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Maps

Definition
A map is a 2-cell embedding of a connected graph in a (orientable
or non-orientable) surface.

If the surface is orientable, the map is said to be orientable.
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Interesting maps

Definition

I An orientable mapM is called orientably regular if its group
of orientation preserving automorphisms acts regularly on its
set of darts.

I A map is called regular if its full automorphism group acts
regularly on its set of flags.

All five Platonic solids are orientably regular maps.
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Constructing Orientably Regular Maps

In 1972, Biggs made the following observations:

I if one starts from a Cayley graph C (G ,X ), chooses a cyclic
permutation p of the generating set X , and defines the local
rotation at each vertex by the rule (g , x) 7→ (g , p(x)), then all
left-multiplication automorphisms of G lift to map
automorphisms and one ends up with an orientable map that
admits an orientation preserving automorphism group
acting regularly on the vertices of the map

I if, in addition, there exists a group automorphism ϕ of G
that preserves X and acts cyclically on X , then choosing
p(x) = ϕ(x) gives rise to an orientably regular map
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Cayley Maps

Definition
A Cayley map CM(G ,X , p) is the 2-cell embedding of the Cayley
graph C (G ,X ) with the same orientation p at each vertex,
(g , x) 7→ (g , p(x)).

For example, all regular embeddings of the complete graphs Kn

turn out to be balanced Cayley maps (James, Jones, 1985).

Four of the five (orientably regular) Platonic solids are Cayley maps.
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Basic observations:

|Aut(CM(G ,X , p))| ≤ |G | · |X |

and

CM(G ,X , p) is orientably regular iff
|Aut(CM(G ,X , p))| = |G | · |X |

Since GL is always ≤ Aut(CM(G ,X , p)),

CM(G ,X , p) is orientably regular
iff

there exists a ϕ ∈ Aut(CM(G ,X , p)) such that
ϕ(1G ) = 1G and ϕ((1G , x)) = (1G , p(x))
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Skew-Morphisms

Definition (RJ,Širáň)

A skew-morphism of a group G is a permutation ϕ of G preserving
the identity and satisfying the property

ϕ(gh) = ϕ(g)ϕπ(g)(h)

for all g , h ∈ G and a function π : G → Z|ϕ|, called the power
function of G .

Theorem (RJ,Širáň)

LetM = CM(G ,X , p) be any Cayley map. ThenM is orientably
regular iff there exists a skew-morphism ϕ of G satisfying the
property ϕ(x) = p(x) for all x ∈ X .
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Algebraic Properties of Skew-Morphisms

Lemma (RJ, Širáň)

Let ϕ be a skew-morphism of a group G and let π be the power
function of ϕ. Then the following holds :
1. the set Kerϕ = {g ∈ G | π(g) = 1} is a subgroup of G ;
2. π(g) = π(h) if and only if g and h belong to the same right

coset of the subgroup Kerϕ in G .

Note: The kernel of ϕ that gives rise to a regular Cayley map is
always non-trivial.

Lemma (Conder, RJ, Tucker)

If A is a finite abelian group and ϕ is a skew-morphism of A, then
1. ϕ preserves Ker π setwise;
2. the restriction of ϕ to Ker π is a group automorphism.
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Cyclic Extensions from Skew-Morphisms

Let H be a group, and ϕ be a skew-morphism of H with power
function π, and let

s(i , b) =
i−1∑
j=0

π(ϕj(b)).

Define a multiplication ∗ on H × 〈ϕ〉 as follows:

(a, ϕi ) ∗ (b, ϕj) = (aϕi (b), ϕs(i ,b)+j),

for all a, b ∈ H and all i , j ∈ Z|ϕ|.

