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LQG kinematics

Kinematical Hilbert space Hkin = L2(A, dµAL).

Gauss-, Diff-, Hamilton- (or Master- ) constraint: ĜI , D̂a, Ĥ
(M̂)

−→ Difficult to solve! Approximations?

−→ Semiclassical limit?
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(M̂)

−→ Difficult to solve! Approximations?

−→ Semiclassical limit?

Benjamin Bahr Gauge-invariant coherent states



Motivation
Complexifier Coherent states

Gauge-invariant coherent states
Peakedness properties: analytical and numerical results

Summary and outlook

Definition
Properties

Complexifier Coherent states

Good way to deal with these issues: Coherent states

Candidates: Complexifier coherent states Thiemann, Winkler,

hep-th/0005233, 0005237, 0005234

ψ(A0, E0)(A) :=
(
e−Ĉδ(A,A0)

)∣∣∣
A0→A0+iE0

Simplest example: state ψt
~g ∈ Hγ associated to a graph γ.

Labeled by ~g = (g1, . . . gE ) ∈ GC: complexified holonomies
along edges e1, . . . eE of γ, t: semiclassicality scale.
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Definition
Properties

Complexifier Coherent states

Properties:

G = SU(2):

ψt
~g (~h) =

E∏
k=1

∑
jk∈ 1

2
N

e−jk (jk+1) t
2 (2jk + 1) trjk

(
gk h−1

k

)

~g = (g1, . . . gE ) ∈ SL(2,C)E : Point in classical phase space.
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Definition
Properties

Properties: Peakedness + Ehrenfest

Peakedness properties:

∣∣〈ψt
~g |ψ

t
~g ′〉

∣∣2∥∥ψt
~g

∥∥2∥∥ψt
~g ′

∥∥2
≈ Gaussian in

d(~g , ~g ′)√
t

Ehrenfest properties:

〈ψt
~g |F̂ |ψ

t
~g 〉∥∥ψt

~g

∥∥2
≈ F (~g)

With this one can show: i.e. Master constraint correctly
implemented on Hkin. Good tool for approximations Giesel,

Thiemann, gr-qc/0607099, gr-qc/0607100, gr-qc/0607101
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Definition
Properties

Complexifier Coherent states

Properties:

But: complexifier coherent states do not satisfy the
constraints (only approximately)

−→ purely kinematical!

Desirable: Coherent states that satisfy the constraints
ĜI , D̂a, Ĥ, in order to address dynamical questions.

In this talk: Construction of states that satisfy Gauss
constraints ĜI −→ Gauge-invariant coherent states!
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The gauge group
Definition
G = U(1)
G = SU(2)

The Gauss gauge group

Given graph γ with E edges and V vertices

⇒ ĜI act as gauge group GV on Hγ ' L2(GE ):

αk1,...kV
ψ(h1, . . . hE ) = ψ

(
kb(e1) h1 k−1

f (e1)
, . . . , kb(eE ) hE k−1

f (eE )

)
G compact

⇒ P :=

∫
GV

dµ⊗V
H (~k) αk1,...kV

exists as projection operator P : Hγ → Hγ .

Benjamin Bahr Gauge-invariant coherent states



Motivation
Complexifier Coherent states

Gauge-invariant coherent states
Peakedness properties: analytical and numerical results

Summary and outlook

The gauge group
Definition
G = U(1)
G = SU(2)

The Gauss gauge group

Given graph γ with E edges and V vertices
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The gauge group
Definition
G = U(1)
G = SU(2)

Gauge-invariant coherent states

Ψt
[~g ] := Pψt

~g

One can show:

Ψt
[~g ] = Ψt

[~g ′] ⇔ ~g = α~k
~g ′ for ~k ∈ (GC)V

i. e. gk = kb(ek )g
′
kk−1

f (ek )

Ψt
[~g ] are L2-functions on GE/GV , and labeled by

[~g ] ∈ (GC)E / (GC)V (gauge-invariant phase space).
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The gauge group
Definition
G = U(1)
G = SU(2)

Gauge-invariant coherent states for G = U(1)

The case of G = U(1):

Complexifier coherent states on a graph γ:

ψt
~z(
~φ) =

E∏
k=1

√
2π

t

∑
nk∈Z

e−
(zk−φk−2πnk )2

2t

e iφk ∈ U(1), e izk ∈ U(1)C.

