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THE NOTION OF PATH DEPENDENCE

• Dirac’s work on the nonintegrability of the phase of wave functionals

in quantum mechanics P. A. M. Dirac, Proc. Roy. Soc. Lond. A 133, 60 (1931).

• Mandelstam first introduce an end point derivative in gauge theory

S. Mandelstam, Annals Phys. 19, 1 (1962), Annals Phys. 19, 25 (1962).

• Integral formulation of Wu and Yang C. N. Yang, Phys. Rev. Lett. 33, 445 (1974);

T. T. Wu and C. N. Yang, Phys. Rev. D 12, 3845 (1975).

• The loop representation in loop quantum gravity R. Gambini and A. Trias, Phys.

Rev. D 22, 1380 (1980), Phys. Rev. D 23, 553 (1981); X. Fustero, R. Gambini and A. Trias, Phys. Rev. D 31 (1985)
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MOTIVATION: TOWARD A UNIFIED VIEWPOINT

We concentrate in gauge theories where several and different definitions of

path dependent operators have been made. They depend essentially on

• The space where path dependent functionals take values is either the

space of open or closed curves .

• The nature of the variation is due to a point or many points , which have

been usually called end point derivatives and area derivatives respectively.

• The place where the variation is appended , is on the curve or in other

place on the manifold.



DEFINITION OF THE PATH OPERATOR

• We define the path derivative of the functional Ψ(α) for a given path α

by

DΨ( α) = ∆Ψ(α) − Ψ(α) (1)

where the action of ∆ : Ψ(α) → Ψ′(α′), is to displace infinitesimally and

continuously the initial curve α to a deformed curve α′ with some

transforming action on Ψ.
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Figure 1: Deformation of the curve α → α′.



• We assume a transformation of a matrix functional ΨAB(α) under the

action of the deformation by

∆ΨAB(α) = UA′

A (δy−1) ΨA′B′( α′) UB′

B (δx) (2)

where the elements UB′

B (δx) and UA′

A (δy−1) are functions of the paths δx

and δy−1.

• We take U elements to be parallel propagators

• For the curve deformation that just moves one point along a straight line,

we define the point deformations

DδyΨy,x = δΨy,x + δyµAµ(y) Ψy,x, (3)

DδxΨy,x = δΨy,x − Ψy,x δxµAµ(x) (4)

And for the curve deformation with x and y fixed but that encloses some

area, the loop deformation

DLΨy,x = δΨy,x (5)



ACTION OF THE GROUP OF LOOPS

The construction can be understood in terms of the action of the group of

loops L on arbitrary paths γ. Let us consider the same path α as before and

focus on the loop l = δx o α′ o δy−1 o α−1 with composition

l o α = δx o α′ o δy−1. The variation of a functional ∆Ψ(α) will be

represented by an operator U(l) with l ∈ L as,

∆Ψ(α) = Ψ(l o α) = U(l)Ψ( α), (6)

and therefore we have

Ψ(α′) = U(δy)
[

U(l) Ψ( α)
]

U( δx−1) . (7)



COVARIANT DIFFERENTIATION OF GAUGE OBJECTS

Here we compute the action of the path derivative on phase factors. Let

us consider the ordered phase factor of the same path α as before,

Uy,x(α) = Pσ

(

exp

∫ 1

0

−Aµ(σ)
dαµ(σ)

dσ
dσ

)

, (8)

We partition the paths α and α′ in N segments.

U(α′) =
N
∏

i=0

U(α′

i+1,i) = U ′

N+1,N . . . U ′

2,1 U ′

1,0, (9)
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Figure 2: Intermediate paths



We have

DU( α) =
N
∏

i=0

(

U(αi+1,i) H(xi)
)

− U(α), (10)

Using the non abelian Stokes theorem to lowest order

H(xi) = 1 −

∫ 1

0

Fµν(xi) Nµ(σi, t)
∂xν

i

∂σ
dσidt, (11)

where Fµν(xi) = U(δxi)Fµν(xi)U(δx
−1
i ) is the parallel transported

curvature. Replacing, we have

D(N) U( α) = −

∫ 1

0

N
∑

i=0

Ui+1,i Fµν(xi) Nµ(σi, t)
∂xν

i

∂σ
dσi dt (12)