Theorem (Conder,RJ,Tucker; Kovács and Nedela)

Let H be a group and ϕ be a skew-morphism of H of finite order m
and power function π. Then the skew-product A = (H × 〈ϕ〉 , ∗)
is a group and H × 〈ϕ〉 is a complementary factorization of A.

robert.jajcay@fmph.uniba.sk Maps with Regular Groups



Cyclic Extensions from Skew-Morphisms

Let H be a group, and ϕ be a skew-morphism of H with power
function π, and let

s(i , b) =
i−1∑
j=0

π(ϕj(b)).

Define a multiplication ∗ on H × 〈ϕ〉 as follows:

(a, ϕi ) ∗ (b, ϕj) = (aϕi (b), ϕs(i ,b)+j),

for all a, b ∈ H and all i , j ∈ Z|ϕ|.

Theorem (Conder,RJ,Tucker; Kovács and Nedela)

Let H be a group and ϕ be a skew-morphism of H of finite order m
and power function π. Then the skew-product A = (H × 〈ϕ〉 , ∗)
is a group and H × 〈ϕ〉 is a complementary factorization of A.

robert.jajcay@fmph.uniba.sk Maps with Regular Groups



Cyclic Extensions from Skew-Morphisms

Let H be a group, and ϕ be a skew-morphism of H with power
function π, and let

s(i , b) =
i−1∑
j=0

π(ϕj(b)).

Define a multiplication ∗ on H × 〈ϕ〉 as follows:

(a, ϕi ) ∗ (b, ϕj) = (aϕi (b), ϕs(i ,b)+j),

for all a, b ∈ H and all i , j ∈ Z|ϕ|.

Theorem (Conder,RJ,Tucker; Kovács and Nedela)

Let H be a group and ϕ be a skew-morphism of H of finite order m
and power function π. Then the skew-product A = (H × 〈ϕ〉 , ∗)
is a group and H × 〈ϕ〉 is a complementary factorization of A.

robert.jajcay@fmph.uniba.sk Maps with Regular Groups



Skew-Morphisms from Cyclic Extensions

Let G = A 〈ρ〉, A ∩ 〈ρ〉 = 〈1G 〉 (a complementary factorization).

For every a ∈ G ,
ρa = a′ρi ,

for some unique a′ ∈ A and some unique nonnegative integer i less
than the order of ρ.

Define ϕ(a) = a′ and π(a) = i . Then for any a, b in A,

ϕ(ab) = ϕ(a)ϕπ(a)(b).

Parts of this already observed in the 1930’s (e.g., Oystein Ore,
1938).
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Normal Subgroups of Complementary Cyclic Extensions

Theorem (Conder, RJ, Tucker)

If G is any finite group with a complementary subgroup
factorisation G = AY with Y cyclic, then for any generator y of Y ,
the order of the skew-morphism ϕ of A is the index in Y of its core
in G , or equivalently, the smallest index in Y of a normal subgroup
of G .
Moreover, in this case the quotient G

CoreG (Y ) is the skew-product
group associated with the skew-morphism ϕ, with complementary
subgroup factorisation A · Y

CoreG (Y ) .
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Skew-Morphisms Classifications

Based on the type of the skew-morphism or the base group:
I all skew-morphisms of Zp that give rise to a regular Cayley map are group automorphisms (RJ,

Širáň)

I balanced skew-morphisms on cyclic, dihedral, and generalized quaternion groups that give rise to
a regular Cayley map (Yan Wang and Rongquan Feng)

I −1-balanced skew-morphisms on abelian groups that give rise to a regular Cayley map (M.
Conder, RJ, T. Tucker)

I t-balanced skew-morphisms of cyclic groups that give rise to a regular Cayley map (Young Soo
Kwon)

I t-balanced skew-morphisms on dihedral groups that give rise to a regular Cayley map (Jin Ho
Kwak, Young Soo Kwon, and Rongquan Feng)

I t-balanced skew-morphisms on dicyclic groups that give rise to a regular Cayley map (Jin Ho
Kwak and Ju-Mok Oh)

I t-balanced skew-morphisms on semi-dihedral groups that give rise to a regular Cayley map
(Ju-Mok Oh)

I regular, non-balanced Cayley maps over a dihedral group D2n, n odd (Kovács, Marušič,
Muzychuk)

I index 3 skew-morphisms of cyclic groups that give rise to regular Cayley maps (Jun-Yang Zhang)

I coset-preserving automorphisms of cyclic groups (Bachratý, RJ)
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Reality Check

A skew-morphism giving rise to a regular Cayley map must possess
an orbit closed under inverses that generates the underlying group.

