# QUANTIZATION OF EINSTEIN-ROSEN WAVES COUPLED WITH MATTER

Phys. Rev. Lett. **95**, 051301 (2005) Phys. Rev. **D74**, 044004 (2006)

### Iñaki Garay

(In Coll. with J. Fernando Barbero G. and Eduardo J. S. Villaseñor)

Instituto de Estructura de la Materia (IEM), CSIC

Morelia, June 2007



#### CLASSICAL TREATMENT

The model
 Symmetry reduction
 Hamiltonian formalism
 Equations of motion

#### QUANTIZATION

- ⑤ Canonical quantization
- <sup>®</sup> Two point function
- ⑦ Position space interpretation
  - ✦ Newton-Wigner states
  - ✦ Radial wave function
- Onclusions
   Onclusions
   Onclusion
   Onclus

### **ER waves** + **massless scalar field**

Solutions of General Relativity coupled to a massless scalar field with two commuting, spacelike, hypersurface orthogonal Killing vector fields (one translational and one rotational). Twist:  $\omega_a = 0$ 

$${}^{4}S({}^{(4)}g_{ab},\Phi_{s}) = \frac{1}{16\pi G_{N}} \int_{\mathcal{M}\times Z} |{}^{(4)}g|^{1/2} \Big[{}^{(4)}\mathbf{R} - \frac{1}{2}{}^{(4)}g^{ab}\nabla_{a}\Phi_{s}\nabla_{b}\Phi_{s}\Big] + \frac{1}{8\pi G_{N}} \int_{\partial(\mathcal{M}\times Z)} (|{}^{(3)}h|^{1/2}{}^{(3)}K - |{}^{(3)}h^{0}|^{1/2}{}^{(3)}K^{0})$$

### **ER waves** + **massless scalar field**

Solutions of General Relativity coupled to a massless scalar field with two commuting, spacelike, hypersurface orthogonal Killing vector fields (one translational and one rotational). Twist:  $\omega_a = 0$ 

$${}^{4}S({}^{(4)}g_{ab},\Phi_{s}) = \frac{1}{16\pi G_{N}} \int_{\mathcal{M}\times Z} |{}^{(4)}g|^{1/2} \Big[{}^{(4)}\mathbf{R} - \frac{1}{2}{}^{(4)}g^{ab}\nabla_{a}\Phi_{s}\nabla_{b}\Phi_{s}\Big] + \frac{1}{8\pi G_{N}} \int_{\partial(\mathcal{M}\times Z)} (|{}^{(3)}h|^{1/2}{}^{(3)}K - |{}^{(3)}h^{0}|^{1/2}{}^{(3)}K^{0})$$

- Infinite number of d.o.f. and radial diff. invariance
- Exact quantization (Backreaction)
- External field to study the quantum geometry

# Symmetry reduction

✤ Geroch reduction + conformal transformation of the metric

✤ Equivalent action in 2+1 dimensions:

$${}^{3}S(g_{ab},\phi_{g},\phi_{s}) = \frac{1}{16\pi G_{3}} \int_{\mathcal{M}} |g|^{1/2} [\,{}^{(3)}\mathbf{R} - \frac{1}{2} g^{ab} \nabla_{a} \phi_{g} \nabla_{b} \phi_{g} \\ - \frac{1}{2} g^{ab} \nabla_{a} \phi_{s} \nabla_{b} \phi_{s}] + \frac{1}{8\pi G_{3}} \int_{\partial \mathcal{M}} (|h|^{1/2} \mathbf{K} - |h^{0}|^{1/2} K^{0})$$

 $\phi_g = \log(^4g_{ab}\,\xi^a\,\xi^b)$ 

- $\phi_g$  encodes the gravitational degrees of freedom
- $\phi_g$ -term and  $\phi_s$ -term have the same form
- $\phi_g$  and  $\phi_s$  are coupled through the metric

### Hamiltonian Formalism

[Ashtekar and Pierri, J. Math. Phys. 37, 6250 (1996)]