One can show:

Ψt
[~z](

~φ) =

√
V

G

E−V+1∏
k=1

√
2π

t

∑
nk∈Z

e−
(z

gi
k
−φ

gi
k
−2πn

gi
k

)2

2t

−→ Nearly a complexifier coherent state on U(1)E−V+1.
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The gauge group
Definition
G = U(1)
G = SU(2)

Gauge-invariant coherent states for G = SU(2)

Gauge-invariant coherent state in a graph γ:

Ψt
[~g ]([

~h]) = Pψt
~g (~h)

with

~h ∈ SU(2)E , ~g ∈ SL(2,C)E

[~h] ∈ SU(2)E /SU(2)V

[~g ] ∈ SL(2,C)E /SL(2,C)V

One has:

Ψt
[~g ]([

~h]) =
∑

j1,...,jE∈ 1
2
Z

e−
∑

k jk (jk+1) t
2 T~j ,~I

(~g) T~j ,~I
(~h)

Benjamin Bahr Gauge-invariant coherent states



Motivation
Complexifier Coherent states

Gauge-invariant coherent states
Peakedness properties: analytical and numerical results

Summary and outlook

The gauge group
Definition
G = U(1)
G = SU(2)

Gauge-invariant coherent states for G = SU(2)

Gauge-invariant coherent state in a graph γ:

Ψt
[~g ]([

~h]) = Pψt
~g (~h)

with

~h ∈ SU(2)E , ~g ∈ SL(2,C)E

[~h] ∈ SU(2)E /SU(2)V

[~g ] ∈ SL(2,C)E /SL(2,C)V

One has:

Ψt
[~g ]([

~h]) =
∑

j1,...,jE∈ 1
2
Z

e−
∑

k jk (jk+1) t
2 T~j ,~I

(~g) T~j ,~I
(~h)

Benjamin Bahr Gauge-invariant coherent states



Motivation
Complexifier Coherent states

Gauge-invariant coherent states
Peakedness properties: analytical and numerical results

Summary and outlook

The 1-flower graph
The sunset-graph
Peakedness properties: analytic results for general graphs

The 1−flower graph:

Simplest graph: 1−flower:

Ψt
[g ]([h]) = Ψt

tr(g)(tr(h)) =
∑
j∈ 1

2
N

e−j(j+1) t
2 trj(g) trj(h)

∣∣〈Ψt
cos w |Ψt

cos z〉
∣∣2∥∥Ψt

cos w

∥∥2∥∥Ψt
cos z

∥∥2
=

∣∣sinh w̄z
t

∣∣2
sinh2 |z|2

t sinh2 |w |2
t

(1 + O(t∞))
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The 1-flower graph
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Peakedness properties: analytic results for general graphs

The 1−flower graph

overlap =

∣∣〈Ψt
cos w |Ψt

cos z 〉
∣∣2∥∥Ψt

cos w

∥∥2∥∥Ψt
cos z

∥∥2 with w = 1 + i , t = 0.25.
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The 1-flower graph
The sunset-graph
Peakedness properties: analytic results for general graphs

Other graphs

Unfortunately, more complicated graphs lead to quite difficult
expressions for the overlap.

−→ Employ numerical investigations

Done for 2-flower, sunset graph, tetrahedron. Qualitative
results always the same!
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The sunset graph

Example: the sunset graph

Gauge-invariant phase space:
[g1, g2, g3] ∈ SL(2,C)3 /SL(2,C)2

Gauge-fixing: three complex parameters (z2, z3, θ)
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Peakedness properties: analytic results for general graphs

The sunset graph: Gaussian peak

overlap=

∣∣〈Ψt
(w2,w3,χ)

|Ψt
(z2,z3,θ)

〉
∣∣2∥∥Ψt

(w2,w3,χ)

∥∥2∥∥Ψt
(z2,z3,θ)

∥∥2 , w2 =1, w3 =2, χ=θ=0, t =0.2
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The sunset graph: plateau structure

overlap=

∣∣〈Ψt
(w2,w3,χ)

|Ψt
(z2,z3,θ)

〉
∣∣2∥∥Ψt

(w2,w3,χ)

∥∥2∥∥Ψt
(z2,z3,θ)

∥∥2 , w2 =0, w3 =0, χ=θ=0, t =0.2
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General properties

In all examples: Gauge-invariant states are peaked around
gauge-invariant data.

In all examples: States with data corresponding to degenerate
gauge orbits (e.g. [~g ] = [1, 1, . . . , 1]) have significantly
broader peak: plateau structure. No Gaussian anymore!

In fact one can show this: At the maximum of peak, all
derivatives vanish until order 4!

- in general for flower graphs
- in the t → 0-limit for general graphs
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Summary

Gauge-invariant coherent states for G = U(1) and G = SU(2)
obtained by projecting CCS to gauge-inv. subspace. They
have been investigated by analytical and numerical methods

Both gauge groups: Gauge-invariant coherent states behave
semiclasically: Overlap is peaked around gauge-invariant data.
Peak width determined by t.

Ehrenfest properties for gauge-invariant observables follow
immediately.
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Summary

For G = SU(2): States labeled by degenerate gauge orbits
have qualitatively different peak profiles −→ peaks are no
Gaussian.

Could have been expected, since gauge-inv. phase space is no
manifold at these points! Correspond to A0 = E0 = 0.

Conclusion: Gauge-invariant coherent states are useful for
addressing semiclassical issues in the gauge-invariant sector.
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Outlook

Diffeomorphism invariant coherent states!

Image of gauge-invariant coherent states via Diff−rigging
map?

With these states: Approximate graph changing Master
constraint on HDiff ⇒ dynamics?
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