The intersection property on *k*-orbit polytopes

Elías Mochán jaime.mochan@im.unam.mx

Instituto de Matemáticas, UNAM

SIGMAP Morelia, Mexico June 25, 2018

Maniplex

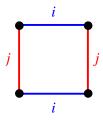
Definition

Let \mathcal{M} be connected simple graph with a proper edge coloring $c : \mathcal{M} \to \{0, \ldots, n-1\}$. We say that \mathcal{M} is an *n*-maniplex if whenever |i - j| > 1, all paths of length 4 that alternate colors between i and j are closed.

Maniplex

Definition

Let \mathcal{M} be connected simple graph with a proper edge coloring $c : \mathcal{M} \to \{0, \ldots, n-1\}$. We say that \mathcal{M} is an *n*-maniplex if whenever |i - j| > 1, all paths of length 4 that alternate colors between *i* and *j* are closed.

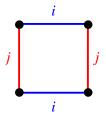


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Maniplex

Definition

Let \mathcal{M} be connected simple graph with a proper edge coloring $c : \mathcal{M} \to \{0, \ldots, n-1\}$. We say that \mathcal{M} is an *n*-maniplex if whenever |i - j| > 1, all paths of length 4 that alternate colors between *i* and *j* are closed.



Examples of maniplexes are the flag graphs of polytopes and maps, hence the vertices of a maniplex are often refered to as flags.

Polytopality of maniplexes

Definition

A maniplex satisfies the path intersection property (PIP) if whenever two vertices Φ and Ψ are connected by some path with colors in a set I and another path with colors in J, then they are connected by a path with colors in I \cap J.

Polytopality of maniplexes

Definition

A maniplex satisfies the path intersection property (PIP) if whenever two vertices Φ and Ψ are connected by some path with colors in a set I and another path with colors in J, then they are connected by a path with colors in I \cap J.

Theorem

Garza-Vargas and Hubard, 2018 A maniplex \mathcal{M} is the flag graph of a polytope if and only if it satisfies the PIP.

Definition

Let \mathcal{M} be a maniplex and let $\Gamma(\mathcal{M})$ be its automorphism group. Let $H < \Gamma(\mathcal{M})$. We define the symmetry type graph (STG) of \mathcal{M} with respect to H to be the quotient $\mathcal{T}(\mathcal{M}, H) := \mathcal{M}/H$.

Definition

Let \mathcal{M} be a maniplex and let $\Gamma(\mathcal{M})$ be its automorphism group. Let $H < \Gamma(\mathcal{M})$. We define the symmetry type graph (STG) of \mathcal{M} with respect to H to be the quotient $\mathcal{T}(\mathcal{M}, H) := \mathcal{M}/H$.

Vertices of $\mathcal{T}(\mathcal{M}, H) = \text{flag orbits under } H$.

Definition

Let \mathcal{M} be a maniplex and let $\Gamma(\mathcal{M})$ be its automorphism group. Let $H < \Gamma(\mathcal{M})$. We define the symmetry type graph (STG) of \mathcal{M} with respect to H to be the quotient $\mathcal{T}(\mathcal{M}, H) := \mathcal{M}/H$.

Vertices of $\mathcal{T}(\mathcal{M}, H) = \text{flag orbits under } H$. If there's an edge of color *i* between Φ and Ψ on \Rightarrow there's an edge of color *i* between their orbits.

Definition

Let \mathcal{M} be a maniplex and let $\Gamma(\mathcal{M})$ be its automorphism group. Let $H < \Gamma(\mathcal{M})$. We define the symmetry type graph (STG) of \mathcal{M} with respect to H to be the quotient $\mathcal{T}(\mathcal{M}, H) := \mathcal{M}/H$. Vertices of $\mathcal{T}(\mathcal{M}, H) = \text{flag orbits under } H$. If there's an edge of color i between Φ and W on \Rightarrow there's an

If there's an edge of color *i* between Φ and Ψ on \Rightarrow there's an edge of color *i* between their orbits. If they are on the same orbit we draw a semi-edge on that orbit (not a loop).