- Solutions asymptotically flat (in 2+1)
- ◆ Preferred foliation (*t<sup>a</sup>* Killing at infinity)
- Gauge fixing + Solve the constraints

$$H = \frac{1}{4G_3} (1 - e^{-H_0/2})$$

$$H_0 = \sum_{i=s,g} \frac{1}{2} \int_0^\infty d\rho \, \frac{1}{\rho} \Big( (8G_3 p_i)^2 + \rho^2 \phi_i'^2 \Big)$$

• *H*<sup>0</sup> is the Hamiltonian of two free, axially symmetric scalar fields in 2+1 dimensions

### **Equations of motion**

$$\dot{\phi}_{i} = \frac{\delta H}{\delta p_{i}} = e^{-H_{0}/2} \frac{(8G_{3}p_{i})}{r}$$
$$\dot{p}_{i} = -\frac{\delta H}{\delta \phi_{i}} = \frac{1}{8G_{3}} e^{-H_{0}/2} (r\phi_{i}')'$$

# **Equations of motion**

$$\dot{\phi}_i = \frac{\delta H}{\delta p_i} = e^{-H_0/2} \frac{(8G_3 p_i)}{r}$$
$$\dot{p}_i = -\frac{\delta H}{\delta \phi_i} = \frac{1}{8G_3} e^{-H_0/2} (r\phi_i')'$$

- For every solution,  $H_0$  is a constant of motion
- Solution dependent time variable:  $T = e^{-H_0/2} t$

$$\partial_T^2 \phi_g - \phi_g^{\prime\prime} - \frac{1}{r} \phi_g^{\prime} = 0$$
$$\partial_T^2 \phi_s - \phi_s^{\prime\prime} - \frac{1}{r} \phi_s^{\prime} = 0$$

• Equations for two free massless, axially symmetric scalar fields in 2+1 dimensions

### **Canonical quantization**



### **Canonical quantization**

- Two Fock Spaces:  $\mathcal{F}_g$  ,  $\mathcal{F}_s$
- Hilbert Space:  $\mathcal{H} = \mathcal{F}_g \otimes \mathcal{F}_s$
- Creation and annihilation operators:  $[\hat{a}_{g,s}(k), \hat{a}_{g,s}^{\dagger}(q)] = \delta(k,q)$

$$\hat{A}_{g}^{\dagger}(k) \equiv \hat{a}_{g}^{\dagger}(k) \otimes \mathbb{I}_{s} \qquad \qquad \hat{A}_{s}^{\dagger}(k) \equiv \mathbb{I}_{g} \otimes \hat{a}_{s}^{\dagger}(k)$$



### **Canonical quantization**

- Two Fock Spaces:  $\mathcal{F}_g$  ,  $\mathcal{F}_s$
- Hilbert Space:  $\mathcal{H} = \mathcal{F}_g \otimes \mathcal{F}_s$
- Creation and annihilation operators:  $[\hat{a}_{g,s}(k), \hat{a}_{g,s}^{\dagger}(q)] = \delta(k,q)$

$$\hat{A}_{g}^{\dagger}(k) \equiv \hat{a}_{g}^{\dagger}(k) \otimes \mathbb{I}_{s} \qquad \qquad \hat{A}_{s}^{\dagger}(k) \equiv \mathbb{I}_{g} \otimes \hat{a}_{s}^{\dagger}(k)$$

$$\hat{\phi}_{g,s}(R) = \sqrt{4G_3\hbar} \int_0^\infty J_0(Rk) \left[ \hat{A}_{g,s}(k) + \hat{A}_{g,s}^{\dagger}(k) \right] dk \qquad [\hat{\phi}_{g,s}(R_1), \hat{p}_{g,s}(R_2)] = i\hbar\delta(R_1, R_2)$$

$$\hat{p}_{g,s}(R) = \frac{iR}{2} \sqrt{\frac{\hbar}{4G_3}} \int_0^\infty k J_0(Rk) \left[ \hat{A}_{g,s}^{\dagger}(k) - \hat{A}_{g,s}(k) \right] dk$$