The majority of orbits of skew-morphisms do not
generate the whole group and/or are not closed

under taking inverses.
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Orbits Closed Under Inverses

Lemma (RJ, Nedela)

Let ϕ be a skew-morphism of G , X be an orbit of ϕ, and K = 〈X 〉.
Then ϕ|K preserves K setwise and is also a skew-morphism of K .

Corollary

Skew-morphism orbits X that are closed under inverses give rise
to regular Cayley maps on subgroups of G :

Cay(〈X 〉 , ϕ|〈X 〉, ϕ|X )
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The Structure of Orbits of Skew-Morphisms

Lemma (RJ, Nedela)

Let ϕ be a skew-morphism of a finite group G , and π be its
associated power function.
The orbit Oa of any element a in G under the action of ϕ,
Oa = {a, ϕ(a), ϕ2(a), . . .}, is
I either closed under inverses, or
I the inverses of the elements included in the orbit constitute

another orbit of ϕ of the same size, namely the orbit Oa−1 .

I orbits closed under inverses are called self-paired
I orbits not closed under inverses are called paired with their

inverse orbit
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Two-Orbit Orientation-Preserving Automorphism Groups

Two dart orbits in the action of G ≤ AutM may occur in three
different ways:

I G has two orbits of equal size on the set of vertices ofM, a
single orbit on the edges of the graph, and two orbits on its
dart set;
in which case the underlying graph of the map is bipartite and
the action is called semi-symmetric

I G is transitive on the vertices and has two orbits of equal size
on both edges and darts ofM;
in which case G contains automorphisms mapping any dart to
its opposing dart

I G acts transitively on both vertices and edges and has two
orbits of equal size on the set of darts ofM;
in which case we talk about a half-arc-transitive action
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Half-Regular Maps

Definition
An orientable mapM will be called half-regular if there exists
G ≤ Aut M acting with two orbits on the darts of the mapM and
transitively on the vertices ofM.

Theorem (RJ, Nedela)

Let G be a group,M = CM(G ,X ,P) be a Cayley map of even
degree and ϕ be a skew-morphism of G such that the restriction
ϕ|X = P2. ThenM = CM(G ,X ,P) is a half-regular Cayley map.
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Merging of Orbits

If Oa and Oa are two orbits of ϕ of the same size d whose union
X = Oa ∪ Ob is closed under inverses and generates all of G .
Then,

I X = Oa ∪ Ob gives rise to a Cayley graph C (G ,X )

I The i-th alternate merging Pi of (x1, x2, . . . , xd) and
(y1, y2, . . . , yd) is the sequence (x1, yi , x2, yi+1, x3, yi+2, . . .)

Corollary (RJ, Nedela)

Let ϕ be a skew-morphism of a group G and let Oa and Ob be two
orbits of ϕ of length d whose union X = Oa ∪ Ob is closed
under inverses and generates G .
Then, either both Oa and Ob are self-paired, or Oa and Ob are
paired and Ob = Oa−1 .
In either case, the Cayley map CM(G ,X ,Pi ) is half-regular, for any
1 ≤ i ≤ d .
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I X = Oa ∪ Ob gives rise to a Cayley graph C (G ,X )

I The i-th alternate merging Pi of (x1, x2, . . . , xd) and
(y1, y2, . . . , yd) is the sequence (x1, yi , x2, yi+1, x3, yi+2, . . .)