The STG of a maniplex is a "non-simple maniplex", that is:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

The STG of a maniplex is a "non-simple maniplex", that is:

T(*M*, *H*) is an *n*-valent connected graph with a proper edge coloring *c* : *E* → {0, 1, ..., *n* − 1}.

The STG of a maniplex is a "non-simple maniplex", that is:

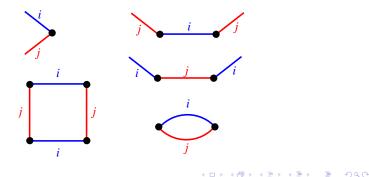
 T(M, H) is an n-valent connected graph with a proper edge coloring c : E → {0, 1, ..., n − 1}.

If |i − j| > 1 then the paths of length 4 in T(M, H) that alternate color between i and j are closed.

The STG of a maniplex is a "non-simple maniplex", that is:

- T(M, H) is an n-valent connected graph with a proper edge coloring c : E → {0, 1, ..., n − 1}.
- If |i − j| > 1 then the paths of length 4 in T(M, H) that alternate color between i and j are closed.

Connected components of the graph induced by edges of colors colors i and j are one of the following:



To recover a maniplex from one of its quotients we need to use a voltage assignment.

To recover a maniplex from one of its quotients we need to use a voltage assignment.

Definition

Given a graph X, its fundamental groupoid is the set of its reduced paths together with the (partial) operation "concatenation+reduction". It is denoted by $\Pi(X)$.

To recover a maniplex from one of its quotients we need to use a voltage assignment.

Definition

Given a graph X, its fundamental groupoid is the set of its reduced paths together with the (partial) operation "concatenation+reduction". It is denoted by $\Pi(X)$. Given a vertex x in X, we denote the (fundamental) group of closed paths based at x as $\Pi^{x}(X)$.

Definition

Let X be a graph. A voltage assignment is a (groupoid) anti-homomorphism $\xi : \Pi(X) \to G$ where G is a group. In this case, G is called the voltage group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Let X be a graph. A voltage assignment is a (groupoid) anti-homomorphism $\xi : \Pi(X) \to G$ where G is a group. In this case, G is called the voltage group.

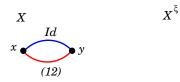
We only need to define the voltage of the arcs of X to define the voltage of all its paths. The voltage of a path is the product of the voltages of its arcs in reverse order.

Given a graph X with a voltage assignment ξ , we may construct a "bigger" derived graph X^{ξ} in the following way:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

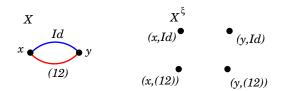
Given a graph X with a voltage assignment ξ , we may construct a "bigger" derived graph X^{ξ} in the following way:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



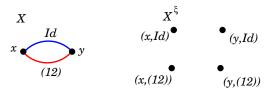
Given a graph X with a voltage assignment ξ , we may construct a "bigger" derived graph X^{ξ} in the following way:

► The vertices of X^ξ are V × G where V is the set of vertices of X.



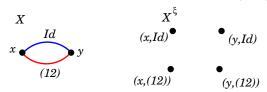
Given a graph X with a voltage assignment ξ , we may construct a "bigger" derived graph X^{ξ} in the following way:

- ► The vertices of X^ξ are V × G where V is the set of vertices of X.
- If there's an arc e from x to y in X, and ξ(e) = γ, then, for all σ ∈ G there's an arc (e, σ) from (x, σ) to (y, γσ) (a lift of e).



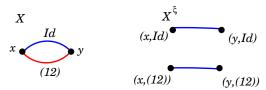
Given a graph X with a voltage assignment ξ , we may construct a "bigger" derived graph X^{ξ} in the following way:

- ► The vertices of X^ξ are V × G where V is the set of vertices of X.
- If there's an arc e from x to y in X, and ξ(e) = γ, then, for all σ ∈ G there's an arc (e, σ) from (x, σ) to (y, γσ) (a lift of e). If e is colored, we give the same color to (e, σ).



