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ER waves + massless scalar field

Solutions of General Relativity coupled to a massless scalar field with
two commuting, spacelike, hypersurface orthogonal Killing vector fields
(one translational and one rotational). Twist: w,; = 0
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¢ [nfinite number of d.o.f. and radial diff. invariance

e Exact quantization (Backreaction)

e External field to study the quantum geometry




Symmetry reduction

< Geroch reduction + conformal transformation of the metric

“ Equivalent action in 2+1 dimensions:
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* ¢, encodes the gravitational degrees of freedom

* po-term and ¢s-term have the same form

* ¢, and ¢s are coupled through the metric



Hamiltonian Formalism

[Ashtekar and Pierri, J. Math. Phys. 37, 6250 (1996)]

< Solutions asymptotically flat (in 2+1)
< Preferred foliation (#” Killing at infinity)
< Gauge fixing + Solve the constraints

< Reduced phase space: ¢ (1), s(7) ,po(7), ps(r)
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* Hy is the Hamiltonian of two free, axially symmetric scalar fields in
2+1 dimensions



Equations of motion
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Equations of motion
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* For every solution, Hy is a constant of motion

e Solution dependent time variable: T = e~ 10/2 ¢
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e Equations for two free massless, axially symmetric scalar
fields in 2+1 dimensions



Canonical quantization




Canonical quantization

* Two Fock Spaces: F¢, F;
* Hilbert Space: H = F, @ Fs

e Creation and annihilation operators: [d¢s(k), ﬁ;s(é] )| =46(k,q)
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Canonical quantization

* Two Fock Spaces: F¢, F;
* Hilbert Space: H = F, @ Fs

e Creation and annihilation operators: [d¢s(k), ﬁ;s(q )| =46(k,q)
Al(k) = al(k) ® 1L A (k) = Ty ® a (k)

ys(R) = VAGHH [ Jo(RK) [Ags(k) + AL(K) dk

poslR) = 5130 |1 KIoRk) [AL(k) — Ags(k)

e Vacuum state: |()) = [0), ® [0)s

[‘ﬁg,S(Rl)rﬁg,S(RZ)] — ih5(R1r RZ)

* One particle states: |k)q s = /\;;S(k) 1Y)



Quantum Hamiltonian:
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e Non linear and bounded function of the sum of two free Hamiltonians
e It is an observable of the system (energy)

e The state that most closely resembles Minkowski metric is |())



Quantum Hamiltonian:
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e Non linear and bounded function of the sum of two free Hamiltonians
e It is an observable of the system (energy)

e The state that most closely resembles Minkowski metric is |())

Evolution operator:

(It 1) = exp ( it ; to) H) — exp ( B i(:lc_;glil()) [1 3 8_4G3h(ﬁ§+Hg)D

* There is no conversion of quanta of one type into the other

* There is no creation nor destruction of particles with the evolution
e [t defines the S-matrix of the system
e [t is an interacting theory, but the solucion is exact. Non perturbative.

e Length scale of the system: 4G3ii = 4G. “Planck length”



Two point function

“ Interpretation of propagation amplitudes
from one spacetime event to another.

e Adimensional variables:
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Two point function

“ Interpretation of propagation amplitudes

from one spacetime event to another.

e Adimensional variables:

Ry R, th — tq

T T T
<Q‘4A)s,g(R2/ t2)435,g(R1/ t1)|Q2) = /0 Jo(019)Jo(029) exp|—it(1 —e " 7)| dg

e We extract information using asymptotic techniques
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4 Large probability to find the particle near the axis

4 Gravitational effect




Position space interpretation

“ Newton-Wigner states:

e Orthonormal basis that mimics the ordinary position eigenstates:

¥ = [ARY(RIR)  (Rlp) =p(R) [ dRIp(R)F =1
where |R) are the “Newton-Wigner” states:
R) = [ dkVARJo(kR) k) (RIR') = 6(R ~ R

Jo(kR) is a solution of the radial part of the 2D Schrodinger equation with

zero angular momentum. Orthogonality condition implies the factor \/kR.
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¥ = [ARY(RIR)  (Rlp) =p(R) [ dRIp(R)F =1
where |R) are the “Newton-Wigner” states:
R) = [ dkVARJo(kR) k) (RIR') = 6(R ~ R

Jo(kR) is a solution of the radial part of the 2D Schrodinger equation with
zero angular momentum. Orthogonality condition implies the factor \/kR.

* Propagator:
(RIU(t)|r) = \/ﬁ/Ooodkk]o(rk)]O(Rk)e—itE<k>

E(k) = z=(1 — e74¢K)



*» Wave function and its evolution:
P(Rt) = (RIU()|yp) = /0 drip(r)(R[U(¢)[r)

e Specific choice:
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e We obtain for the wave function:
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Free wave function
[p|? (free)
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Wide support — “classical” behavior
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Narrow support — quantum-gravity effects
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Conclusions

% Einstein-Rosen Waves

4 Genuine field theory

4+ Radial diff. invariance

4+ Can be solved exactly

4+ Rich enough to display interesting behavior

“ Adding matter

4+ Quantum fields and their particle-like excitations
4 Obtain information about the metric in an operational way
4+ Try to see in which regime a classical description arises

4+ External probe of quantum geometry

< Physical effects

4+ Interesting physical effects at the symmetry axis
4 Persistence of the amplitudes in the initial support

4+ Geodesics (null) of an emergente metric
*
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