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•  Yang-Mills quantum field theories are the basic building 
blocks of the standard model.
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Yang-Mills Theory

•  Yang-Mills quantum field theories are the basic building 
blocks of the standard model.

•  We shall focus on second term:   pure Yang-Mills

• Need systematic method for questions with non-perturbative 
answers, i.e. confinement.
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Conventional Lattice Gauge Theory

• Idea:  Regularize space-time on a lattice.  Estimate 
correlation functions using Monte Carlo.

2. Review of The Dual Model And Algorithm Construction

In this section we define the dual model for SU(2) pure Yang-Mills on a hyper-cubic lattice and
describe a Metropolis algorithm for performing dual computations. Of particular relevance to our
present work is the application of diagrammatic methods and spin foam formalism, as described for
example in [10, 34, 35], a critical feature being the expression of group integrals of representation
matrices and their contractions as sums over intertwiners1. While the spin foam formalism for dual
models is a more recent development, the construction of exact dual non-abelian models has a longer
history [1, 2, 3, 15, 16, 19, 20]. Traditional derivations of the duality transformation and their use in
strong-coupling expansions can be found in the texts [23, 33].

2.1. Review of pure Yang-Mills theory on the lattice. First we recall the Euclidean partition
function of pure Yang-Mills theory in D dimensions, with gauge group G = SU(N), where N ≥ 2 (we
shall later specialize to the SU(2) case). It takes the form

(1) Z =

∫

DA exp(−S),

with Aa
µ the gauge field, S the action functional, and DA the functional integration measure. In the

continuum version of the theory the standard action functional is

(2) S ≡ S[A] =
1

4g2

∫

dDxF a
µνFµν

a ,

where F a
µν is the field strength tensor and g the continuum coupling. Unfortunately, the continuum

functional measure DA is not well defined.
One way to give the above path integral rigorous meaning and, at the same time, make it amenable

to computational treatment, is to put the theory on a discrete finite lattice. The simplest variant uses
a hypercubic lattice. Let E and P denote respectively the sets of edges and plaquettes of a hyper-cubic
lattice in D dimensions. The gauge field A is replaced by gauge group elements ge assigned to each
oriented lattice edge e ∈ E. The same edge with opposite orientation gets g−1

e instead of ge. The
functional integral measure can now be replaced by an integral over the product of |E| copies of G using
Haar measure:

(3) DA ≡
∏

e∈E

dge.

At the same time, the action functional is replaced by a discretized version, S ≡ S[g], that must
reproduce the continuum action S[A] as the lattice spacing is taken to zero. The discretized action is
usually split into a sum over plaquettes, S[g] =

∑

p∈P S(gp), where the group element gp is the holonomy
around an oriented plaquette p. That is, gp = g1g2g3g4, where gi is either the group element assigned
to the ith edge of p or its inverse if the orientations of p and the ith edge are opposing. This yields the
conventional lattice partition function

(4) Z =

∫

∏

e∈E

dge e−
P

p∈P S(gp).

There are many candidate discretized plaquette actions S(gp). While the Wilson action [45] is perhaps
the most well-known in conventional LGT (it was also used in the dual computations of [17, 18, 21]),
a variety of actions S(gp) leading to the correct continuum limit are known and have been used in the
literature [22, 29, 30]. In the present work, we use the heat kernel action [31]; in the dual model this
action leads to plaquette factors that are particularly easy to compute. The heat kernel action (at lattice
coupling γ) for a fundamental plaquette p and plaquette holonomy gp is

(5) e−S(gp) =
K(gp,

γ
2

2)

K(I, γ2

2 )
,

1An intertwiner is a map between representations of a group that commutes with the action of the group.
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Conventional Lattice Gauge Theory

• Idea:  Regularize space-time on a lattice.  Estimate 
correlation functions using Monte Carlo.

gp = ge1(p)ge2(p)g−1
e3(p)g

−1
e4(p)

(Discrete holonomy around a plaquette)
Z =

Z (

∏
e∈E

dge

)
e−∑p∈P S(gp)

