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• (quantum) dynamic of background influences dynamics of
perturbations

• backreaction of the perturbations onto background



What are the gauge invariant observables reducing to local
(quantum) field observables?



A gauge invariant Hamiltonian framework for
cosmological perturbations to arbitrary high order

perturbations around symmetry reduced sectors (of gr)

• gauge invariant:
unambigious results, allows characterization of symmetric physical states

• to arbitrary high order:
backreaction, scattering, embedding in full theory

• canonical:
quantization, space–time algebra of observables: locality

• “background” fully dynamical:
definition of physical time parameter, backreaction, effective approach

Do not perturb around fixed background metric but around phas e space
sector describing configurations with high symmetry.
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Subdivide phase space

phase space =
space of fields on Σ

P = projection acting on
phase space functions

P [functions]

� averaging

E =
1
3

∫

Σ

Ea
j δ

j
a dσ

� evaluation on a “background”
phase space point

δa
j = Ea

j (flat space)

(Id − P)[functions]

� inhomogeneities

ea
j = Ea

j − Eδa
j

� perturbations

e′a
j = Ea

j − δa
j



Homogeneous and inhomogeneous variables

• subdivision consistent with symplectic structure

• homogeneous variables arise through averaging from full phase
space

• are fully dynamical → provide global clocks, important for
invariance to higher order

• homogeneous variables (� A, E) are zeroth order

• inhomogeneous (canonical) variables (� aj
a, eb

k ) are first order

• no higher order variables

• higher order terms are polynomials of first order variables



How to compute gauge invariant observables?



Complete Observables C.Rovelli ’90s, B.D. 04,05

time

space

solution of EOM

phase space variables

f [τ ]

initial data hypersurface Σ

T = τ
time evol.
gauge trafo

• clocks T : specify position and
shape of hypersurfaces by
T = τ

• f [τ ] gives value of phase
space function f on
hypersurface T = τ

• f [τ ] is invariant under
changes of initial data
hypersurface Σ
(i.e. gauge tranformations)



Compute complete observables B.D. 04,05

• use clock adapted gauge generators C̃K : generate weakly Abelian gauge
flows

• this allows for a power series expansion of the complete observable

f [τ ] ≃
∞
∑

r=0

1
r !

{· · · { f , C̃K1}, · · · }C̃Kr} (τK1 − T K1) · · · (τKr − T Kr )



• for a certain set of clocks this power series expansion can be
used to expand the complet observable order by order

• results in gauge invariant observables of order m

• contact with standard perturbation theory:
terms can be interpreted as

• free propagation
• interaction terms
• gauge invariant extension terms



Clocks

• first order clocks (no zeroth order term) describe shape of hypersurface
T K = τK = 0

� longitudinal clocks: T 0 = ∆−1( 1
2

T ad
d −

LLad
d)

related to longitudinal gauge, non–local

� scalar field (inhomogeneities) as clocks: T 0 = ψ

local description of hypersurface

• global zeroth order clock (no first order term) describes position of
hypersurface, provide global time parameter, associated generator C̃
T = τ

� volume of hypersurface T = VolΣ
� averaged scalar field T = Ψ

These clocks allow for a consistent expansion of the complet e
observables for arbitrary values of τ .



Perturbative complete observables

reorder terms in power series expansion for f [τ ]
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Perturbative complete observables

(2)f [τ ] = α
(τ−T )
free (f ) “free” propagation

−
∑

K
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free (f ), (1)C̃K}T K gauge invariant extension

+

∫ (τ−T )

0
ds α

(τ−T−s)
free

(

(2){αs
free(f ), C̃}

)

interaction term

+gauge invariant extension of interaction term

Can be extended to any order.



• We can compute gauge invariant observables order by order.
• These observables encode local information.
• Moreover time evolution with respect to a physical clock can

also be implemented perturbatively.



Locality properties

scalar fields as clocks

{f [τ ], f [τ ′]]} = 0
for τ, τ ′ space–like related

{f [τ ], f [τ + ǫ]]}

= G(τ , τ + ǫ)
(

1 + Energy(f)
Energy(clocks)

)

cannot make Energy(clocks)
arbitrarily large

fundamental resolution limit?
Giddings, Marolf, Hartle ’05

B.D., Tambornino ’06



Locality properties

scalar fields as clocks

{f [τ ], f [τ ′]]} = 0
for τ, τ ′ space–like related

{f [τ ], f [τ + ǫ]]}

= G(τ , τ + ǫ)
(

1 + Energy(f)
Energy(clocks)

)

cannot make Energy(clocks)
arbitrarily large

fundamental resolution limit?
Giddings, Marolf, Hartle ’05

B.D., Tambornino ’06

longitudinal clocks

{f [τ ], f [τ ′]]} = 0
for τ, τ ′ space–like related
holds only to second order

{f [τ ], f [τ + ǫ]]}

= G(τ , τ + ǫ)

non–local measurement but

local in flat space limit to 2nd order
B.D., Tambornino ’06



Conclusion and Outlook

• central object of the perturbative scheme are observables

• divide phase space into homogeneous and inhomogeneous
variables, keep both completely dynamical

• first canonical formalism for cosmological perturbations to any
order

• explicit calculation of second order gauge invariants are now
possible

• backreaction effects

• hints towards fundamental restrictions of locality



Conclusion and Outlook

• extendible to perturbations around midisuperspaces

• embed approximations into each other

• allows for characterization of physical symmetric states

• altering the constraints (effective approach):
consistent equations of motion


