Hypertopes with tetrahedral diagram

Domenico Catalano Universidade de Aveiro, Portugal

joint work with M. E. Fernandes, I. Hubard and D. Leemans

Pregeometries (or incidence systems)

Definition (Pregeometry $\Gamma = (X, \mathcal{P}, \mathcal{I})$)

Х	set of elements of Γ

- \mathcal{P} finite partition of X in types
- $\mathcal{I} \subset X \times X$ symmetric relation on X such that

$$\forall X_i \in \mathcal{P} \qquad \mathcal{I} \cap (X_i imes X_i) = arnothing$$

called incidence relation

rank of Γ denoted by rank(Γ).

Definition ($\Gamma = (X, P, I)$ pregeometry)

 $\mathcal{G}(\Gamma) = (X, E)$, where $E := \{\{x, y\} : (x, y) \in \mathcal{I}\}$ is called the incidence graph of Γ .

Remark

 $|\mathcal{P}|$

Pregeometries are multipartite graphs.

$$\Gamma = (X, \mathcal{P}, \mathcal{I}), \Lambda = (Y, \mathcal{Q}, \mathcal{J})$$
 pregeometries.

Definition

- $f: X \to Y$ homomorphism from Γ to Λ if
 - Elements of the same type are mapped to elements of the same type: $\begin{bmatrix} \forall X_i \in \mathcal{P} & \exists Y_j \in \mathcal{Q} & f(X_i) \subset Y_j \end{bmatrix}$
 - incident elements are mapped to incident elements:

$$(x,y) \in \mathcal{I} \Rightarrow (f(x),f(y)) \in \mathcal{J}$$

Isomorphism: bijective homomorphism *f* from Γ to Λ such that f^{-1} is a homomorphism from Λ to Γ .

Automorphism of Γ : isomorphism from Γ to Γ .

Symmetries, correlations and dualities

Remarks

• Any isomorphism f from Γ to Λ induces a bijection

$$\mathcal{P}
ightarrow \mathcal{Q}, \ X_i \mapsto f(X_i) \Rightarrow rank(\Gamma) = rank(\Lambda).$$

The set Aut(Γ) of automorphisms of Γ is a group containing

$$Aut_{\mathcal{P}}(\Gamma) = \{f \in Aut(\Gamma) : \forall X_i \in \mathcal{P} \mid f(X_i) = X_i\}$$

as a subgroup.

Definition

- Symmetries or type preserving automorphisms: elements of Aut_P(Γ).
- Correlations: elements of $Aut(\Gamma) \setminus Aut_{\mathcal{P}}(\Gamma)$.
- Dualities: involutory correlations ($f = f^{-1}$).

イロト イポト イヨト イヨト

Example (J. Tits)

Example (Coset pregeometry $\Gamma = \Gamma(G; \{G_i\})$)

G group, $\{G_1, \ldots, G_r\}$ set of *r* subgroups of *G*.

$$X = \bigcup_{i=1}^{i} X_i$$
 with $X_i = \{G_i g : g \in G\}, i = 1, \dots, r.$

$$\mathcal{P} = \{X_1, \dots, X_r\}$$
 and

$$(G_ig,G_jh)\in\mathcal{I} \quad ext{iff} \quad i
eq j ext{ and } G_ig\cap G_jh
eq arnothing$$

Then $\Gamma = (X, \mathcal{P}, \mathcal{I})$ is a pregeometry of rank *r* and, for any $a \in G$

$$\varphi_a: X \to X, \ G_ig \mapsto G_iga$$

is a symmetry of Γ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Flags and chambers of a pregeometry $\Gamma = (X, \mathcal{P}, \mathcal{I})$

Definition

Flag (chain): set of pairwise incident elements (clique)

Rem: Any flag contains at most one element of each type.

Definition

A flag *F* containing elements of all types is called a chamber.

Rem: Chambers are maximal flags (with respect to inclusion).

Definition

If any maximal flag is a chamber then Γ is called an incidence geometry. An incidence geometry $\Gamma = \Gamma(G; \{G_i\})$ is called a coset geometry.

イロト イポト イヨト イヨト

Definition

An incidence geometry Γ of rank *r* is called thin if any flag of cardinality r - 1 is contained in exactly two chambers (called adjacent chambers).

Rem: Thinness is weaker than the diamond condition.

Remark

Any coset pregeometry Γ has chambers and is a coset geometry if $\textit{rank}(\Gamma)\leqslant 3.$

We are interested in particular examples of rank 4 thin coset geometries.

ヘロト ヘアト ヘビト ヘビト

Definition

Let X_F be the set of elements incident with all the elements in a flag F. Restricting \mathcal{P} and \mathcal{I} to X_F one gets a pregeometry Γ_F , called the residue of F.

Rem: Γ thin incidence geometry of rank $r \Rightarrow \Gamma_F$ thin incidence geometry of rank r - |F|.

Definition (residually connectedness)

A thin incidence geometry is called a hypertope if any residue of rank at least 2 is connected.

Rem.: Γ hypertope \Rightarrow Γ connected (since $\Gamma = \Gamma_{\varnothing}$)

ヘロト 人間 とくほとくほとう

Regular and chiral hypertopes

Theorem

 Γ hypertope \Rightarrow Aut_P(Γ) acts semi-regularly on chambers.

Definition

 Γ regular if $Aut_{\mathcal{P}}(\Gamma)$ acts regularly on chambers.

 Γ chiral if $Aut_{\mathcal{P}}(\Gamma)$ acts with two orbits on chambers and any two adjacent chambers lying in different orbits.

Fano plane embedding of genus 3 (Klein's quartic).