2. Review of The Dual Model And Algorithm Construction

In this section we define the dual model for SU(2) pure Yang-Mills on a hyper-cubic lattice and
describe a Metropolis algorithm for performing dual computations. Of particular relevance to our
present work is the application of diagrammatic methods and spin foam formalism, as described for
example in [10, 34, 35], a critical feature being the expression of group integrals of representation
matrices and their contractions as sums over intertwiners1. While the spin foam formalism for dual
models is a more recent development, the construction of exact dual non-abelian models has a longer
history [1, 2, 3, 15, 16, 19, 20]. Traditional derivations of the duality transformation and their use in
strong-coupling expansions can be found in the texts [23, 33].

2.1. Review of pure Yang-Mills theory on the lattice. First we recall the Euclidean partition
function of pure Yang-Mills theory in D dimensions, with gauge group G = SU(N), where N ≥ 2 (we
shall later specialize to the SU(2) case). It takes the form

(1) Z =

∫

DA exp(−S),

with Aa
µ the gauge field, S the action functional, and DA the functional integration measure. In the

continuum version of the theory the standard action functional is

(2) S ≡ S[A] =
1

4g2

∫

dDxF a
µνFµν

a ,

where F a
µν is the field strength tensor and g the continuum coupling. Unfortunately, the continuum

functional measure DA is not well defined.
One way to give the above path integral rigorous meaning and, at the same time, make it amenable

to computational treatment, is to put the theory on a discrete finite lattice. The simplest variant uses
a hypercubic lattice. Let E and P denote respectively the sets of edges and plaquettes of a hyper-cubic
lattice in D dimensions. The gauge field A is replaced by gauge group elements ge assigned to each
oriented lattice edge e ∈ E. The same edge with opposite orientation gets g−1

e instead of ge. The
functional integral measure can now be replaced by an integral over the product of |E| copies of G using
Haar measure:

(3) DA ≡
∏

e∈E

dge.

At the same time, the action functional is replaced by a discretized version, S ≡ S[g], that must
reproduce the continuum action S[A] as the lattice spacing is taken to zero. The discretized action is
usually split into a sum over plaquettes, S[g] =

∑

p∈P S(gp), where the group element gp is the holonomy
around an oriented plaquette p. That is, gp = g1g2g3g4, where gi is either the group element assigned
to the ith edge of p or its inverse if the orientations of p and the ith edge are opposing. This yields the
conventional lattice partition function

(4) Z =

∫

∏

e∈E

dge e−
P

p∈P S(gp).

There are many candidate discretized plaquette actions S(gp). While the Wilson action [45] is perhaps
the most well-known in conventional LGT (it was also used in the dual computations of [17, 18, 21]),
a variety of actions S(gp) leading to the correct continuum limit are known and have been used in the
literature [22, 29, 30]. In the present work, we use the heat kernel action [31]; in the dual model this
action leads to plaquette factors that are particularly easy to compute. The heat kernel action (at lattice
coupling γ) for a fundamental plaquette p and plaquette holonomy gp is

(5) e−S(gp) =
K(gp,

γ
2

2)

K(I, γ2

2 )
,

1An intertwiner is a map between representations of a group that commutes with the action of the group.

3

2. Review of The Dual Model And Algorithm Construction

In this section we define the dual model for SU(2) pure Yang-Mills on a hyper-cubic lattice and
describe a Metropolis algorithm for performing dual computations. Of particular relevance to our
present work is the application of diagrammatic methods and spin foam formalism, as described for
example in [10, 34, 35], a critical feature being the expression of group integrals of representation
matrices and their contractions as sums over intertwiners1. While the spin foam formalism for dual
models is a more recent development, the construction of exact dual non-abelian models has a longer
history [1, 2, 3, 15, 16, 19, 20]. Traditional derivations of the duality transformation and their use in
strong-coupling expansions can be found in the texts [23, 33].