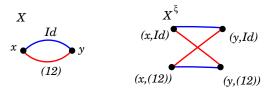
Given a graph X with a voltage assignment ξ , we may construct a "bigger" derived graph X^{ξ} in the following way:

- ► The vertices of X^ξ are V × G where V is the set of vertices of X.
- If there's an arc e from x to y in X, and ξ(e) = γ, then, for all σ ∈ G there's an arc (e, σ) from (x, σ) to (y, γσ) (a lift of e). If e is colored, we give the same color to (e, σ).



Given a graph X with a voltage assignment ξ , we may construct a "bigger" derived graph X^{ξ} in the following way:

- ► The vertices of X^ξ are V × G where V is the set of vertices of X.
- If there's an arc e from x to y in X, and ξ(e) = γ, then, for all σ ∈ G there's an arc (e, σ) from (x, σ) to (y, γσ) (a lift of e). If e is colored, we give the same color to (e, σ).



The voltage group G acts naturally by automorphisms on X^{ξ} :

$$(x,\sigma)\cdot\gamma:=(x,\sigma\gamma)$$

The voltage group G acts naturally by automorphisms on X^{ξ} :

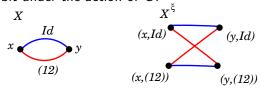
$$(x,\sigma)\cdot\gamma:=(x,\sigma\gamma)$$

We can recover X from X^{ξ} by identifying the vertices that are on the same orbit under the action of G.

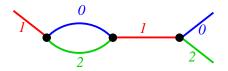
The voltage group G acts naturally by automorphisms on X^{ξ} :

$$(x,\sigma)\cdot\gamma:=(x,\sigma\gamma)$$

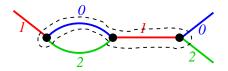
We can recover X from X^{ξ} by identifying the vertices that are on the same orbit under the action of G.

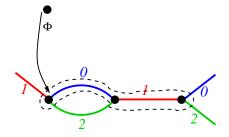


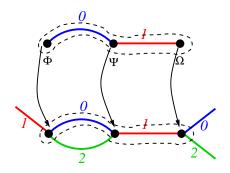
There's always a voltage assignment which recovers $\mathcal M$ from $\mathcal T(\mathcal M, \mathcal H)$:

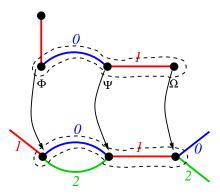


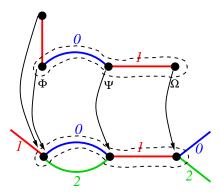
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●



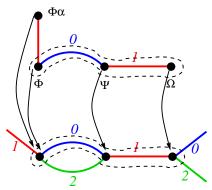




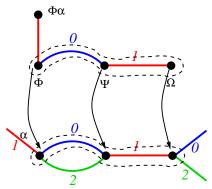


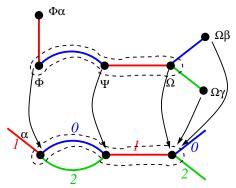


There's always a voltage assignment which recovers $\mathcal M$ from $\mathcal T(\mathcal M, \mathcal H)$:

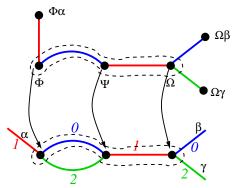


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

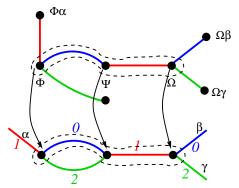


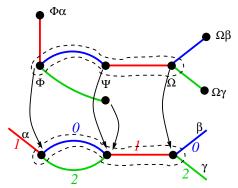


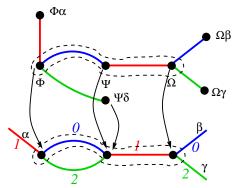
There's always a voltage assignment which recovers $\mathcal M$ from $\mathcal T(\mathcal M, \mathcal H)$:



