I

Impressed voltage E (¢)

Inductance L

FIGURE 34

This is a nonhomogeneous second order differential equation with constant
coefficienits. An appropriate initial-value problem is to specify the initial dis-
placement y(0) and the initial velocity 3(0).

Now let us consider the following electric network (see Fig. 34).
Kirchhoff’s law states that the impressed voltage is equal to the sum of the
voltage drops around the circuit. If there is an instantaneous charge on the
capacitor “of "0 coulombs, " theft the curréent flowing in the citcuit is'J = 0
amperes and the voltage drops are as follows:

RI = voltage drop across resistance of R ohms
Q/C = voltage drop across capacitance of C farads
LI = voltage drop across inductance of L henrys

The appropriate equation is then

LI + RI + = = E()

alo

In terms of Q this equation becomes

LY + RO +,m = E@)
C
and if we assume that R, C, and L do not change with time (a reasonable
assumption. in most cases), then we again have a linear second order equation
with constant coefficients. If E(z) is differentiable, then we can write an equation
for the current 7, ~

LI+ RI + I_ E@®
C
which is again of the same type. An appropriate initial-value problem for the
first equation is to specify the initial charge Q(0) and initial current I(0) = Q(0).
For the second equation we should specify the initial current I (0) and the initial
derivative 1(0).
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FIGURE 35

We shall study in detail the mechanical vibration problem, but the
reader should keep in mind that the remarks apply equally well to the corre-
sponding electrical problems. The cases are considered in order of increasing
complexity. s

1 - Simple Harmonic Motion - S

I

Here we assume no damping (¢ = 0) and no forcing [ f(¢) = 0]. The differential
equation is § + w?y = 0, where ©? = k/m. The general solution is

y = A cos wt + B sin ot
where 4 and B are arbitrary constants. Alternatively we can write
y = /4% + B? ALI]\oo:S+|.wl||

V4% + B V42 + B

where a = /A2 + B? is called the amplitude and ¢ = tan™* (B/A) is called
the phase angle. This solution is plotted in Fig. 35. The period, which is the time
required for the motion to go through one complete cycle, is

sin SNV = a cos (ot — ¢)

2n
T =—
. )
Let us assume that the initial position y(0) and initial velocity 7(0) are given.
Then 4 = p(0) and B = (0)/wo, and we have the following constants of the
motion:

©-
|

&1
&

o
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t <n

Overdamping Overdamping Critical damping

© TTFIGURE 36 |

For ¢ we shall take the minimum nonnegative angle such that sin ¢ = 7(0)/aw
and cos ¢ = y(0)/a. -

2 Free Vibration with Damping - T TR
In this case, we have £ > 0 and'¢=> 0 and f(¢) = 0. The differential equation
is
(mD? + ¢cD + k)y =0
and the associated polynomial equation is P(z) = mz® + cz + k = 0. The

solutions are

—¢ £/ — dkm
2m

Il =
The independent solutions of the differential equation depend on the value of
¢* — 4km according to the following:
a QOverdamping:

y = Ae™* + Be'™¥

c? —4km > 0 r,<r <0
b QB.QN damping :
¢ ~4km =0 y = (4 + Bt)e™ ro= _c
. 2m
¢ Underdamping:
& —dkm <0 y=e ©?4coswt + Bsinot) o= )\|..|£Q= —c

2m

Some typical motions in cases a and b are illustrated in Fig. 36. In case ¢, we
can write alternatively
y = ae” @™t cos (wt — @)
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N~

FIGURE 37

where @ = VA% + B® and ¢ = tan~! (B/4). The motion is illustrated in
Fig. 37. The motion is oscillatory, as in the case of simple harmonic motion,
but the amplitude is diminishing according to the exponential factor e~ (/™.

The motion is not periodic, but the time between successive peaks is 7 = 2r/w.

If the damping constant ¢ is very small compared with Nnmbm m, then ¢/2m is
values of 7. In this case the motion is very nearly simple harmonic motion, and
7 is approximately a period.

For forcing we shall consider two cases.

3 Forced Vibrations without Damping

In this case ¢ = 0, and for definiteness we shall take f(#) = f, cos w,t, where
fois a constant and w, # @ = (k/m)"/%. The differential equation is.
4 j + % H\MOOm 0ot
m. .
The complementary solution is . ) i
. v ¥, = A cos wt + B sin wt

To find a @m&o&mn solution we use the method of undetermined coefficients.
We assume a solution of the form 7
¥, = Ccos wot + D sin ot
Then
fo

P, + 0%y, = C(0? — wo?) cos ot + D(®? — wo?) sin wot = — cos Wt

Therefore, D = 0 and ]
c= Jo

T m(? — w2

5

i

9
s
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Suppose initially ¥(0) = 7(0) = 0. Then the solution is

Jo
m(w® ~ %)
T Yo gplo=wgt o (0 + ot

m(@® — w4?) 2 2

y(t) = (cos wet — cos wt)

This motion is illustrated in Fig. 38. This phenomenon is known as beating.
It is especially pronounced when , is approximately w. Then one of the
sine terms is slowly varying with a frequency of (@ — w,)/4r while the other
two terms are varying rapidly with a frequency of (@ + w,)/4n. This phenom-
enon is the basis for a technique known as amplitude modulation in electronics.

If the forcing term in this example had been f; cos w?, then a different
sort of solution would have been obtained. The reader will be asked to study
this case in the exercises.

4 Forced Vibrations with Damping

In this case & > 0, ¢ > 0, and for definiteness we shall again take f(z) =
fo cos wot. The differential equation is

b +Mv.\ + w?y H\Woom‘eoﬂ

m m
where w® = k/m. Depending on the value of ¢ — 4km, the complementary
solution is one of three functions listed under case 2 above. To find a particular
solution we assume

'

¥p = Ccos wgt + D sin wyt