Corollary (RJ, Nedela)

Let ϕ be a skew-morphism of a group G and let Oa and Ob be two
orbits of ϕ of length d whose union X = Oa ∪ Ob is closed
under inverses and generates G .
Then, either both Oa and Ob are self-paired, or Oa and Ob are
paired and Ob = Oa−1 .
In either case, the Cayley map CM(G ,X ,Pi ) is half-regular, for any
1 ≤ i ≤ d .
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Example

I Z9 with skew-morphism ϕ:

(0)(1, 4, 7)(8, 5, 2)(3)(6),

the 4-multiplication in Z9

I (1, 4, 7) and (8, 5, 2) are inverse pairs that both generate Z9
I the first merging (1, 8, 4, 5, 7, 2), gives rise to regular Cayley

map
CM(Z9, {1, 8, 4, 5, 7, 2}, (1, 8, 4, 5, 7, 2))

with skew-morphism (0)(1, 8, 4, 5, 7, 2)(3, 6) whose kernel is
the 3-subgroup 〈3〉, and π(1) = π(4) = π(7) = 5 while
π(8) = π(5) = π(2) = 3

I the second merging (1, 5, 4, 2, 7, 8) results in a similar regular
map

I the third merging (1, 2, 4, 8, 7, 5) is the balanced regular Cayley
map CM(Z9, {1, 2, 4, 8, 7, 5}, (1, 2, 4, 8, 7, 5)) whose
skew-morphism is the 2-multiplication in Z9
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Characterization of Half-Regular Cayley Maps

Theorem (RJ, Nedela)

LetM = CM(G ,X ,P) be a Cayley map. ThenM is half-regular
with a half-regular-subgroup H, GL ≤ H ≤ Aut M, if and only if
there exists a skew-morphism ϕ of G whose restriction to X is
equal to P2.
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Corollaries:

Corollary

LetM = CM(G ,X ,P) be a half-regular Cayley map with a
half-regular subgroup H, GL ≤ H ≤ Aut M. Then one of the
following happens:
1. The group H acts with two orbits on the edges ofM if and

only if the two orbits of P2 on X are both self-paired.
2. The group H is transitive on the edges ofM if and only if the

two orbits of P2 on X are paired.

Corollary

A Cayley mapM = CM(G ,X ,P) is half-regular but not regular if
and only if there exists a skew-morphism ϕ of G such that
ϕ|X = P2 but there is no skew-morphism of G whose restriction to
X is equal to P .
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Corollaries:

Let χ be the distribution of inverses function from X into the set
{0, 1, 2, . . . , |X | − 1} that maps every x ∈ X to the smallest
non-negative integer i satisfying the property P i (x) = x−1.

Corollary

LetM = CM(G ,X ,P) be a half-regular Cayley map with a
half-regular-subgroup H, GL ≤ H ≤ Aut M. Then the valency |X |
ofM must be even and χ(x) ≡ χ(y) (mod 2), for all x , y ∈ X .

Unlike the case of regular maps, proper half-regular maps do
not exist for just any distribution of inverses.
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Corollaries:

A Cayley map CM(G ,X ,P) is called t-balanced if
P(x−1) = (Pt(x))−1, for all x ∈ X .

Corollary

LetM = CM(G ,X ,P) be a Cayley map satisfying the property
that P2 is 1-balanced, i.e., P2(x−1) = (P2(x))−1, for all x ∈ X .
ThenM is half-regular with a half-regular-subgroup H,
GL ≤ H ≤ Aut M, if and only if there exists a group
automorphism ϕ of G whose restriction to X is equal to P2.

A perfect analogue of the result of Škoviera and Širáň for
balanced regular Cayley maps
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Possible Projects for Half-Regular Maps

I classify half-regular embeddings for infinite families of graphs
(e.g., complete, bipartite, . . . )

I generalize to 1
k regular maps

I prove that almost all Cayley maps have a trivial orientation
preserving vertex stabilizer (?)