- Vacuum state:  $|\Omega\rangle = |0\rangle_g \otimes |0\rangle_s$
- One particle states:  $|k\rangle_{g,s} \equiv \hat{A}^{\dagger}_{g,s}(k)|\Omega\rangle$

Quantum Hamiltonian:

$$\hat{H} = \frac{1}{4G_3} \left[ 1 - \exp\left( -4G_3 \hbar \int_0^\infty k \left[ \hat{A}_g^{\dagger}(k) \hat{A}_g(k) + \hat{A}_s^{\dagger}(k) \hat{A}_s(k) \right] dk \right) \right]$$

- Non linear and bounded function of the sum of two free Hamiltonians
- It is an observable of the system (energy)
- ullet The state that most closely resembles Minkowski metric is  $|\Omega
  angle$

Quantum Hamiltonian:

$$\hat{H} = \frac{1}{4G_3} \left[ 1 - \exp\left( -4G_3 \hbar \int_0^\infty k \left[ \hat{A}_g^{\dagger}(k) \hat{A}_g(k) + \hat{A}_s^{\dagger}(k) \hat{A}_s(k) \right] dk \right) \right]$$

- Non linear and bounded function of the sum of two free Hamiltonians
- It is an observable of the system (energy)
- ullet The state that most closely resembles Minkowski metric is  $|\Omega
  angle$

#### Evolution operator:

$$\hat{U}(t,t_0) = \exp\left(-\frac{i(t-t_0)}{\hbar}\hat{H}\right) = \exp\left(-\frac{i(t-t_0)}{4G_3\hbar}\left[1 - e^{-4G_3\hbar(\hat{H}_0^g + \hat{H}_0^s)}\right]\right)$$

- There is no conversion of quanta of one type into the other
- There is no creation nor destruction of particles with the evolution
- It defines the S-matrix of the system
- It is an interacting theory, but the solucion is exact. Non perturbative.
- Length scale of the system:  $4G_3\hbar \equiv 4G$ . "Planck length"

## **Two point function**

Interpretation of propagation amplitudes from one spacetime event to another.

• Adimensional variables:

$$\rho_{1} = \frac{R_{1}}{4G} \qquad \rho_{2} = \frac{R_{2}}{4G} \qquad \tau = \frac{t_{2} - t_{1}}{4G} \qquad q = 4Gk$$
$$\langle \Omega | \hat{\phi}_{s,g}(R_{2}, t_{2}) \hat{\phi}_{s,g}(R_{1}, t_{1}) | \Omega \rangle = \int_{0}^{\infty} J_{0}(\rho_{1}q) J_{0}(\rho_{2}q) \exp[-i\tau(1 - e^{-q})] \, \mathrm{d}q$$

## **Two point function**

Interpretation of propagation amplitudes from one spacetime event to another.

• Adimensional variables:

 $\langle \Omega |$ 

$$\rho_1 = \frac{R_1}{4G} \qquad \rho_2 = \frac{R_2}{4G} \qquad \tau = \frac{t_2 - t_1}{4G} \qquad q = 4Gk$$
$$\hat{\phi}_{s,g}(R_2, t_2)\hat{\phi}_{s,g}(R_1, t_1)|\Omega\rangle = \int_0^\infty J_0(\rho_1 q) J_0(\rho_2 q) \exp[-i\tau(1 - e^{-q})] \,\mathrm{d}q$$

• We extract information using asymptotic techniques



◆ Large probability to find the particle near the axis

✦ Gravitational effect

# **Position space interpretation**

#### Newton-Wigner states:

• Orthonormal basis that mimics the ordinary position eigenstates:

$$|\psi\rangle = \int_0^\infty dR \,\psi(R)|R\rangle \qquad \langle R|\psi\rangle = \psi(R) \qquad \int_0^\infty dR|\psi(R)|^2 = 1$$

where  $|R\rangle$  are the "Newton-Wigner" states:

$$|R\rangle = \int_0^\infty dk \sqrt{kR} J_0(kR) |k\rangle \qquad \langle R|R'\rangle = \delta(R-R')$$

 $J_0(kR)$  is a solution of the radial part of the 2D Schrödinger equation with zero angular momentum. Orthogonality condition implies the factor  $\sqrt{kR}$ .