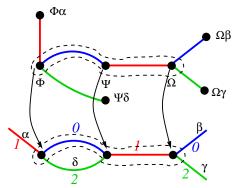
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



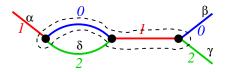




There's always a voltage assignment which recovers $\mathcal M$ from $\mathcal T(\mathcal M, \mathcal H)$:



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Theorem

Let X be a "non-simple" maniplex and let $\xi : \Pi(X) \to G$ be a voltage assignment. Then:

Theorem

Let X be a "non-simple" maniplex and let $\xi : \Pi(X) \to G$ be a voltage assignment. Then:

• X^{ξ} is connected iff $\xi(\Pi^{\times}(X)) = G$.

Theorem

Let X be a "non-simple" maniplex and let $\xi : \Pi(X) \to G$ be a voltage assignment. Then:

 X^ξ is connected iff ξ(Π[×](X)) = G.If X has a spanning tree with all of its arcs with trivial voltage (it's always possible), this is equivalent to G been generated by the voltages of all the other arcs.

Theorem

Let X be a "non-simple" maniplex and let $\xi : \Pi(X) \to G$ be a voltage assignment. Then:

- X^ξ is connected iff ξ(Π[×](X)) = G.If X has a spanning tree with all of its arcs with trivial voltage (it's always possible), this is equivalent to G been generated by the voltages of all the other arcs.
- X^ξ is simple iff all semi-edges have non-trivial voltage and all pairs of paralel edges have different voltages.

Theorem

Let X be a "non-simple" maniplex and let $\xi : \Pi(X) \to G$ be a voltage assignment. Then:

- X^ξ is connected iff ξ(Π[×](X)) = G.If X has a spanning tree with all of its arcs with trivial voltage (it's always possible), this is equivalent to G been generated by the voltages of all the other arcs.
- X^ξ is simple iff all semi-edges have non-trivial voltage and all pairs of paralel edges have different voltages.
- X^ξ is a maniplex iff both previous conditions hold, and whenever |i − j| > 1, the voltage of any path of length 4 that alternates colors between i and j is trivial.

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - の Q @

 X^{ξ} is the flag graph of a polytope iff it's a maniplex satisfying the PIP.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 X^{ξ} is the flag graph of a polytope iff it's a maniplex satisfying the PIP. $_$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let \widetilde{W} be a path from (x, σ) to (y, τ) with set of colors *I*.

 X^{ξ} is the flag graph of a polytope iff it's a maniplex satisfying the PIP.

Let W be a path from (x, σ) to (y, τ) with set of colors I. Its projection W is a path from x to y with voltage $\gamma = \tau \sigma^{-1}$ with set of colors I.

 X^{ξ} is the flag graph of a polytope iff it's a maniplex satisfying the PIP.

Let W be a path from (x, σ) to (y, τ) with set of colors *I*. Its projection *W* is a path from *x* to *y* with voltage $\gamma = \tau \sigma^{-1}$ with set of colors *I*. Let \widetilde{V} be another path from (x, σ) to (y, τ) , but with set of colors *J*.

(日) (同) (三) (三) (三) (○) (○)

 X^{ξ} is the flag graph of a polytope iff it's a maniplex satisfying the PIP.

Let \widetilde{W} be a path from (x, σ) to (y, τ) with set of colors *I*. Its projection *W* is a path from *x* to *y* with voltage $\gamma = \tau \sigma^{-1}$ with set of colors *I*. Let \widetilde{V} be another path from (x, σ) to (y, τ) , but with set of colors *J*. Its projection *V* is a path from *x* to *y* with set of colors *J* and voltage γ .

(日) (同) (三) (三) (三) (○) (○)

 X^{ξ} is the flag graph of a polytope iff it's a maniplex satisfying the PIP.