The continuum limit of the above equation gives

D(N) U(α) = −

∫ 1

0

dt

∫ 1

0

dσ Uy,x(σ,t) Fµν(x(σ, t)) U x(σ,t),x Nµ(σ, t)
∂xν(σ, t)

∂σ



THE GENERATOR OF CURVES

We introduce a family of deformed curves αt(σ)

Ψ(αn+1) = Ψ(αn) + Ψ(αn)Axn
− Ayn

Ψ(αn) + D(Nn)Ψ(αn), (13)

Iterating the above equation

Ψ(α′) = U(α(1))
[

Pt

(

exp

∫ 1

0

dt Dt

)

Ψ(α)
]

U(α−1(0)), (14)

therefore we identify U(l) = Pt

(

exp
∫ 1

0
dt Dt

)
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Figure 3: Flow of the point P under the diffeomorphism



COVARIANT TAYLOR SERIES

• Covariant Taylor expansions were developed as part of a method of

calculation to found the effective action in quantum field theories.

A. O. Barvinsky and G. A. Vilkovisky, Phys. Rept. 119, 1 (1985); S. M. Kuzenko and I. N. McArthur, JHEP

0305, 015 (2003).



STANDARD DERIVATION

• Using the transport equation Dẋν

dt
= ẋµDµẋν(t) = 0 one can show

that for the scalar function f(x(t)) one has for all n,

dnf(x(t))

dtn
= [Dνn

. . . Dν1
f(x)]x=x(t) ẋν1 . . . ẋνn . (15)

Then, considering the expansion and defining,

σµ(x1, x2) = (t2 − t1)

[

dxµ(t)

dt

]

t=t1

, (16)

we arrive to the expression,

f(x2) =

∞
∑

n=0

1

n!
σν1(x1, x2) . . . σνn(x1, x2)Dνn

. . . Dν1
f(x1). (17)



We consider the field composed with the two parallel propagators as

U(x′, x) ϕ(x) U(x, x′). Since the composition behaves as a scalar with

respect to the point x

U(x′′, x′) ϕ(x′) U(x′, x′′) =

∞
∑

n=0

1

n!
σν1(x, x′) . . . σνn(x, x′) Dx

νn

. . . Dx
ν1

× U(x′′, x) ϕ(x) U(x, x′′). (18)

Using the identity

σν1(x, x′) . . . σνn(x, x′) Dx
νn

. . . Dx
ν1

U(x′, x) = 0, (19)

We obtain the covariant Taylor series for the field ϕ(x), taking x′′ = x′ and

multiplying by U−1(x, x′) and U−1(x′, x),

U(x, x′) ϕ(x′) U(x′, x) =

∞
∑

n=0

1

n!
σν1(x, x′) . . . σνn(x, x′) Dνn

. . . Dν1
ϕ(x). (20)



GEOMETRICAL DERIVATION

Let us define the path dependent field Ψ( γ) = U(γ2) φ(x) U(γ1)

• The first deformation is Ψ(γ′) = U(D)Ψ(γ)

• The second deformation is Ψ(γ′′) = U(γ−1
2 ) [ U(D′)Ψ(γ′) ] U(γ−1

1 )

Both deformations can be viewed as one point deformation Dδx

Ψ(γ′′) = U(γ−1
2 )[ U(Dδx)Ψ(γ) ] U(γ−1

1 ). (21)

We obtain covariant Taylor expansions with δx = x′ − x

U(x, x′) φ(x′) U(x′, x) =

∞
∑

n=0

1

n!
δxν1 . . . δxνn Dνn

. . . Dν1
φ(x), (22)
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Figure 4: Two deformations of the curve γ.



DISCUSION Y CONCLUSION

• We have defined a path dependent operator in gauge theory, which is

covariant by construction, and acts by continuous deformations on the

space of smooth curves Γ(M)

• We have established a relation between the path derivative introduced

here and the area and end point derivative.

• We have calculated the finite variation of a functional when its

argument is changed by successive infinitesimal deformations.

• We have derived covariant Taylor expansions for non Abelian fields

by considering the deformation of open curves.