# **Position space interpretation**

#### Newton-Wigner states:

• Orthonormal basis that mimics the ordinary position eigenstates:

$$|\psi\rangle = \int_0^\infty dR \,\psi(R)|R\rangle \qquad \langle R|\psi\rangle = \psi(R) \qquad \int_0^\infty dR|\psi(R)|^2 = 1$$

where  $|R\rangle$  are the "Newton-Wigner" states:

$$|R\rangle = \int_0^\infty dk \sqrt{kR} J_0(kR) |k\rangle \qquad \langle R|R'\rangle = \delta(R-R')$$

 $J_0(kR)$  is a solution of the radial part of the 2D Schrödinger equation with zero angular momentum. Orthogonality condition implies the factor  $\sqrt{kR}$ .

• Propagator:

$$\langle R|U(t)|r\rangle = \sqrt{Rr} \int_0^\infty dk \, k J_0(rk) J_0(Rk) e^{-itE(k)}$$
$$E(k) = \frac{1}{4G} (1 - e^{-4Gk})$$

✤ Wave function and its evolution:

$$\psi(R,t) = \langle R|U(t)|\psi\rangle = \int_0^\infty dr\,\psi(r)\langle R|U(t)|r\rangle$$

• Specific choice:

$$\psi(r) = \sqrt{\frac{2r}{r_2^2 - r_1^2}} \,\chi_{[r_1, r_2]}(r)$$

• We obtain for the wave function:

$$\psi(R,t) = \sqrt{\frac{2R}{r_2^2 - r_1^2}} \int_0^\infty dk J_0(kR) [r_2 J_1(kr_2) - r_1 J_1(kr_1)] e^{-itE(k)}$$
$$\rho \equiv \frac{R}{4G} \qquad \sigma_{1,2} \equiv \frac{r_{1,2}}{4G} \qquad \tau \equiv \frac{t}{4G} \qquad q \equiv 4Gk$$

$$\psi(\rho,\tau) = \sqrt{\frac{2\rho}{4G(\sigma_2^2 - \sigma_1^2)}} e^{-i\tau} \int_0^\infty dq J_0(q\rho) [\sigma_2 J_1(q\sigma_2) - \sigma_1 J_1(q\sigma_1)] e^{i\tau e^{-q}}$$



#### **Free wave function**





### Conclusions

#### Einstein-Rosen Waves

- ✦ Genuine field theory
- ✦ Radial diff. invariance
- ✦ Can be solved exactly
- ✦ Rich enough to display interesting behavior

#### Adding matter

- ◆ Quantum fields and their particle-like excitations
- ◆ Obtain information about the metric in an operational way
- ◆ Try to see in which regime a classical description arises
- ◆ External probe of quantum geometry

#### Physical effects

- ✦ Interesting physical effects at the symmetry axis
- ◆ Persistence of the amplitudes in the initial support
- ✦ Geodesics (null) of an emergente metric

♦ ...

### Conclusions

#### Einstein-Rosen Waves

- ✦ Genuine field theory
- ✦ Radial diff. invariance
- ✦ Can be solved exactly
- ✦ Rich enough to display interesting behavior

#### Adding matter

- ◆ Quantum fields and their particle-like excitations
- ♦ Obtain information about the metric in an operational way
- ◆ Try to see in which regime a classical description arises
- ✦ External probe of quantum geometry

#### Physical effects

- ✦ Interesting physical effects at the symmetry axis
- ✦ Persistence of the amplitudes in the initial support
- ✦ Geodesics (null) of an emergente metric

