
Algebraic Quantum Gravity

Kristina Giesel

Albert – Einstein – Institute Loops '07 Morelia 26.06.2007

Ref.: K.G., T. Thiemann, CQG 24 (2007) 2465-97, 2499-2564, 2565-88

イロト イポト イヨト イヨト

Plan of the Talk

Motivation

- Status of the dynamics in Loop Quantum Gravity (LQG)
- Status of the semiclassical properties of LQG
- The Master Constraint Programme
- Algebraic Quantum Gravity (AQG)
 - Conceptual setup of AQG
 - The kinematics & dynamics of AQG
 - Semiclassical limit of AQG
- Conclusions & Outlook

- ∢ ≣ ≯

- ∢ 🗗 ▶

Plan of the Talk

Motivation

- Status of the dynamics in Loop Quantum Gravity (LQG)
- Status of the semiclassical properties of LQG
- The Master Constraint Programme
- Algebraic Quantum Gravity (AQG)
 - Conceptual setup of AQG
 - The kinematics & dynamics of AQG
 - Semiclassical limit of AQG
- Conclusions & Outlook

Plan of the Talk

Motivation

- Status of the dynamics in Loop Quantum Gravity (LQG)
- Status of the semiclassical properties of LQG
- The Master Constraint Programme
- Algebraic Quantum Gravity (AQG)
 - Conceptual setup of AQG
 - The kinematics & dynamics of AQG
 - Semiclassical limit of AQG
- Conclusions & Outlook

Plan of the Talk

Motivation

- Status of the dynamics in Loop Quantum Gravity (LQG)
- Status of the semiclassical properties of LQG
- The Master Constraint Programme
- Algebraic Quantum Gravity (AQG)
 - Conceptual setup of AQG
 - The kinematics & dynamics of AQG
 - Semiclassical limit of AQG
- Conclusions & Outlook

Plan of the Talk

Motivation

- Status of the dynamics in Loop Quantum Gravity (LQG)
- Status of the semiclassical properties of LQG
- The Master Constraint Programme
- Algebraic Quantum Gravity (AQG)
 - Conceptual setup of AQG
 - The kinematics & dynamics of AQG
 - Semiclassical limit of AQG
- Conclusions & Outlook

Plan of the Talk

Motivation

- Status of the dynamics in Loop Quantum Gravity (LQG)
- Status of the semiclassical properties of LQG
- The Master Constraint Programme
- Algebraic Quantum Gravity (AQG)
 - Conceptual setup of AQG
 - The kinematics & dynamics of AQG
 - Semiclassical limit of AQG
- Conclusions & Outlook

Plan of the Talk

Motivation

- Status of the dynamics in Loop Quantum Gravity (LQG)
- Status of the semiclassical properties of LQG
- The Master Constraint Programme
- Algebraic Quantum Gravity (AQG)
 - Conceptual setup of AQG
 - The kinematics & dynamics of AQG
 - Semiclassical limit of AQG

• Conclusions & Outlook

Plan of the Talk

Motivation

- Status of the dynamics in Loop Quantum Gravity (LQG)
- Status of the semiclassical properties of LQG
- The Master Constraint Programme
- Algebraic Quantum Gravity (AQG)
 - Conceptual setup of AQG
 - The kinematics & dynamics of AQG
 - Semiclassical limit of AQG

• Conclusions & Outlook

Plan of the Talk

Motivation

- Status of the dynamics in Loop Quantum Gravity (LQG)
- Status of the semiclassical properties of LQG
- The Master Constraint Programme
- Algebraic Quantum Gravity (AQG)
 - Conceptual setup of AQG
 - The kinematics & dynamics of AQG
 - Semiclassical limit of AQG
- Conclusions & Outlook

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of the Dynamics in LQG

- Starting point of LQG: Canonical formulation of GR
- Holonomies A(e) & Fluxes E(S)
- Additionally one gets constraints: G(A, E) = 0, D(A, E) = 0, H(A, E) = 0
- Kinematical Hilbert space of LQG: \mathcal{H}_{kin} ; Operators: \widehat{G} , \widehat{D} , \widehat{H}

$\widehat{\mathbf{G}} \boldsymbol{\psi}_{\text{phys}} = 0 \,, \quad \widehat{\mathbf{G}} \boldsymbol{\psi}_{\text{phys}} = 0 \,, \quad \widehat{\mathbf{G}} \boldsymbol{\psi}_{\text{phys}} = 0 \,.$

- Solutions ψ_{phys} ? Rediscover classical GR solutions in LQG?
- 1st Step: Are $\widehat{\mathrm{G}}$, $\widehat{\mathrm{D}}$ and $\widehat{\mathrm{H}}$ correctly quantised?

(日) (同) (日) (日)

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

(日) (同) (日) (日)

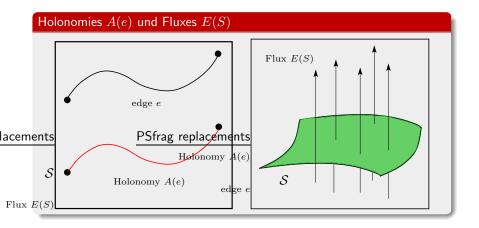
Motivation

Status of the Dynamics in LQG

- Starting point of LQG: Canonical formulation of GR
- Holonomies A(e) & Fluxes E(S)
- Additionally one gets constraints: $G(A,E)=0, \quad D(A,E)=0, \quad H(A,E)=0$
- Kinematical Hilbert space of LQG: \mathcal{H}_{kin} ; Operators: \widehat{G} , \widehat{D} , \widehat{H}

Quantum – Einstein – Equations

 $\widehat{\mathcal{G}}\psi_{\rm phys}=0\,,\quad \widehat{\mathcal{D}}\psi_{\rm phys}=0\,,\quad \widehat{\mathcal{H}}\psi_{\rm phys}=0\,,$

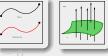

- Solutions $\psi_{\rm phys}$? Rediscover classical GR solutions in LQG?
- 1st Step: Are \widehat{G} , \widehat{D} and \widehat{H} correctly quantised?

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

• • • • • • • • • • • • • •

-

Elementary Phase Space Variables of LQG



Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of the Dynamics in LQG

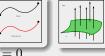
- Starting point of LQG: Canonical formulation of GR
- Holonomies A(e) & Fluxes E(S)
- Additionally one gets constraints: $G(A, E) = 0, \quad D(A, E) = 0, \quad H(A, E) = 0$

(日) (同) (日) (日)

• Kinematical Hilbert space of LQG: \mathcal{H}_{kin} ; Operators: \widehat{G} , \widehat{D} , \widehat{H}

Quantum – Einstein – Equations

 $\widehat{\mathbf{D}}\psi_{\mathrm{phys}} = 0\,,\quad \widehat{\mathbf{D}}\psi_{\mathrm{phys}} = 0\,,\quad \widehat{\mathbf{H}}\psi_{\mathrm{phys}} = 0\,,$


- Solutions $\psi_{\rm phys}$? Rediscover classical GR solutions in LQG?
- 1st Step: Are $\widehat{G}\,,\,\widehat{D}\,\,\mathrm{and}\,\,\widehat{H}$ correctly quantised?

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of the Dynamics in LQG

- Starting point of LQG: Canonical formulation of GR
- $\bullet\,$ Holonomies A(e) & Fluxes E(S)
- Additionally one gets constraints: $G(A, E) = 0, \quad D(A, E) = 0, \quad H(A, E) = 0$

< ロ > < 同 > < 回 > < 回

• Kinematical Hilbert space of LQG: \mathcal{H}_{kin} ; Operators: \widehat{G} , \widehat{D} , \widehat{H}

Quantum – Einstein – Equations

 $\widehat{\mathbf{G}}\psi_{\mathrm{phys}}=0\,,\quad \widehat{\mathbf{D}}\psi_{\mathrm{phys}}=0\,,\quad \widehat{\mathbf{H}}\psi_{\mathrm{phys}}=0\,,$

- Solutions $\psi_{\rm phys}$? Rediscover classical GR solutions in LQG?
- 1st Step: Are $\widehat{G}\,,\,\widehat{D}\,\,\mathrm{and}\,\,\widehat{H}$ correctly quantised?