I prove that almost all Cayley maps are chiral (?)
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Generalized Cayley Maps

Definition
A map (orientable or non-orientable) is said to be a generalized
Cayley map if it admits a group of automorphisms acting regularly
on its vertices; called Cayley group of automorphisms.

I Cayley maps are generalized Cayley maps; the Cayley group
being orientation preserving

I if the Cayley group of an orientable generalized Cayley map
does not consist of orientation preserving automorphisms only
(i.e., it is not a Cayley map), it contains an orientation
preserving subgroup of index 2

I the underlying graphs of both orientable and non-orientable
generalized Cayley maps are Cayley graphs C (G ,X ), and the
Cayley group always acts on the vertices of the map via left
multiplication, GL
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Orientable Generalized Cayley Maps that Are Not Cayley

An orientable generalized Cayley map may admit both an
orientation preserving Cayley automorphism group and an
orientation reversing Cayley automorphism group.

Theorem (R.J., Širáň, Wang, 2016+)

All orientable generalized Cayley maps which are not Cayley
are of the form GCM(G ,K ,X , p), where C (G ,X ) is a bipartite
Cayley graph, i.e., G has a subgroup K of index 2 and X ⊆ G − K ,
all elements in K are associated with a fixed local permutation p,
and all elements in G − K are associated with p−1.
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Non-Orientable Generalized Cayley Maps

Theorem (Kwak and Kwon, 2006)

All non-orientable generalized Cayley maps GCM(G ,X , κ, f )
are of the formM = (F , λ, ρ, τ):
I the underlying graph is a d-valent Cayley graph C (G ,X )

I κ : [d ]→ [d ] is the inverse distribution function xκ(i) = x−1
i

I f : [d ]→ {−1, 1} satisfies the condition f (i) = f (κ(i)), for all
i ∈ [d ]

I the flag set F = G × [d ]× {−1, 1},
I λ(g , i , j) = (gxi , κ(i),−f (i)j) (longitudinal involution),
I ρ(g , i , j) = (g , i + j ,−j) (rotary involution), and
I τ(g , i , j) = (g , i ,−j) (transversal involution).
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Petrie duality

Definition

I A Petrie polygon for a mapM is obtained by traveling along
the edges of the map while choosing alternately ‘the next left’
and ‘the next right’ edge until returning back to the starting
edge.

I The Petrie dual of a mapM, P(M), is the map obtained
fromM by retaining the vertices and edges, but replacing the
faces by the Petrie polygons ofM.
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This Slide Dedicated to Steve

Petrie dual preserves the underlying graph of a map as well as its
automorphism group (including its action on the vertices)

=⇒

Petrie dual of a generalized Cayley map is a generalized
Cayley map
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Petrie Dual of an Orientable Generalized Cayley Map

Lemma
IfM is an orientable map, then P(M) is orientable if and only if
the underlying graph of M is bipartite.

Theorem (R.J., Širáň and Wang, 2016+)

1. The Petrie dual of a Cayley map CM(G ,X , p) whose
underlying Cayley graph C (G ,X ) is bipartite with an index 2
subgroup K is the orientable non-Cayley generalized Cayley
map GCM(G ,K ,X , p).

2. The Petrie dual of GCM(G ,K ,X , p) is the Cayley map
CM(G ,X , p) whose underlying Cayley graph C (G ,X ) is
bipartite.
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Give Credit Where Deserved

Jin-Ho Kwak and Young-Soo Kwon, 2006

I characterized non-orientable self-Petrie dual generalized Cayley
maps via the existence of a group automorphism of the
underlying group and a special permutation of [d ]

I constructed an infinite family of non-orientable regular
generalized Cayley maps

I constructed an infinite family of non-orientable self-Petrie dual
generalized Cayley maps
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¡Gracias!
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