Let W be a path from (x, σ) to (y, τ) with set of colors I. Its projection W is a path from x to y with voltage $\gamma = \tau \sigma^{-1}$ with set of colors I. Let \widetilde{V} be another path from (x, σ) to (y, τ) , but with set of colors J. Its projection V is a path from x to y with set of colors J and voltage γ . If X^{ξ} satisfies the PIP, then there's a path \widetilde{P} from (x, σ) to (y, τ) with set of colors $I \cap J$.

(日) (同) (三) (三) (三) (○) (○)

 X^{ξ} is the flag graph of a polytope iff it's a maniplex satisfying the PIP.

Let \widetilde{W} be a path from (x, σ) to (y, τ) with set of colors *I*. Its projection W is a path from x to y with voltage $\gamma = \tau \sigma^{-1}$ with set of colors *I*. Let \widetilde{V} be another path from (x, σ) to (y, τ) , but with set of colors *J*. Its projection V is a path from x to y with set of colors *J* and voltage γ . If X^{ξ} satisfies the PIP, then there's a path \widetilde{P} from (x, σ) to (y, τ) with set of colors $I \cap J$. Its projection is a path P from x to y with set of colors $I \cap J$ and voltage γ .

Definition

Let X be a non-simple maniplex. Let x and y be vertices and let I be a set of colors. We define $\Pi_I^{x,y}(X)$ as the set of reduced paths from x to y that use colors in I.

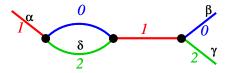
Definition

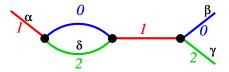
Let X be a non-simple maniplex. Let x and y be vertices and let I be a set of colors. We define $\Pi_I^{x,y}(X)$ as the set of reduced paths from x to y that use colors in I.

Theorem

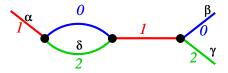
Let X be a non-simple maniplex and $\xi : \Pi(X) \to G$ a voltage assignment such that X^{ξ} is a maniplex. Then X^{ξ} is the flag graph of a polytope if and only if for every two vertices x and y and any two sets of colors I and J the following condition holds:

$$\xi(\Pi_I^{x,y}) \cap \xi(\Pi_J^{x,y}) = \xi(\Pi_{I \cap J}^{x,y}).$$



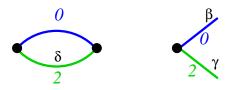


• Connected:
$$G = \langle \alpha, \beta, \gamma, \delta \rangle$$
.



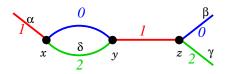
- Connected: $G = \langle \alpha, \beta, \gamma, \delta \rangle$.
- ▶ Simple: $\alpha, \beta, \gamma, \delta \neq 1$ and $\beta \neq \gamma$. In particular α, β and γ are involutions.

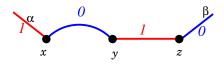
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



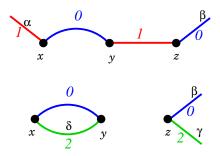
- Connected: $G = \langle \alpha, \beta, \gamma, \delta \rangle$.
- Simple: α, β, γ, δ ≠ 1 and β ≠ γ. In particular α, β and γ are involutions.

• Maniplex: $\delta^2 = 1$ and $(\beta \gamma)^2 = 1$.



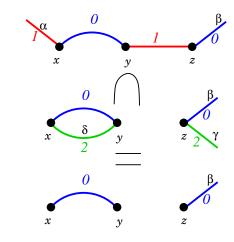


•
$$\xi(\Pi_{\{0,1\}}^x) = \langle \alpha, \beta \rangle.$$

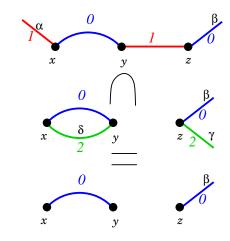


•
$$\xi(\Pi_{\{0,1\}}^{\mathsf{x}}) = \langle \alpha, \beta \rangle.$$

• $\xi(\Pi_{\{0,2\}}^{\mathsf{x}}) = \langle \delta \rangle.$

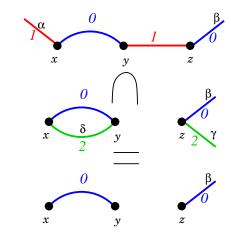


• $\xi(\Pi_{\{0,1\}}^{x}) = \langle \alpha, \beta \rangle.$ • $\xi(\Pi_{\{0,2\}}^{x}) = \langle \delta \rangle.$ • $\xi(\Pi_{\{0\}}^{x}) = 1.$