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of the Dynamics in LQG

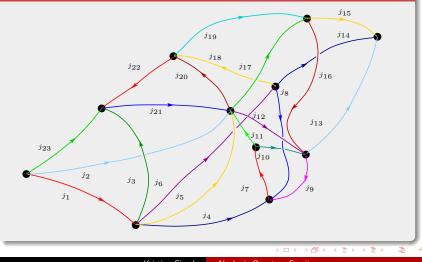
- Starting point of LQG: Canonical formulation of GR
- $\bullet\,$ Holonomies A(e) & Fluxes E(S)
- Additionally one gets constraints: G(A, E) = 0, D(A, E) = 0, H(A, E) = 0

Quantum – Einstein – Equations

$$\widehat{\mathbf{G}}\psi_{\mathrm{phys}} = 0, \quad \widehat{\mathbf{D}}\psi_{\mathrm{phys}} = 0, \quad \widehat{\mathbf{H}}\psi_{\mathrm{phys}} = 0$$

• Solutions $\psi_{\rm phys}$? Rediscover classical GR solutions in LQG?

• 1st Step: Are $\widehat{G}\,,\,\widehat{D}\,\,\mathrm{and}\,\,\widehat{H}$ correctly quantised?

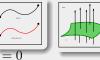

• • • • • • • • • • • • • •

Motivation

Semiclassical Limit Algebraic Quantum Gravity Conlusions & Outlook Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Spin network functions

Basis of \mathcal{H}_{kin}


Kristina Giesel Algebraic Quantum Gravity

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of the Dynamics in LQG

- Starting point of LQG: Canonical formulation of GR
- Holonomies A(e) & Fluxes E(S)
- Additionally one gets constraints: $G(A, E) = 0, \quad D(A, E) = 0, \quad H(A, E) = 0$

• Kinematical Hilbert space of LQG: $\mathcal{H}_{kin};$ Operators: $\widehat{G}\,,\,\widehat{D}\,,\,\widehat{H}$

Quantum – Einstein – Equations

$$\widehat{\mathbf{G}}\psi_{\mathrm{phys}} = 0\,,\quad \widehat{\mathbf{D}}\psi_{\mathrm{phys}} = 0\,,\quad \widehat{\mathbf{H}}\psi_{\mathrm{phys}} = 0\,,$$

< ロ > < 同 > < 三 > < 三 >

• Solutions $\psi_{\rm phys}$? Rediscover classical GR solutions in LQG?

• 1st Step: Are \widehat{G} , \widehat{D} and \widehat{H} correctly quantised?

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of the Dynamics in LQG

- Starting point of LQG: Canonical formulation of GR
- Holonomies A(e) & Fluxes E(S)
- Additionally one gets constraints: $G(A, E) = 0, \quad D(A, E) = 0, \quad H(A, E) = 0$

• Kinematical Hilbert space of LQG: $\mathcal{H}_{kin};$ Operators: $\widehat{G}\,,\,\widehat{D}\,,\,\widehat{H}$

Quantum – Einstein – Equations

$$\widehat{\mathcal{G}}\psi_{\rm phys} = 0, \quad \widehat{\mathcal{D}}\psi_{\rm phys} = 0, \quad \widehat{\mathcal{H}}\psi_{\rm phys} = 0$$

< ロ > < 同 > < 三 > < 三 >

• Solutions $\psi_{\rm phys}$? Rediscover classical GR solutions in LQG?

• 1st Step: Are $\widehat{G}\,,\,\widehat{D}\,\,\mathrm{and}\,\,\widehat{H}$ correctly quantised?

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of the Dynamics in LQG

- Starting point of LQG: Canonical formulation of GR
- Holonomies A(e) & Fluxes E(S)
- Additionally one gets constraints: $G(A, E) = 0, \quad D(A, E) = 0, \quad H(A, E) = 0$

• Kinematical Hilbert space of LQG: $\mathcal{H}_{kin};$ Operators: $\widehat{G}\,,\,\widehat{D}\,,\,\widehat{H}$

Quantum – Einstein – Equations

$$\hat{\mathbf{G}}\psi_{\mathrm{phys}} = 0, \quad \hat{\mathbf{D}}\psi_{\mathrm{phys}} = 0, \quad \hat{\mathbf{H}}\psi_{\mathrm{phys}} = 0$$

(日) (同) (日) (日)

• Solutions $\psi_{\rm phys}$? Rediscover classical GR solutions in LQG?

• 1st Step: Are $\widehat{G}\,,\,\widehat{D}\,\,\mathrm{and}\,\,\widehat{H}$ correctly quantised?

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of Semiclassical Properties of LQG

- Most difficult part: $\hat{H}\psi_{phys}=0$
- \mathcal{H}_{kin} , Uniqueness LOST Theorem
- Anomalies in the QT
- $\begin{array}{ll} \{H(N), H(N')\} & \propto & D(\vec{N}) \\ [\widehat{H}(N), \widehat{H}(N')] & \propto & ? \end{array}$

<ロ> <回> <回> <回> < 回> < 回>

- Unitary repres. of finite diffeomorphisms $\widehat{U}(D)$ is not weakly continuous \rightarrow infinites. $\widehat{D} \not \exists$ in \mathcal{H}_{kin}
- \widehat{H} free of anomalies: $\big[\widehat{H}(N),\widehat{H}(N')\big]\psi_{\rm diff}=0$
- This requires graph changing operator for \widehat{H} [Thiemann 1996]
- Problematic: Needs semiclassical states for graph changing operators

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of Semiclassical Properties of LQG

- Most difficult part: $\hat{H}\psi_{phys} = 0$
- \mathcal{H}_{kin} , Uniqueness LOST Theorem

Anomalies in the QT

 $\begin{array}{ll} \{H(N),H(N')\} & \propto & D(\vec{N}) \\ \left[\widehat{H}(N),\widehat{H}(N')\right] & \propto & ? \end{array}$

<ロ> <回> <回> <回> < 回> < 回>

- Unitary repres. of finite diffeomorphisms $\widehat{U}(D)$ is not weakly continuous \rightarrow infinites. $\widehat{D} \not \exists$ in \mathcal{H}_{kin}
- \widehat{H} free of anomalies: $\big[\widehat{H}(N),\widehat{H}(N')\big]\psi_{\rm diff}=0$
- This requires graph changing operator for \widehat{H} [Thiemann 1996]
- Problematic: Needs semiclassical states for graph changing operators

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of Semiclassical Properties of LQG

- Most difficult part: $\hat{H}\psi_{phys} = 0$
- \mathcal{H}_{kin} , Uniqueness LOST Theorem

Anomalies in the QT

 $\begin{array}{ll} \{H(N),H(N')\} & \propto & D(\vec{N}) \\ \left[\widehat{H}(N),\widehat{H}(N')\right] & \propto & ? \end{array}$

- Unitary repres. of finite diffeomorphisms $\widehat{U}(D)$ is not weakly continuous \rightarrow infinites. $\widehat{D} \not\exists$ in \mathcal{H}_{kin}
- \widehat{H} free of anomalies: $\big[\widehat{H}(N),\widehat{H}(N')\big]\psi_{\rm diff}=0$
- This requires graph changing operator for \widehat{H} [Thiemann 1996]
- Problematic: Needs semiclassical states for graph changing operators

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of Semiclassical Properties of LQG

- Most difficult part: $\hat{H}\psi_{phys} = 0$
- \mathcal{H}_{kin} , Uniqueness LOST Theorem

