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The evolution equation in terms of a real clock variable

Given a physical situation of interest described by a (multi-dimensional)
phase space q, p we start by choosing a " "clock". By this we mean a

physical quantity (more precisely a set of quantities, like when one chooses a
clock and a calendar to monitor periods of more than a day) that we

will use to keep track of the passage of time.

An example of such a variable could be the angular position of the hand

of an analog watch. Let us denote it by T7(q,p). We then identify some physical
variables that we wish to study as a function of time. We shall call

them generically O(q,p).

We then quantize the system and work in the Heisenberg picture

Notice that we are not in any way modifying quantum mechanics. We
assume that the system has a Hamiltonian evolution in terms of an external
parameter t, which is a classical variable.
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The reason for the integrals is that we do not know for what value of the
external ideal time t the clock will take the value

If one assumes that the clocks and the observed system are independent one can
show that the system will be governed by an effective density matrix given by:

pT) = [ dtUuya(t) prysUnya (1) P1(T)

Where P the probability density that the measurement of the clock variable
takes the value T when the ideal time takes the value t .

Unitarity is lost since one ends up with a density matrix that is a superposition of
density matrices associated with different values of .




If we assume that the “real clock" is behaving semi-classically the probability
distribution will be a very picked function concentrated in a neighborhood of the
the ideal time t that spreads slowly with time.
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Limitations to how good a clock or a rod can be

We have established that when we study quantum mechanics with a
physical clock, unitarity is lost, and pure states evolve into mixed states.
The effects are more pronounced the worse the clock is.

Which raises the question: is there a fundamental limitation to how good a

clock can be? As we don’t have a complete quantum gravity theory

this is a contentious point: | will mention three independent arguments leading to
an estimate of such a limitation:




A) Salecker and Wigner (1957) and Ng and van Dam (1995)
They noted that the accuracy of a clock is limited by quantum uncertainties

The amount of mass of the clock cannot be
increased indefinitely. if one piles up enough
mass in a concentrated region of space one
ends up with a black hole.

There is a corresponding
uncertainty for the measurements
of lengths.

B) S.Lloyd and J. Ng Scientific American 291 52 (2004) Giovannetti, Lloyd and
Maccone Science 306 1330 (2004)

In order to map out the geometry of spacetime they fill space with clocks exchanging
signals with the other clocks and measuring their time of arrival, like the GPS. We

can think of this procedure as a special kind of computation. Making use of the
Margolus Levitin theorem they prove that the total number of elementary computations
per unit volume is bounded by:

And from here they argue that each computation will require a cell of volume

And therefore the cells are
separated by an average distance




Notice that this limitation for the measurement of length and times is also related
with the holographic bound if one assumes an entropy per cell of order one.

This limits were obtained from heuristic considerations. Is there a derivation from
first principles of these bounds? We don’t have a complete theory of quantum
gravity but...

We have recently established that the kinematical structure of loop quantum gravity
in spherical symmetry implies the holographic principle irrespective of the details of
the dynamics. It stems from the fact that the elementary volume that any dynamical

operator may involve goes as

These limitation on the
the time measurements lead
to loss of coherence.
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Real rods and loss of entanglement.

In field theory both time and spatial coordinates are ideal elements. Let us
consider non relativistic electrons and let us suppose that we want to compute
the probability of finding one electron with certaln spln in certain region whose
position determined by real rods is given by: ;




P(s,| X') = [T1dx& (X7)Tr(P (£,) )

Where P is the probability density that the measurement@d occurs at

Due to the limitations in the measurements of lengths P is not a Dirac delta.
One may consider that P is a Gaussian whose spread grows with the distance
between the origin of the rods and the detector. B 2137, 13

o =1"I(X)"

This effect induces entanglement loss when the system is composed by widely
separated portions.




Implications for the measurement problem of quantum
mechanics.

The measurement problem in quantum mechanics is related to the fact that in
ordinary quantum mechanics the measurement apparatus is assumed to be
always in an eigenstate after a measurement has been performed.

The usual explanation for this is that there exists interaction with the environment.

Decoherence then quickly damps superpositions between the localized
preferred states when only the system is considered. This is taken as an
explanation of the appearance to a local observer of a ""classical" world of
determinate, "“objective"” (robust) properties.

The main problem with such a point of view is how is one to interpret the local
suppression of interference in spite of the fact that the total state describing the
system-environment combination retains full coherence. One may raise the
question whether retention of the full coherence could ever lead to empirical
conflicts with the ascription of definite values to macroscopic systems




The usual point of view is that it would be very difficult to reconstruct the off
diagonal elements of the density matrix in practical circumstances. However, at
least as a matter of principle, one could indeed reconstruct such terms

The evolution of the whole system remains unitary and the coherence of the
measurement device will eventually reappear (revivals) .

The fundamental decoherence induced by real clocks suppresses

exponentially the off diagonal terms of the density matrix. Revivals of these terms
cannot occur no matter how long one waits.

W. Zurek, Phys. Rev. D26, 1862 (1982).
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If the initial state JEAAUREN of the system plus the measurement device is in a

quantum superposition, due to the coupling with the environment, the reduced density
matrix obtained by taking the trace over the environment degrees of freedom is

pe(t) = |af* [+ >< +|+ B[ >< [+ 2(t)ab" |+ >< —| + 2" (t)a"b|— >< +],

If z(t) vanishes the reduced density matrix is a “proper mixture” representing several
outcomes with its corresponding probabilities.

But z(t) is a multiperiodic function that will retake the initial value for sufficiently large
times. (Poincare Recurrence)

Although this time is usually large, perhaps exceeding the age of the universe,
at least in principle it implies that the measurement process does not correspond to a
change from a pure to a mixed state in a fundamental way.

If one redoes the derivation using the effective equation we derived for
quantum mechanics with real clocks one gets:
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If one includes real clocks in quantum mechanics revivals are avoided and the pure
states resulting from environment decoherence appear to be experimentally
undistinguishable from mixed states.

Other procedures for distinguishing between pure and mixed states of the complete
system including environment have been proposed.

By analyzing these proposals we were led to conjecture that when real rods

and clocks are taken into account the transition from the pure states resulting from
environment decoherence to mixed states seem to be totally unobservable, not
only “for all practical purposes” as is usually claimed but because of reasons of
principle related with the fundamental structure of spacetime.

Of course, even if the measuring device is after the measurement in a “proper
mixture”, problems still persist with the interpretation of quantum mechanics.

We need to explain why we only observe one alternative and not the superposition
characteristic of the quantum systems.