2.1. Review of pure Yang-Mills theory on the lattice. First we recall the Euclidean partition
function of pure Yang-Mills theory in D dimensions, with gauge group G = SU(N), where N ≥ 2 (we
shall later specialize to the SU(2) case). It takes the form

(1) Z =

∫

DA exp(−S),

with Aa
µ the gauge field, S the action functional, and DA the functional integration measure. In the

continuum version of the theory the standard action functional is

(2) S ≡ S[A] =
1

4g2

∫

dDxF a
µνFµν

a ,

where F a
µν is the field strength tensor and g the continuum coupling. Unfortunately, the continuum

functional measure DA is not well defined.
One way to give the above path integral rigorous meaning and, at the same time, make it amenable

to computational treatment, is to put the theory on a discrete finite lattice. The simplest variant uses
a hypercubic lattice. Let E and P denote respectively the sets of edges and plaquettes of a hyper-cubic
lattice in D dimensions. The gauge field A is replaced by gauge group elements ge assigned to each
oriented lattice edge e ∈ E. The same edge with opposite orientation gets g−1

e instead of ge. The
functional integral measure can now be replaced by an integral over the product of |E| copies of G using
Haar measure:

(3) DA ≡
∏

e∈E

dge.

At the same time, the action functional is replaced by a discretized version, S ≡ S[g], that must
reproduce the continuum action S[A] as the lattice spacing is taken to zero. The discretized action is
usually split into a sum over plaquettes, S[g] =

∑

p∈P S(gp), where the group element gp is the holonomy
around an oriented plaquette p. That is, gp = g1g2g3g4, where gi is either the group element assigned
to the ith edge of p or its inverse if the orientations of p and the ith edge are opposing. This yields the
conventional lattice partition function

(4) Z =

∫

∏

e∈E

dge e−
P

p∈P S(gp).

There are many candidate discretized plaquette actions S(gp). While the Wilson action [45] is perhaps
the most well-known in conventional LGT (it was also used in the dual computations of [17, 18, 21]),
a variety of actions S(gp) leading to the correct continuum limit are known and have been used in the
literature [22, 29, 30]. In the present work, we use the heat kernel action [31]; in the dual model this
action leads to plaquette factors that are particularly easy to compute. The heat kernel action (at lattice
coupling γ) for a fundamental plaquette p and plaquette holonomy gp is

(5) e−S(gp) =
K(gp,

γ
2

2)

K(I, γ2

2 )
,

1An intertwiner is a map between representations of a group that commutes with the action of the group.

3



The Duality Transformation



The Duality Transformation

• Facewise amplitudes are character expanded:



The Duality Transformation

• Facewise amplitudes are character expanded:

e−S(gp) = ∑
i

ciχi(gp)



The Duality Transformation

• Facewise amplitudes are character expanded:

• Interchange summation with integration:

Z =
Z (

∏
e∈E

dge

)

∏
p∈P

∑
i

ciχi(gp) = ∑
s:P→J

Z (

∏
e∈E

dge

)

∏
p∈P

cs(p)χs(p)(gp)

e−S(gp) = ∑
i

ciχi(gp)



The Duality Transformation

• Facewise amplitudes are character expanded:

• Interchange summation with integration:

• Many colorings vanish.  To ``survive’’ group integration, a 
plaquette coloring must satisfy certain conditions...  

Z =
Z (

∏
e∈E

dge

)

∏
p∈P

∑
i

ciχi(gp) = ∑
s:P→J

Z (

∏
e∈E

dge

)

∏
p∈P

cs(p)χs(p)(gp)

e−S(gp) = ∑
i

ciχi(gp)
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Dual states: Closed, branched, colored surfaces

Closed, due to 
periodic b.c.’s

Two cubes 
meeting at a face

Cube with 
cap at bottom

We specialize now to SU(2), D=3
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• One can work in the space of dual configurations and 
write 

∑
s:P→J

Z (

∏
e∈E

dge

)

∏
p∈P

cs(p)χs(p)(gp)



Historical Context

• One can work in the space of dual configurations and 
write 

• For small diagrams, these were worked out by hand exactly 
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Historical Context

• One can work in the space of dual configurations and 
write 

• For small diagrams, these were worked out by hand exactly 

• In strong coupling limit,  expansions in small diagrams 
become good a description of the physics.  