Anomalies in the QT

 $\begin{aligned} \{H(N),H(N')\} & \propto & D(\vec{N}) \\ \left[\widehat{H}(N),\widehat{H}(N')\right] & \propto & ? \end{aligned}$

- Unitary repres. of finite diffeomorphisms $\widehat{U}(D)$ is not weakly continuous \rightarrow infinites. $\widehat{D} \not \exists$ in \mathcal{H}_{kin}
- \widehat{H} free of anomalies: $\big[\widehat{H}(N),\widehat{H}(N')\big]\psi_{\rm diff}=0$
- This requires graph changing operator for \widehat{H} [Thiemann 1996]
- Problematic: Needs semiclassical states for graph changing operators

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of Semiclassical Properties of LQG

- Most difficult part: $\hat{H}\psi_{phys} = 0$
- \mathcal{H}_{kin} , Uniqueness LOST Theorem

Anomalies in the QT

 $\begin{aligned} \{H(N),H(N')\} & \propto & D(\vec{N}) \\ \left[\widehat{H}(N),\widehat{H}(N')\right] & \propto & ? \end{aligned}$

- Unitary repres. of finite diffeomorphisms $\widehat{U}(D)$ is not weakly continuous \rightarrow infinites. $\widehat{D} \not \exists$ in \mathcal{H}_{kin}
- \widehat{H} free of anomalies: $\big[\widehat{H}(N),\widehat{H}(N')\big]\psi_{\rm diff}=0$
- This requires graph changing operator for \widehat{H} [Thiemann 1996]
- Problematic: Needs semiclassical states for graph changing operators

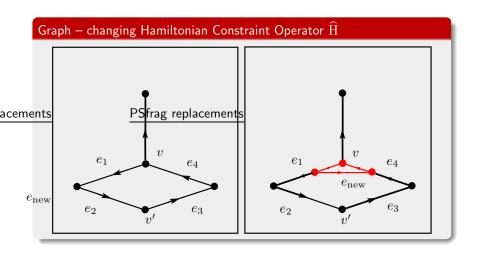
Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of Semiclassical Properties of LQG

- Most difficult part: $\hat{H}\psi_{phys} = 0$
- \mathcal{H}_{kin} , Uniqueness LOST Theorem

Anomalies in the QT


 $\begin{aligned} \{H(N),H(N')\} & \propto & D(\vec{N}) \\ \left[\widehat{H}(N),\widehat{H}(N')\right] & \propto & ? \end{aligned}$

- Unitary repres. of finite diffeomorphisms $\widehat{U}(D)$ is not weakly continuous \rightarrow infinites. $\widehat{D} \not \exists$ in \mathcal{H}_{kin}
- \widehat{H} free of anomalies: $\big[\widehat{H}(N),\widehat{H}(N')\big]\psi_{\rm diff}=0$
- This requires graph changing operator for \widehat{H} [Thiemann 1996]
- Problematic: Needs semiclassical states for graph changing operators

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

< ロ > < 同 > < 回 > < 回

Graph – changing Operators

Kristina Giesel Algebraic Quantum Gravity

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of Semiclassical Properties of LQG

- Most difficult part: $\hat{H}\psi_{phys} = 0$
- \mathcal{H}_{kin} , Uniqueness LOST Theorem

Anomalies in the QT

 $\begin{array}{ll} \{H(N),H(N')\} & \propto & D(\vec{N}) \\ \\ \left[\widehat{H}(N),\widehat{H}(N')\right] & \propto & ? \end{array}$

- Unitary repres. of finite diffeomorphisms $\widehat{U}(D)$ is not weakly continuous \rightarrow infinites. $\widehat{D} \not\supseteq$ in \mathcal{H}_{kin}
- \widehat{H} free of anomalies: $\big[\widehat{H}(N),\widehat{H}(N')\big]\psi_{\rm diff}=0$
- This requires graph changing operator for \widehat{H} [Thiemann 1996]
- Problematic: Needs semiclassical states for graph changing operators

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Motivation

Status of Semiclassical Properties of LQG

- Most difficult part: $\hat{H}\psi_{phys} = 0$
- \mathcal{H}_{kin} , Uniqueness LOST Theorem

Anomalies in the QT

 $\begin{array}{ll} \{H(N),H(N')\} & \propto & D(\vec{N}) \\ \\ \left[\widehat{H}(N),\widehat{H}(N')\right] & \propto & ? \end{array}$

- Unitary repres. of finite diffeomorphisms $\widehat{U}(D)$ is not weakly continuous \rightarrow infinites. $\widehat{D} \not\supseteq$ in \mathcal{H}_{kin}
- \widehat{H} free of anomalies: $\big[\widehat{H}(N),\widehat{H}(N')\big]\psi_{\rm diff}=0$
- This requires graph changing operator for \widehat{H} [Thiemann 1996]
- Problematic: Needs semiclassical states for graph changing operators

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Master Constraint Programme

The Master Constraint \mathbf{M}

• M consists of weighted, spatially diff-inv. sum [Thiemann 2003]

$$\mathbf{M} = \int_{\sigma} \ d^3x \ \frac{\delta^{jk}G_jG_k + q^{ab}D_aD_b + H^2}{\sqrt{|\det(E)|}}(x)$$

- $\mathbf{M} = 0 \quad \Leftrightarrow \quad \mathbf{G} = 0 \quad \land \quad \mathbf{D} = 0 \quad \land \quad \mathbf{H} = 0$
- Weighting: Infinitesimal diffeomorphism operators exist
- Trivial algebra: $\{\mathbf{M}, \mathbf{M}\} = 0$, \mathbf{QT} : $[\widehat{\mathbf{M}}, \widehat{\mathbf{M}}] = 0$
- Anomalies? $\widehat{\mathbf{M}} \psi = 0 \rightarrow 0 \notin \text{in } \sigma(\widehat{\mathbf{M}})$
- Two possibilities to quantise M
 - Graph changing: Semiclassically problematic, $\mathcal{H}_{ ext{diff}}$ [WIP Bahr]
 - Graph preserving: Can be defined on \mathcal{H}_{kin}

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

< = >

Master Constraint Programme

The Master Constraint \mathbf{M}

• M consists of weighted, spatially diff-inv. sum [Thiemann 2003]

$$\mathbf{M} = \int_{\sigma} \ d^3x \ \frac{\delta^{jk}G_jG_k + q^{ab}D_aD_b + H^2}{\sqrt{|\det(E)|}}(x)$$

• $\mathbf{M} = 0 \quad \Leftrightarrow \quad \mathbf{G} = 0 \quad \land \quad \mathbf{D} = 0 \quad \land \quad \mathbf{H} = 0$

- Weighting: Infinitesimal diffeomorphism operators exist
- Trivial algebra: $\{\mathbf{M}, \mathbf{M}\} = 0$, \mathbf{QT} : $[\widehat{\mathbf{M}}, \widehat{\mathbf{M}}] = 0$
- Anomalies? $\widehat{\mathbf{M}} \psi = 0 \rightarrow 0 \notin \text{in } \sigma(\widehat{\mathbf{M}})$
- Two possibilities to quantise M
 - Graph changing: Semiclassically problematic, $\mathcal{H}_{ ext{diff}}$ [WIP Bahr]
 - Graph preserving: Can be defined on H_{kin}

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Master Constraint Programme

The Master Constraint \mathbf{M}

• M consists of weighted, spatially diff-inv. sum [Thiemann 2003]

$$\mathbf{M} = \int_{\sigma} \ d^3x \ \frac{\delta^{jk} G_j G_k + q^{ab} D_a D_b + H^2}{\sqrt{|\det(E)|}}(x)$$

•
$$\mathbf{M} = 0 \quad \Leftrightarrow \quad \mathbf{G} = 0 \quad \land \quad \mathbf{D} = 0 \quad \land \quad \mathbf{H} = 0$$