프 🖌 🛪 프 🛌

Regular and chiral hypertopes

Theorem

 Γ hypertope \Rightarrow Aut_P(Γ) acts semi-regularly on chambers.

Definition

 Γ regular if $Aut_{\mathcal{P}}(\Gamma)$ acts regularly on chambers.

 Γ chiral if $Aut_{\mathcal{P}}(\Gamma)$ acts with two orbits on chambers and any two adjacent chambers lying in different orbits.

Fano plane embedding of genus 3 (Klein's quartic).

프 🖌 🛪 프 🛌

Γ chiral hypertope of rank $r, R = \{1, ..., r\}, G := Aut_{\mathcal{P}}(\Gamma), C$ chamber of Γ. For $i \in R$ let C^i be the adjacent chamber of C differing from C only in the element of type $X_i \in \mathcal{P}$. Then

•
$$\forall i, j \in R \quad \exists \alpha_{ij} \in G \quad \text{s.t.} \quad \boxed{\alpha_{ij}(C) = (C^i)^j}$$

• $\boxed{G = \langle \alpha_{ij} : i, j \in R \rangle}$
• Set $\boxed{\alpha_i := \alpha_{ir}}$. Then $\boxed{G = \langle \alpha_1, \dots, \alpha_{r-1} \rangle}$ and $\boxed{\alpha_r = 1_G}$
since $\alpha_{ij} = \alpha_{ir}\alpha_{rj} = \alpha_{ir}\alpha_{jr}^{-1} = \alpha_i\alpha_j^{-1}$.
• For $J \subset R$ set $\boxed{G_J := \langle \alpha_i \alpha_j^{-1} : i, j \in J \rangle}$ $(G_{\varnothing} = \{1_G\})$. Then

$$G_J \cap G_K = G_{J \cap K}$$

(日)

for any $J, K \subset R$ (intersection property: IP⁺).

C^+ -groups and its diagrams

Let $G = \langle S \rangle$ be a group with generating set $S = \{\alpha_1, \ldots, \alpha_{r-1}\}$. We say that (G, S) is a C^+ -group if G satisfies IP⁺ for $R = \{1, \ldots, r\}$ with $\alpha_r = 1_G$.

The complete graph having vertices $\alpha_1, \ldots, \alpha_{r-1}, \alpha_r = \mathbf{1}_G$, where the edge between α_i and α_j is labelled by the order of $\alpha_i \alpha_i^{-1}$ is called the diagram of the *C*⁺-group (*G*, *S*).

Convention: We erase edges labelled by 2 and we don't label edges if its label is 3.

Example (Tetrahedral diagram)

$$S = \{\alpha_1, \alpha_2, \alpha_3\} \\ |\alpha_1| = |\alpha_2| = |\alpha_3| = 3 \\ |\alpha_1 \alpha_2^{-1}| = |\alpha_2 \alpha_3^{-1}| = |\alpha_3 \alpha_1^{-1}| = 3$$

ヘロト 人間 とくほとく ほとう

Chiral hypertopes from C^+ -groups

$$(G, S) C^{+}\text{-group, } S = \{\alpha_{1}, \dots, \alpha_{r-1}\}, R = \{1, \dots, r\}. \text{ Set}$$
$$G_{j} := G_{R \setminus \{i\}} = \begin{cases} \langle \alpha_{j} : j \neq i \rangle & \text{if } i \neq r \\ \langle \alpha_{1}^{-1}\alpha_{2}, \dots, \alpha_{1}^{-1}\alpha_{r-1} \rangle & \text{if } i = r \end{cases}$$

and set $\Gamma(G, S) := \Gamma(G, \{G_i\})$.

Theorem

If $\Gamma = \Gamma(G, S)$ is a hypertope and $G < Aut_{\mathcal{P}}(\Gamma)$ has two orbits on chambers, then Γ is chiral if and only if there is no $\sigma \in Aut(G)$ sending α_i to α_i^{-1} for any $i \in R$. Otherwise, Γ is regular.

Rem: Hypertopes $\Gamma(G, S)$ with linear diagram are abstract polytopes.

ヘロト ヘアト ヘビト ヘビト

Infinite families with tetrahedral diagram

For G = PSL(2, q) we looked for hypertopes $\Gamma^{(q)} = \Gamma(G, S)$ with tetrahedral diagram $\Rightarrow \boxed{q \equiv 1 \mod 3}$

Results

- For any prime $q \equiv 1 \mod 3$ we give a chiral hypertope.
- For any $q = p^2$ with a prime $p \equiv -1 \mod 3$ we give a regular hypertope.

In both cases:

$$\begin{aligned} &\alpha_1 = \pm \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \ &\alpha_2 = \pm \begin{pmatrix} e & e^2 \\ 0 & e^2 \end{pmatrix}, \ &\alpha_3 = \pm \begin{pmatrix} e^2 & e \\ 0 & e \end{pmatrix}, \\ &\text{where } e \text{ is a primitive third root of unity in } GF(q) \text{ and} \\ &G_2, G_3 \cong A_4, \qquad G_1, G_4 \cong E_q : C_3 \end{aligned}$$

ヘロン 人間 とくほ とくほ とう

If $\Gamma^{(q)}$ is chiral (*q* prime) then there are correlations

- fixing the two orbits of Aut_P(Γ^(q)) = PSL(2, q) on chambers (proper correlations).
- interchanging the two orbits of Aut_P(Γ^(q)) = PSL(2, q) on chambers (improper correlations).

Hence $\Gamma^{(q)}$ has simultaneously proper and improper correlations (a property that chiral abstract polytopes can not have).

ヘロン 人間 とくほ とくほ とう