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® Yang-Mills quantum field theories are the basic building
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® We shall focus on second term: pure Yang-Mills

® Need systematic method for questions with non-perturbative
answers, i.e. confinement.
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® Facewise amplitudes are character expanded:
= ZCiXi(g p)
i

® |nterchange summation with integration:

Z = /(Hdge> HZCZXZ gp Z /<Hdge> Hcs(p)x (p)(g )
eck peEP i s:P—J eck peP



Facewise amplitudes are character expanded:
eS8 =Y cixilgy)
i

Interchange summation with integration:

Z= / <Hdge> [TY cixi(er) = Y / <Hd8e> [ 1 estryXso (80)
eck peEP i s:P—J
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Many colorings vanish. To " "survive” group integration, a
plaquette coloring must satisfy certain conditions...
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Dual states: Closed, branched, colored surfaces

Two cubes
meeting at a face
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Closed, due to
periodic b.c’s

We specialize now to SU(2), D=3
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® One can work in the space of dual configurations and
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® One can work in the space of dual configurations and
write

y / (Hdge) [T et (80)
s:P—J eck peP

® For small diagrams, these were worked out by hand exactly

® |n strong coupling limit, expansions in small diagrams
become good a description of the physics.
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® Spin foam methods give systematic means for the group integrals

Z = S‘ (? H 185 (44, Ju) H N€(ie, je) ) (H e_%jp(jp+1)(2jp + 1))

1 veV eckE peP

® Configurations are spin foam, defined by both plaquette and edge labels.
® Amplitude is local on configurations - critical for a practical algorithm.

® General theory of dual non-abelian spin foams (Wilson observables,etc):

arXiv:hep-lat/01 10034 (R. Oeckl, H. Pfeiffer)
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theory to find
efficient, computable
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Vertex Splitting
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Moves that connect any admissible configuration to any other
A problem for past attempts at dual algorithms
Single plaquette changes won’t work due to parity constraint

Find moves as local as possible (efficient updating)



(8x8x8 lattice)
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* Gauge-invariant picture - Configurations of the simulation
can describe mechanisms of confinement without gauge.

* PureYang Mills is of interest as a matter probe for spin foam
quantum gravity.

Alternative approach to problems that are hard in
conventional LGT i.e. dynamic fermions.

* Possibly faster in some contexts



Challenges



Challenges

® High rejection rate



Challenges

® High rejection rate

® | ong auto-correlation time
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Extending the algorithm

® Wilson loop observables
® Higher gauge groups: i.e. SU(3)
® Dimension 4

® Coupling to spin foam gravity:

arXiv: gr-qc/0207041 (D. Oriti and H. Pfeiffer)
arXiv:0706.1534 (S. Speziale)
Others!?
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