- Weighting: Infinitesimal diffeomorphism operators exist
- Trivial algebra: $\{\mathbf{M}, \mathbf{M}\} = 0$, \mathbf{QT} : $[\widehat{\mathbf{M}}, \widehat{\mathbf{M}}] = 0$
- Anomalies? $\widehat{\mathbf{M}} \psi = 0 \rightarrow 0 \notin \text{in } \sigma(\widehat{\mathbf{M}})$
- Two possibilities to quantise M
 - Graph changing: Semiclassically problematic, $\mathcal{H}_{ ext{diff}}$ [WIP Bahr]
 - Graph preserving: Can be defined on H_{kin}

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Master Constraint Programme

The Master Constraint \mathbf{M}

• M consists of weighted, spatially diff-inv. sum [Thiemann 2003]

$$\mathbf{M} = \int_{\sigma} d^3x \; \frac{\delta^{jk} G_j G_k + q^{ab} D_a D_b + H^2}{\sqrt{|\det(E)|}}(x)$$

•
$$\mathbf{M} = 0 \quad \Leftrightarrow \quad \mathbf{G} = 0 \quad \land \quad \mathbf{D} = 0 \quad \land \quad \mathbf{H} = 0$$

- Weighting: Infinitesimal diffeomorphism operators exist
- Trivial algebra: $\{\mathbf{M}, \mathbf{M}\} = 0$, $\mathbf{QT}: [\widehat{\mathbf{M}}, \widehat{\mathbf{M}}] = 0$

• Anomalies?
$$\widehat{\mathbf{M}} \psi = 0 \to 0 \notin \text{ in } \sigma(\widehat{\mathbf{M}})$$

- Two possibilities to quantise M
 - Graph changing: Semiclassically problematic, $\mathcal{H}_{ ext{diff}}$ [WIP Bahr]
 - Graph preserving: Can be defined on H_{kin}

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Master Constraint Programme

The Master Constraint M

• M consists of weighted, spatially diff-inv. sum

[Thiemann 2003]

3

(日) (同) (日) (日)

$$\widehat{\mathbf{M}} = \sum_{v} \left[\sum_{a} \operatorname{Tr}(A(\beta_v^a) A(e_v^a) [A(e_v^a)^{-1}, \sqrt{V_v}])\right]^2$$

•
$$\mathbf{M} = 0 \quad \Leftrightarrow \quad \mathbf{G} = 0 \quad \land \quad \mathbf{D} = 0 \quad \land \quad \mathbf{H} = 0$$

- Weighting: Infinitesimal diffeomorphism operators exist
- Trivial algebra: $\{\mathbf{M}, \mathbf{M}\} = 0$, $\mathbf{QT}: [\widehat{\mathbf{M}}, \widehat{\mathbf{M}}] = 0$
- Anomalies? $\widehat{\mathbf{M}} \psi = 0 \rightarrow 0 \notin \text{in } \sigma(\widehat{\mathbf{M}})$
- Two possibilities to quantise M
 - Graph changing: Semiclassically problematic, $\mathcal{H}_{ ext{diff}}$ [WP Bahr
 - Graph preserving: Can be defined on \mathcal{H}_{kin}

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

(日) (同) (日) (日)

Master Constraint Programme

The Master Constraint M

• M consists of weighted, spatially diff-invariant sum [Thiemann 2003]

$$\widehat{\mathbf{M}} = \sum_{v} \left[\sum_{a} \operatorname{Tr}(A(\beta_v^a) A(e_v^a) [A(e_v^a)^{-1}, \sqrt{V_v}])\right]^2$$

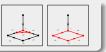
•
$$\mathbf{M} = 0 \quad \Leftrightarrow \quad \mathbf{G} = 0 \quad \land \quad \mathbf{D} = 0 \quad \land \quad \mathbf{H} = 0$$

- Weighting: Infinitesimal diffeomorphism operators exist
- Trivial algebra: $\{\mathbf{M}, \mathbf{M}\} = 0$, $\mathbf{QT}: [\widehat{\mathbf{M}}, \widehat{\mathbf{M}}] = 0$
- Anomalies? $\widehat{\mathbf{M}} \psi = 0 \rightarrow 0 \notin \text{in } \sigma(\widehat{\mathbf{M}})$
- Two possibilities to quantise M

• Graph – preserving: Can be defined on \mathcal{H}_{kin}

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Master Constraint Programme


The Master Constraint M

• M consists of weighted, spatially diff-invariant sum [Thiemann 2003]

$$\widehat{\mathbf{M}} = \sum_{v} \left[\sum_{a} \operatorname{Tr}(A(\beta_v^a) A(e_v^a) [A(e_v^a)^{-1}, \sqrt{V_v}])\right]^2$$

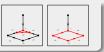
•
$$\mathbf{M} = 0 \quad \Leftrightarrow \quad \mathbf{G} = 0 \quad \land \quad \mathbf{D} = 0 \quad \land \quad \mathbf{H} = 0$$

- Weighting: Infinitesimal diffeomorphism operators exist
- Trivial algebra: $\{\mathbf{M}, \mathbf{M}\} = 0$, $\mathbf{QT}: [\widehat{\mathbf{M}}, \widehat{\mathbf{M}}] = 0$
- Anomalies? $\widehat{\mathbf{M}} \psi = 0 \rightarrow 0 \notin \text{in } \sigma(\widehat{\mathbf{M}})$
- Two possibilities to quantise M
 - Graph changing: Semiclassically problematic, $\mathcal{H}_{\rm diff}$
 - Graph preserving: Can be defined on \mathcal{H}_{kin}

(日) (同) (日) (日)

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Master Constraint Programme

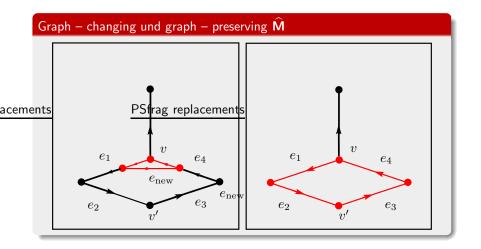

The Master Constraint M

• M consists of weighted, spatially diff-invariant sum [Thiemann 2003]

$$\widehat{\mathbf{M}} = \sum_{v} \left[\sum_{a} \operatorname{Tr}(A(\beta_v^a) A(e_v^a) [A(e_v^a)^{-1}, \sqrt{V_v}])\right]^2$$

•
$$\mathbf{M} = 0 \quad \Leftrightarrow \quad \mathbf{G} = 0 \quad \land \quad \mathbf{D} = 0 \quad \land \quad \mathbf{H} = 0$$

- Weighting: Infinitesimal diffeomorphism operators exist
- Trivial algebra: $\{\mathbf{M}, \mathbf{M}\} = 0$, $\mathbf{QT}: [\widehat{\mathbf{M}}, \widehat{\mathbf{M}}] = 0$
- Anomalies? $\widehat{\mathbf{M}} \psi = 0 \rightarrow 0 \notin \text{in } \sigma(\widehat{\mathbf{M}})$
- Two possibilities to quantise M
 - Graph changing: Semiclassically problematic, $\mathcal{H}_{\rm diff}$
 - Graph preserving: Can be defined on \mathcal{H}_{kin}



(日) (同) (日) (日)

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

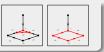
・ロト ・同ト ・ヨト ・ヨト

Comparison

Kristina Giesel Algebraic Quantum Gravity

Status of the Dynamics in LQG Status of Semiclassical Properties of LQG The Master Constraint Programme

Master Constraint Programme


The Master Constraint M

• M consists of weighted, spatially diff-invariant sum [Thiemann 2003]

$$\widehat{\mathbf{M}} = \sum_{v} \left[\sum_{a} \operatorname{Tr}(A(\beta_v^a) A(e_v^a) [A(e_v^a)^{-1}, \sqrt{V_v}])\right]^2$$