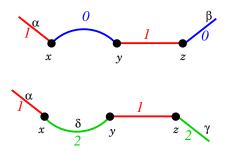
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- $\xi(\Pi_{\{0,1\}}^{\mathsf{x}}) = \langle \alpha, \beta \rangle.$ $\xi(\Pi_{\{0,2\}}^{\mathsf{x}}) = \langle \delta \rangle.$ $\xi(\Pi_{\{0\}}^{\mathsf{x}}) = 1.$
- $\blacktriangleright :: \langle \alpha, \beta \rangle \cap \langle \delta \rangle = 1.$



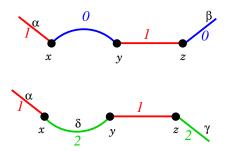
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\begin{aligned} & \xi(\Pi^{z}_{\{0,1\}}) = \langle \alpha, \beta \rangle. \\ & \xi(\Pi^{z}_{\{0,2\}}) = \langle \beta, \gamma \rangle. \\ & \xi(\Pi^{z}_{\{0\}}) = \langle \beta \rangle. \\ & \xi(\Pi^{z}_{\{0\}}) = \langle \beta, \gamma \rangle = \langle \beta \rangle. \end{aligned}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

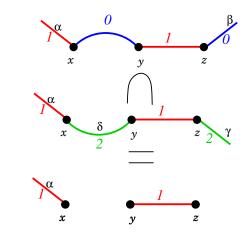
•
$$\xi(\Pi_{\{0,1\}}^x) = \langle \alpha, \beta \rangle.$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

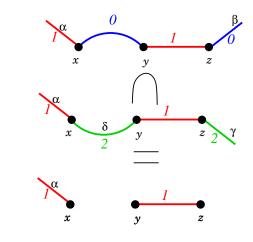
•
$$\xi(\Pi_{\{0,1\}}^{\mathsf{x}}) = \langle \alpha, \beta \rangle.$$

• $\xi(\Pi_{\{1,2\}}^{\mathsf{x}}) = \langle \alpha, \gamma^{\delta} \rangle.$



•
$$\xi(\Pi_{\{0,1\}}^{\times}) = \langle \alpha, \beta \rangle.$$

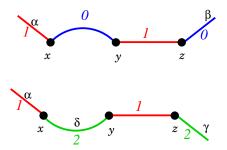
• $\xi(\Pi_{\{1,2\}}^{\times}) = \langle \alpha, \gamma^{\delta} \rangle.$
• $\xi(\Pi_{\{1\}}^{\times}) = \langle \alpha \rangle.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

►
$$\xi(\Pi_{\{0,1\}}^{x}) = \langle \alpha, \beta \rangle.$$

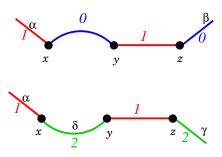
► $\xi(\Pi_{\{1,2\}}^{x}) = \langle \alpha, \gamma^{\delta} \rangle.$
► $\xi(\Pi_{\{1\}}^{x}) = \langle \alpha \rangle.$
► $\therefore \langle \alpha, \beta \rangle \cap \langle \alpha, \gamma^{\delta} \rangle = \langle \alpha \rangle.$



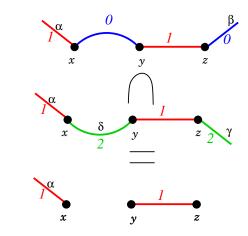
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•
$$\xi(\Pi_{\{0,1\}}^{x,y}) = \langle \alpha, \beta \rangle.$$