•
$$\mathbf{M} = 0 \quad \Leftrightarrow \quad \mathbf{G} = 0 \quad \land \quad \mathbf{D} = 0 \quad \land \quad \mathbf{H} = 0$$

- Weighting: Infinitesimal diffeomorphism operators exist
- Trivial algebra: $\{\mathbf{M}, \mathbf{M}\} = 0$, $\mathbf{QT}: [\widehat{\mathbf{M}}, \widehat{\mathbf{M}}] = 0$
- Anomalies? $\widehat{\mathbf{M}} \psi = 0 \rightarrow 0 \notin \text{in } \sigma(\widehat{\mathbf{M}})$
- Two possibilities to quantise M
 - Graph changing: Semiclassically problematic, $\mathcal{H}_{\rm diff}$
 - Graph preserving: Can be defined on \mathcal{H}_{kin}

(日) (同) (日) (日)

Semiclassical Tools Coherent States

Semiclassical Techniques

Coherent States

- $\bullet~$ Certain sector of \mathcal{H}_{kin} with almost classical behaviour
- Such so called coherent states exist in \mathcal{H}_{kin} [Winkler, Thiemann 2001]
- Good semiclassical approximation of $\widehat{A}(e), \ \widehat{E}(S)$ [More details Bahr's talk]
- \bullet Our Aim: Testing the semiclassical limit of dynamical operators in \mathcal{H}_{kin}
 - \widehat{H} Graph changing problematic:
 - lpha : Sum over all graphs impossible, since \mathcal{H}_{him} non separable
 - M Graph preserving ok, but needs all embedded graphs in LQG
- Existing semiclassical tools are extremely graph dependent

Semiclassical Tools Coherent States

Semiclassical Techniques

Coherent States

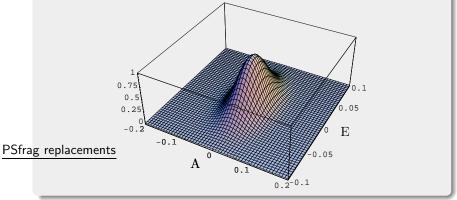
- $\bullet~$ Certain sector of \mathcal{H}_{kin} with almost classical behaviour
- Such so called coherent states exist in \mathcal{H}_{kin} [Winkler, Thiemann 2001]
- Good semiclassical approximation of $\widehat{A}(e), \ \widehat{E}(S)$ [More details Bahr's talk]
- \bullet Our Aim: Testing the semiclassical limit of dynamical operators in \mathcal{H}_{kin}
 - \widehat{H} Graph changing problematic:
 - \ast . Sum over all graphs impossible, since \mathcal{H}_{hin} non separable
 - M Graph preserving ok, but needs all embedded graphs in LQG
- Existing semiclassical tools are extremely graph dependent

Semiclassical Tools Coherent States

Semiclassical Techniques

Coherent States

- $\bullet~$ Certain sector of \mathcal{H}_{kin} with almost classical behaviour
- \bullet Such so called coherent states exist in $\mathcal{H}_{\mathit{kin}}$ [Winkler, Thiemann 2001]
- Good semiclassical approximation of $\widehat{A}(e), \ \widehat{E}(S)$ [More details Bahr's talk]


• Our Aim:

- \widehat{H} Graph changing problematic:
 - Sum over all graphs impossible; since *H_{hin}* non -- separable
- M Graph preserving ok, but needs all embedded graphs in LQG
- Existing semiclassical tools are extremely graph dependend

Semiclassical Tools Coherent States

Coherent States

Kristina Giesel Algebraic Quantum Gravity

Semiclassical Tools Coherent States

Semiclassical Techniques

Coherent States

- $\bullet~$ Certain sector of \mathcal{H}_{kin} with almost classical behaviour
- \bullet Such so called coherent states exist in $\mathcal{H}_{\mathit{kin}}$ [Winkler, Thiemann 2001]
- Good semiclassical approximation of $\widehat{A}(e), \ \widehat{E}(S)$ [More details Bahr's talk]

• Our Aim:

- \widehat{H} Graph changing problematic:
 - Sum over all graphs impossible; since *H_{hin}* non -- separable
- M Graph preserving ok, but needs all embedded graphs in LQG
- Existing semiclassical tools are extremely graph dependend

Semiclassical Tools Coherent States

Semiclassical Techniques

Coherent States

- $\bullet~$ Certain sector of \mathcal{H}_{kin} with almost classical behaviour
- \bullet Such so called coherent states exist in \mathcal{H}_{kin} [Winkler,Thiemann 2001]
- Good semiclassical approximation of $\widehat{A}(e), \ \widehat{E}(S)$ [More details Bahr's talk]

• Our Aim:

- \widehat{H} Graph changing problematic:
 - Sum over all graphs impossible, since H_{kin} non separable
- \widehat{M} Graph preserving ok, but needs all embedded graphs in LQG
- Existing semiclassical tools are extremely graph dependend

Semiclassical Tools Coherent States

Semiclassical Techniques

Coherent States

- $\bullet~$ Certain sector of \mathcal{H}_{kin} with almost classical behaviour
- \bullet Such so called coherent states exist in \mathcal{H}_{kin} [Winkler,Thiemann 2001]
- Good semiclassical approximation of $\widehat{A}(e), \ \widehat{E}(S)$ [More details Bahr's talk]

• Our Aim:

- \hat{H} Graph changing problematic:
 - $\bullet~$ Sum over all graphs impossible, since $\mathcal{H}_{\mathit{kin}}$ non separable
- \widehat{M} Graph preserving ok, but needs all embedded graphs in LQG
- Existing semiclassical tools are extremely graph dependend

Semiclassical Tools Coherent States

Semiclassical Techniques

Coherent States

- $\bullet~$ Certain sector of \mathcal{H}_{kin} with almost classical behaviour
- \bullet Such so called coherent states exist in \mathcal{H}_{kin} [Winkler, Thiemann 2001]
- Good semiclassical approximation of $\widehat{A}(e), \ \widehat{E}(S)$ [More details Bahr's talk]

• Our Aim:

- \hat{H} Graph changing problematic:
 - Sum over all graphs impossible, since \mathcal{H}_{kin} non separable
- \widehat{M} Graph preserving ok, but needs all embedded graphs in LQG
- Existing semiclassical tools are extremely graph dependend

Semiclassical Tools Coherent States

Semiclassical Techniques

Coherent States

- $\bullet~$ Certain sector of \mathcal{H}_{kin} with almost classical behaviour
- \bullet Such so called coherent states exist in $\mathcal{H}_{\mathit{kin}}$ [Winkler, Thiemann 2001]
- Good semiclassical approximation of $\widehat{A}(e), \ \widehat{E}(S)$ [More details Bahr's talk]

• Our Aim:

- \widehat{H} Graph changing problematic:
 - Sum over all graphs impossible, since \mathcal{H}_{kin} non separable
- $\widehat{\mathbf{M}}$ Graph preserving ok, but needs all embedded graphs in LQG
- Existing semiclassical tools are extremely graph dependend

Semiclassical Tools Coherent States

Semiclassical Techniques

Coherent States

- $\bullet~$ Certain sector of \mathcal{H}_{kin} with almost classical behaviour
- \bullet Such so called coherent states exist in \mathcal{H}_{kin} [Winkler,Thiemann 2001]
- Good semiclassical approximation of $\widehat{A}(e), \ \widehat{E}(S)$ [More details Bahr's talk]

• Our Aim:

- \widehat{H} Graph changing problematic:
 - Sum over all graphs impossible, since \mathcal{H}_{kin} non separable
- $\widehat{\mathbf{M}}$ Graph preserving ok, but needs all embedded graphs in LQG
- Existing semiclassical tools are extremely graph dependend