• $\xi(\Pi_{\{0,1\}}^{x,y}) = \langle \alpha, \beta \rangle.$ • $\xi(\Pi_{\{1,2\}}^{x,y}) = \delta \langle \alpha, \gamma^{\delta} \rangle.$



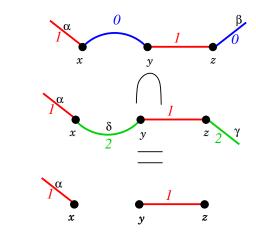
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



•
$$\xi(\Pi_{\{0,1\}}^{x,y}) = \langle \alpha, \beta \rangle.$$

$$\xi(\Pi_{\{0,1\}}) = \langle \alpha, \beta \rangle.$$

$$\xi(\Pi_{\{1,2\}}^{x,y}) = \delta \langle \alpha, \gamma^{\delta} \rangle.$$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- $\xi(\Pi_{\{0,1\}}^{x,y}) = \langle \alpha, \beta \rangle.$
- $\xi(\prod_{\{1,2\}}^{x,y}) = \delta\langle \alpha, \gamma^{\delta} \rangle.$
- $\xi(\Pi_{\{1\}}^{\hat{\mathbf{x}},\hat{\mathbf{y}}}) = \emptyset.$ $\therefore \langle \alpha, \beta \rangle \cap \delta \langle \alpha, \gamma^{\delta} \rangle = \emptyset.$

Using this method we get these seven conditions (and many other trivial ones):

- $\blacktriangleright \ \langle \alpha, \beta \rangle \cap \langle \delta \rangle = 1$
- $\blacktriangleright \ \langle \alpha, \beta \rangle \cap \langle \beta, \gamma \rangle = \langle \beta \rangle$
- $\blacktriangleright \langle \alpha, \beta \rangle \cap \langle \alpha, \gamma^{\delta} \rangle = \langle \alpha \rangle$
- $\blacktriangleright \langle \alpha, \beta \rangle \cap \langle \alpha^{\delta}, \gamma \rangle = 1$

$$\blacktriangleright \langle \alpha, \beta \rangle \cap \delta \langle \alpha, \gamma^{\delta} \rangle = \emptyset$$

$$\blacktriangleright \langle \delta \rangle \cap \langle \alpha, \gamma^{\delta} \rangle = 1$$

$$\blacktriangleright \ \langle \beta, \gamma \rangle \cap \langle \alpha^{\delta}, \gamma \rangle = \langle \gamma \rangle$$

Using this method we get these seven conditions (and many other trivial ones):

- $\blacktriangleright \ \langle \alpha, \beta \rangle \cap \langle \delta \rangle = 1$
- $\blacktriangleright \ \langle \alpha, \beta \rangle \cap \langle \beta, \gamma \rangle = \langle \beta \rangle$
- $\blacktriangleright \langle \alpha, \beta \rangle \cap \langle \alpha, \gamma^{\delta} \rangle = \langle \alpha \rangle$
- $\blacktriangleright \ \langle \alpha,\beta\rangle \cap \langle \alpha^{\delta},\gamma\rangle = 1$

$$\blacktriangleright \langle \alpha, \beta \rangle \cap \delta \langle \alpha, \gamma^{\delta} \rangle = \emptyset$$

$$\blacktriangleright \langle \delta \rangle \cap \langle \alpha, \gamma^{\delta} \rangle = 1$$

$$\blacktriangleright \ \langle \beta, \gamma \rangle \cap \langle \alpha^{\delta}, \gamma \rangle = \langle \gamma \rangle$$

Theorem

Let H be a group. There exists a polytope \mathcal{P} such sthat $H < \Gamma(\mathcal{P})$ and $\mathcal{T}(\mathcal{P}, H)$ is the graph from the example iff H is generated by four involutions $\alpha, \beta, \gamma, \delta$ such that $(\beta\gamma)^2 = 1$ and the previous intersection properties hold.

Thank you!