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Algebraic Quantum Gravity (AQG)

Conceptual Ideas of AQG

- LQG needs all embedded finite graphs in σ
- $\widehat{\mathbf{M}}$ can be quantised graph preserving
- Embedding independent formulation of AQG:
 - One fundamental infinite algebraic graph
 - Difference with graphs in LQG: Information about topology & differential structure of spatial manifold σ are absent
- Idea: Def. of the algebra and dynamical operators on algebraic level
- Consequence: No graph dependence anymore
- Chosen algebraic graph is fundamental

< □ > < A > >

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Algebraic Quantum Gravity (AQG)

Conceptual Ideas of AQG

- LQG needs all embedded finite graphs in σ
- M can be quantised graph preserving
- Embedding independent formulation of AQG:
 - One fundamental infinite algebraic graph
 - Difference with graphs in LQG: Information about topology & differential structure of spatial manifold σ are absent
- Idea: Def. of the algebra and dynamical operators on algebraic level
- Consequence: No graph dependence anymore
- Chosen algebraic graph is fundamental

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Algebraic Quantum Gravity (AQG)

Conceptual Ideas of AQG

- LQG needs all embedded finite graphs in σ
- M can be quantised graph preserving
- Embedding independent formulation of AQG:
 - One fundamental infinite algebraic graph
 - Difference with graphs in LQG: Information about topology & differential structure of spatial manifold σ are absent
- Idea: Def. of the algebra and dynamical operators on algebraic level
- Consequence: No graph dependence anymore
- Chosen algebraic graph is fundamental

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

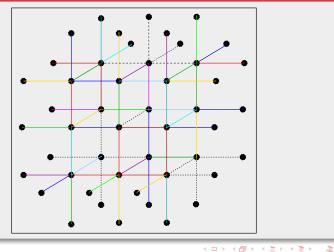
Algebraic Quantum Gravity (AQG)

Conceptual Ideas of AQG

- LQG needs all embedded finite graphs in σ
- $\widehat{\mathbf{M}}$ can be quantised graph preserving
- Embedding independent formulation of AQG:
 - One fundamental infinite algebraic graph
 - Difference with graphs in LQG: Information about topology & differential structure of spatial manifold σ are absent
- Idea: Def. of the algebra and dynamical operators on algebraic level
- Consequence: No graph dependence anymore
- Chosen algebraic graph is fundamental

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Algebraic Quantum Gravity (AQG)


Conceptual Ideas of AQG

- LQG needs all embedded finite graphs in σ
- $\widehat{\mathbf{M}}$ can be quantised graph preserving
- Embedding independent formulation of AQG:
 - One fundamental infinite algebraic graph
 - Difference with graphs in LQG: Information about topology & differential structure of spatial manifold σ are absent
- Idea: Def. of the algebra and dynamical operators on algebraic level
- Consequence: No graph dependence anymore
- Chosen algebraic graph is fundamental

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Algebraic Graph

Algebraic graph with cubic topology

Kristina Giesel Algebraic Quantum Gravity

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Algebraic Quantum Gravity (AQG)

Conceptual Ideas of AQG

- LQG needs all embedded finite graphs in σ
- M can be quantised graph preserving
- Embedding independent formulation of AQG:
 - One fundamental infinite algebraic graph
 - Difference with graphs in LQG: Information about topology & differential structure of spatial manifold σ are absent
- Idea: Def. of the algebra and dynamical operators on algebraic level
- Consequence: No graph dependence anymore
- Chosen algebraic graph is fundamental

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Algebraic Quantum Gravity (AQG)

Conceptual Ideas of AQG

- LQG needs all embedded finite graphs in σ
- M can be quantised graph preserving
- Embedding independent formulation of AQG:
 - One fundamental infinite algebraic graph
 - Difference with graphs in LQG: Information about topology & differential structure of spatial manifold σ are absent
- Idea: Def. of the algebra and dynamical operators on algebraic level
- Consequence: No graph dependence anymore
- Chosen algebraic graph is fundamental

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Algebraic Quantum Gravity (AQG)

Conceptual Ideas of AQG

- LQG needs all embedded finite graphs in σ
- M can be quantised graph preserving
- Embedding independent formulation of AQG:
 - One fundamental infinite algebraic graph
 - Difference with graphs in LQG: Information about topology & differential structure of spatial manifold σ are absent
- Idea: Def. of the algebra and dynamical operators on algebraic level
- Consequence: No graph dependence anymore
- Chosen algebraic graph is fundamental

< □ > < A > >

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Algebraic Quantum Gravity (AQG)

Conceptual Ideas of AQG

- LQG needs all embedded finite graphs in σ
- M can be quantised graph preserving
- Embedding independent formulation of AQG:
 - One fundamental infinite algebraic graph
 - Difference with graphs in LQG: Information about topology & differential structure of spatial manifold σ are absent
- Idea: Def. of the algebra and dynamical operators on algebraic level
- Consequence: No graph dependence anymore
- Chosen algebraic graph is fundamental

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

<ロ> (四) (四) (日) (日) (日)

з

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- $\bullet \ LQG: \ embedded \ algebra \ \leftrightarrow \ AQG: \ abstract \ algebra$
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) AQG: M \u03c6 operators can be lifted
 - Dynamics is described through graph preserving M
- Semiclassics: One needs to provide the following data:
 - A 3 manifold σ , a phase space point (A,E)
 - An embedding of a graph into σ
 - Analogous definition of algebraic coherent states

 AQG: Topology, differential strucure of σ and background metric which is approximated is encoded in semiclassical states

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- $\bullet \ LQG: \ embedded \ algebra \ \leftrightarrow \ AQG: \ abstract \ algebra$
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted

$$QG: \widehat{\mathbf{M}} \psi_{phys} = 0$$

- Dynamics is described through graph preserving $\widehat{\mathbf{M}}$
- Semiclassics: One needs to provide the following data:
 - A 3 manifold σ , a phase space point (A,E)
 - An embedding of a graph into σ
 - Analogous definition of algebraic coherent states
- AQG: Topology, differential strucure of σ and background metric which is approximated is encoded in semiclassical states

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- LQG: embedded algebra \leftrightarrow AQG: abstract algebra
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted
 - Dynamics is described through graph preserving \widehat{M}
- Semiclassics: One needs to provide the following data:
 - A 3 manifold σ , a phase space point (A,E)
 - An embedding of a graph into σ
 - Analogous definition of algebraic coherent states
- AQG: Topology, differential strucure of σ and background metric which is approximated is encoded in semiclassical states

AQG : $\widehat{\mathbf{M}} \psi_{\text{phys}} = 0$

Kinematical & Dynamical Setup of AQG

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- LQG: embedded algebra ↔ AQG: abstract algebra
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted
 - Dynamics is described through graph preserving M
- Semiclassics: One needs to provide the following data:
- AQG: Topology, differential strucure of σ and background metric

$$QG: \quad \widehat{\mathbf{\mathsf{M}}} \,\psi_{\rm phys} = 0$$

:
$$\widehat{\mathbf{M}} \psi_{\text{phys}} = 0$$

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

AQG : $\mathbf{M} \psi_{\text{phys}} = 0$

<ロ> (四) (四) (日) (日) (日)

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- LQG: embedded algebra \leftrightarrow AQG: abstract algebra
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted
 - Dynamics is described through graph preserving $\widehat{\mathbf{M}}$

• Semiclassics: One needs to provide the following data:

- A 3 manifold σ , a phase space point (A,E)
- An embedding of a graph into σ
- Analogous definition of algebraic coherent states

 AQG: Topology, differential strucure of σ and background metric which is approximated is encoded in semiclassical states

Kinematical & Dynamical Setup of AQG

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- LQG: embedded algebra ↔ AQG: abstract algebra
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted
 - Dynamics is described through graph preserving M
- Semiclassics: One needs to provide the following data:
- AQG: Topology, differential strucure of σ and background metric

Quantum-Einstein-Eqn.

$$AQG: \quad \widehat{\mathbf{M}} \, \psi_{\rm phys} = 0$$

$$\widehat{\mathbf{M}}\,\psi_{\rm phys}=0$$

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- LQG: embedded algebra \leftrightarrow AQG: abstract algebra
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted

• Dynamics is described through graph – preserving \widehat{M}

• Semiclassics: One needs to provide the following data:

- A 3 manifold σ , a phase space point (A,E)
- An embedding of a graph into σ
- Analogous defintion of algebraic coherent states
- AQG: Topology, differential strucure of σ and background metric which is approximated is encoded in semiclassical states

Quantum-Einstein-Eqn.

$$AQG: \quad \widehat{\mathbf{M}} \, \psi_{\rm phys} = 0$$

< ∃⇒

Kinematical & Dynamical Setup of AQG

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- LQG: embedded algebra ↔ AQG: abstract algebra
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted

Dynamics is described through graph – preserving M

A

• Semiclassics: One needs to provide the following data:

- A 3 manifold σ , a phase space point (A,E)
- An embedding of a graph into σ
- Analogous definition of algebraic coherent states

• AQG: Topology, differential strucure of σ and background metric

Quantum-Einstein-Eqn.

$$QG: \quad \widehat{\mathbf{\mathsf{M}}} \,\psi_{\text{phys}} = 0$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- LQG: embedded algebra \leftrightarrow AQG: abstract algebra
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted
 - Dynamics is described through graph preserving $\widehat{\mathbf{M}}$
- Semiclassics: One needs to provide the following data:
 - A 3 manifold σ , a phase space point (A,E)
 - An embedding of a graph into σ
 - Analogous defintion of algebraic coherent states
- AQG: Topology, differential strucure of σ and background metric which is approximated is encoded in semiclassical states

Quantum-Einstein-Eqn.

$$AQG: \quad \widehat{\mathbf{M}} \, \psi_{\rm phys} = 0$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- LQG: embedded algebra \leftrightarrow AQG: abstract algebra
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted
 - Dynamics is described through graph preserving $\widehat{\mathbf{M}}$
- Semiclassics: One needs to provide the following data:
 - A 3 manifold σ , a phase space point (A,E)
 - An embedding of a graph into σ
 - Analogous defintion of algebraic coherent states

 AQG: Topology, differential strucure of σ and background metric which is approximated is encoded in semiclassical states

Quantum-Einstein-Eqn.

$$AQG: \quad \widehat{\mathbf{M}} \, \psi_{\rm phys} = 0$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

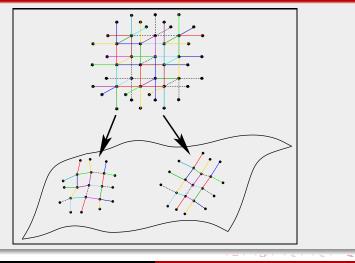
Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Kinematical & Dynamical Setup of AQG

Mathematical Framework of AQG

- LQG: embedded algebra \leftrightarrow AQG: abstract algebra
- Quantisation:
 - Kinem. Hilbert space \mathcal{H}_{ITP}
 - All physic. (gauge invariant) operators can be lifted
 - Dynamics is described through graph preserving $\widehat{\mathbf{M}}$
- Semiclassics: One needs to provide the following data:
 - A 3 manifold σ , a phase space point (A,E)
 - An embedding of a graph into σ
 - Analogous defintion of algebraic coherent states
- AQG: Topology, differential strucure of σ and background metric which is approximated is encoded in semiclassical states

Quantum-Einstein-Eqn.


$$AQG: \quad \widehat{\mathbf{M}} \, \psi_{\rm phys} = 0$$

イロト イポト イヨト イヨト

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Fundamental Algebraic Graph

Information on the embedding are encoded in the coherent states

Kristina Giesel Algebraic Quantum Gravity

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Semiclassical Analysis of M

Semiclassical Limit of the Dynamics of AQG

- $\bullet\,$ Semiclassical limit of \widehat{M} wrt algebraic coherent states of an algebraic cubic graph
- One gets expansion of $\langle \Psi^{\hbar}_{(A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{(A,E)} \rangle$ wrt \hbar
- Result in leading order

$$\left\langle \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \right\rangle \mathop{=}\limits_{\substack{ \lim \\ \hbar \to 0}} \mathbf{M}^{cubic}[m] \mathop{=}\limits_{\substack{ i = \\ \epsilon \to 0}} \mathbf{M}[m]$$

- ϵ measure of fineness of the embedding
- $O(\hbar^0)$: Correct infinitesimal generators of GR
- $O(\hbar)$: Quantum fluctuations are finite
- Positive result wrt infinitesimal classical limit

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Semiclassical Analysis of M

- \bullet Semiclassical limit of $\widehat{\mathbf{M}}$ wrt algebraic coherent states of an algebraic cubic graph
- One gets expansion of $\langle \Psi^{\hbar}_{(A,E)} | \widehat{\mathbf{M}} | \Psi^{\hbar}_{(A,E)} \rangle$ wrt \hbar
- Result in leading order

$$\left\langle \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \right\rangle \mathop{=}\limits_{\substack{ \lim \\ \hbar \to 0}} \mathbf{M}^{cubic}[m] \mathop{=}\limits_{\substack{ i = \\ \epsilon \to 0}} \mathbf{M}[m]$$

- ϵ measure of fineness of the embedding
- $O(\hbar^0)$: Correct infinitesimal generators of GR
- $O(\hbar)$: Quantum fluctuations are finite
- Positive result wrt infinitesimal classical limit

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Semiclassical Analysis of M

- \bullet Semiclassical limit of $\widehat{\mathbf{M}}$ wrt algebraic coherent states of an algebraic cubic graph
- One gets expansion of $\langle \Psi^{\hbar}_{(A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{(A,E)} \rangle$ wrt \hbar
- Result in leading order

$$\left\langle \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \right\rangle \mathop{=}\limits_{\substack{ \lim \\ \hbar \to 0}} \mathbf{M}^{cubic}[m] \mathop{=}\limits_{\substack{ \lim \\ \epsilon \to 0}} \mathbf{M}[m]$$

- ϵ measure of fineness of the embedding
- $O(\hbar^0)$: Correct infinitesimal generators of GR
- $O(\hbar)$: Quantum fluctuations are finite
- Positive result wrt infinitesimal classical limit

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Semiclassical Analysis of M

- \bullet Semiclassical limit of $\widehat{\mathbf{M}}$ wrt algebraic coherent states of an algebraic cubic graph
- One gets expansion of $\langle \Psi^{\hbar}_{(A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{(A,E)} \rangle$ wrt \hbar
- Result in leading order

$$\left\langle \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \right\rangle \mathop{=}\limits_{\substack{\lim \\ \hbar \to 0}} \mathbf{M}^{cubic}[m] \mathop{=}\limits_{\substack{\lim \\ \epsilon \to 0}} \mathbf{M}[m]$$

- $\bullet \ \epsilon$ measure of fineness of the embedding
- $O(\hbar^0)$: Correct infinitesimal generators of GR
- $O(\hbar)$: Quantum fluctuations are finite
- Positive result wrt infinitesimal classical limit

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Semiclassical Analysis of M

- \bullet Semiclassical limit of $\widehat{\mathbf{M}}$ wrt algebraic coherent states of an algebraic cubic graph
- One gets expansion of $\langle \Psi^{\hbar}_{(A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{(A,E)} \rangle$ wrt \hbar
- Result in leading order

$$\left\langle \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \right\rangle \mathop{=}\limits_{\substack{\lim \\ \hbar \to 0}} \mathbf{M}^{cubic}[m] \mathop{=}\limits_{\substack{\lim \\ \epsilon \to 0}} \mathbf{M}[m]$$

- $\bullet \ \epsilon$ measure of fineness of the embedding
- $O(\hbar^0)$: Correct infinitesimal generators of GR
- $O(\hbar)$: Quantum fluctuations are finite
- Positive result wrt infinitesimal classical limit

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Semiclassical Analysis of M

- \bullet Semiclassical limit of $\widehat{\mathbf{M}}$ wrt algebraic coherent states of an algebraic cubic graph
- One gets expansion of $\langle \Psi^{\hbar}_{(A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{(A,E)} \rangle$ wrt \hbar
- Result in leading order

$$\left\langle \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \right\rangle \mathop{=}\limits_{\substack{\lim \\ \hbar \to 0}} \mathbf{M}^{cubic}[m] \mathop{=}\limits_{\substack{\lim \\ \epsilon \to 0}} \mathbf{M}[m]$$

- $\bullet \ \epsilon$ measure of fineness of the embedding
- $O(\hbar^0)$: Correct infinitesimal generators of GR
- $O(\hbar)$: Quantum fluctuations are finite
- Positive result wrt infinitesimal classical limit

Conceptual Ideas Kinematical & Dynamical Setup of AQG Semiclassical Analysis of AQG

Semiclassical Analysis of M

- \bullet Semiclassical limit of \widehat{M} wrt algebraic coherent states of an algebraic cubic graph
- One gets expansion of $\langle \Psi^{\hbar}_{(A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{(A,E)} \rangle$ wrt \hbar
- Result in leading order

$$\left\langle \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \mid \widehat{\mathbf{M}} \mid \Psi^{\hbar}_{\scriptscriptstyle (A,E)} \right\rangle \mathop{=}\limits_{\substack{\lim \\ \hbar \to 0}} \mathbf{M}^{cubic}[m] \mathop{=}\limits_{\substack{\lim \\ \epsilon \to 0}} \mathbf{M}[m]$$

- $\bullet \ \epsilon$ measure of fineness of the embedding
- $O(\hbar^0)$: Correct infinitesimal generators of GR
- $O(\hbar)$: Quantum fluctuations are finite
- Positive result wrt infinitesimal classical limit

Summary

Conclusions & Outlook

- AQG provides a framework for semiclassical analysis of the dynamics
- $\dot{\mathbf{M}}$ reproduces in $O(\hbar^0)$ the correct infinitesimal generators of GR, quantum fluctuations are finite
- Open issues & outlook:
 - Kernel of M could be empty \rightarrow anomalies?
 - Substraction Amin (Dissid); Dienson
 - Improvement of the discretisation (Dirac operator LGT)
 - Properties of the infinitesimal quantum diffeomorphisms
 - Quantum cosmological perturbation theory
 - Take advantage of similarities with lattice gauge theories

(日) (同) (三) (

Summary

Conclusions & Outlook

- AQG provides a framework for semiclassical analysis of the dynamics
- M reproduces in O(ħ⁰) the correct infinitesimal generators of GR, quantum − fluctuations are finite
- Open issues & outlook:
 - Kernel of M could be empty \rightarrow anomalies?
 - Improvement of the discretisation (Dirac operator LGT).
 - Properties of the infinitesimal quantum diffeomorphisms
 - Quantum cosmological perturbation theory
 - Take advantage of similarities with lattice gauge theories

(日) (同) (三) (

Summary

Conclusions & Outlook

- AQG provides a framework for semiclassical analysis of the dynamics
- **M** reproduces in O(ħ⁰) the correct infinitesimal generators of GR, quantum − fluctuations are finite
- Open issues & outlook:
 - Kernel of $\widehat{\mathbf{M}}$ could be empty \rightarrow anomalies?
 - Substraction λ_{min} [Dittrich,Thiemann]
 - Improvement of the discretisation (Dirac operator LGT)
 - Properties of the infinitesimal quantum diffeomorphisms
 - Quantum cosmological perturbation theory
 - Take advantage of similarities with lattice gauge theories

(日) (同) (三) (

Summary

Conclusions & Outlook

- AQG provides a framework for semiclassical analysis of the dynamics
- **M** reproduces in O(ħ⁰) the correct infinitesimal generators of GR, quantum − fluctuations are finite
- Open issues & outlook:
 - Kernel of $\widehat{\mathbf{M}}$ could be empty \rightarrow anomalies?
 - Substraction λ_{min} [Dittrich, Thiemann]
 - Improvement of the discretisation (Dirac operator LGT)
 - Properties of the infinitesimal quantum diffeomorphisms
 - Quantum cosmological perturbation theory
 - Take advantage of similarities with lattice gauge theories

Summary

Conclusions & Outlook

- AQG provides a framework for semiclassical analysis of the dynamics
- **M** reproduces in O(ħ⁰) the correct infinitesimal generators of GR, quantum − fluctuations are finite
- Open issues & outlook:
 - Kernel of $\widehat{\mathbf{M}}$ could be empty \rightarrow anomalies?
 - Substraction λ_{min} [Dittrich, Thiemann]
 - Improvement of the discretisation (Dirac operator LGT)
 - Properties of the infinitesimal quantum diffeomorphisms
 - Quantum cosmological perturbation theory
 - Take advantage of similarities with lattice gauge theories

Summary

Conclusions & Outlook

- AQG provides a framework for semiclassical analysis of the dynamics
- **M** reproduces in O(ħ⁰) the correct infinitesimal generators of GR, quantum − fluctuations are finite
- Open issues & outlook:
 - Kernel of $\widehat{\mathbf{M}}$ could be empty \rightarrow anomalies?
 - Substraction λ_{min} [Dittrich, Thiemann]
 - Improvement of the discretisation (Dirac operator LGT)
 - Properties of the infinitesimal quantum diffeomorphisms
 - Quantum cosmological perturbation theory
 - Take advantage of similarities with lattice gauge theories

Summary

Conclusions & Outlook

- AQG provides a framework for semiclassical analysis of the dynamics
- **M** reproduces in O(ħ⁰) the correct infinitesimal generators of GR, quantum − fluctuations are finite
- Open issues & outlook:
 - Kernel of $\widehat{\mathbf{M}}$ could be empty \rightarrow anomalies?
 - Substraction λ_{min} [Dittrich, Thiemann]
 - Improvement of the discretisation (Dirac operator LGT)
 - Properties of the infinitesimal quantum diffeomorphisms
 - Quantum cosmological perturbation theory
 - Take advantage of similarities with lattice gauge theories

Summary

Conclusions & Outlook

- AQG provides a framework for semiclassical analysis of the dynamics
- **M** reproduces in O(ħ⁰) the correct infinitesimal generators of GR, quantum − fluctuations are finite
- Open issues & outlook:
 - Kernel of $\widehat{\mathbf{M}}$ could be empty \rightarrow anomalies?
 - Substraction λ_{min} [Dittrich, Thiemann]
 - Improvement of the discretisation (Dirac operator LGT)
 - Properties of the infinitesimal quantum diffeomorphisms
 - Quantum cosmological perturbation theory
 - Take advantage of similarities with lattice gauge theories

Summary

Conclusions & Outlook

- AQG provides a framework for semiclassical analysis of the dynamics
- **M** reproduces in O(ħ⁰) the correct infinitesimal generators of GR, quantum − fluctuations are finite
- Open issues & outlook:
 - Kernel of $\widehat{\mathbf{M}}$ could be empty \rightarrow anomalies?
 - Substraction λ_{min} [Dittrich, Thiemann]
 - Improvement of the discretisation (Dirac operator LGT)
 - Properties of the infinitesimal quantum diffeomorphisms
 - Quantum cosmological perturbation theory
 - Take advantage of similarities with lattice gauge theories