∑
s:P→J

Z (

∏
e∈E

dge

)

∏
p∈P

cs(p)χs(p)(gp)
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Spin foams: finer-grained diagrams

• Spin foam methods give systematic means for the group integrals

where the heat kernel K, which is a function of a group element g and of a “time” parameter t, satisfies
a diffusion type differential equation

(6)
∂

∂t
K(g, t) = ∆K(g, t), K(g, 0) = δI(g).

Here ∆ is the Laplace-Beltrami operator on G and δI is the delta function at the group identity I.
The denominator in (5) represents a normalization of the partition function in which flat holonomies
(gp = I) are assigned an amplitude of unity. We shall follow the common practice of discussing the
phase structure of a lattice theory using the β parameter β = 4

γ2 .

We now turn to the definition of the dual model for the specific case of G = SU(2) pure Yang-Mills in
three dimensions. Starting from the conventional formulation of the lattice partition function Z given
in (4) above, the duality transformation can be applied (see the Appendix A.1) to yield the following
expression for Z in terms of the dual variables:

(7) Z =
∑

j

(

∑

i

∏

v∈V

18jv(iv, jv)
∏

e∈E

Ne(ie, je)

)





∏

p∈P

e−
2
β jp(jp+1)(2jp + 1)



 .

Here V denotes the vertex set of the lattice, while the summations over i and j range over all possible
edge and plaquette labellings, respectively. A plaquette labelling j assigns an irreducible representation
of SU(2) to each element of P . These representations are labelled by non-negative half-integers (we will
denote this set by 1

2N) and are referred to as spins ; a labelling j is thus a map j : P → 1
2N. An edge

labelling i, on the other hand, is valued in a basis of maps that intertwine the representations of the
plaquettes incident on the same edge. In our present case, the choice of basis corresponds to a grouping
of the four incident plaquette spins into two pairs. When such an edge splitting has been made, the
intertwiners may also be labelled by spins, as described just before Definition 2.2 and in the Appendix.
Different choices of splitting can be made, but, some are more computationally efficient than others.
In writing (7), we assume a fixed choice of splitting has been made and so an edge labelling is a map
i : E → 1

2N.
In the first pair of parentheses of (7), there is a product of 18j symbols, each of which is a function

of the 18 spins which label the 12 plaquettes and 6 edges incident to a vertex v; we denote the spins
which appear by jv and iv. Next to it is a product of edge normalizations Ne depending on the edge
spin ie and on the four spins je labelling the plaquettes incident on e. It is important to recognize
that the 18j symbol, together with the Ne that appear together in the first parentheses, is a purely
representation-theoretic quantity (independent of the action chosen) and that, from a computational
viewpoint, it represents the non-trivial part of the amplitude evaluation. The value of an 18j symbol at
each vertex is uniquely fixed by the choice of edge splitting and edge normalization. Efficient algorithms
can be found (using diagrammatic techniques similar to those used in [8]) for computing the 18j symbols
and edge normalizations. Two of these are reviewed in the Appendix.

In the second parentheses of (7) there is a product of factors depending on jp only; these arise from
the character expansion coefficients of the heat kernel action (5) and are clearly straightforward to
compute.

For the purposes of this paper, we define a spin foam to be an assignment of spins and intertwiners
to the plaquettes and edges of the lattice2, respectively. We define supported spin foams to be those
with non-vanishing amplitude, and denote the set of them by F+. In terms of the supported spin foams
we can write (7) as:

(8) Z =
∑

f∈F+

A(f) =
∑

f∈F+

(

∏

v∈V

18jv(iv, jv)
∏

e∈E

Ne(ie, je)

)





∏

p∈P

e−
2
β jp(jp+1)(2jp + 1)



 .

It turns out that the spin foams that actually make a non-zero contribution to Z are highly constrained,
a fact that is not manifest in (7) where every possible edge and plaquette coloring contributes a term.

2In spin foam quantum gravity, the 2-cells and 1-cells of a simplicial complex are typically used, rather than the
plaquettes and edges of a cubic lattice. The general definition of spin foam was introduced by Baez in [4].

4



Spin foams: finer-grained diagrams

• Spin foam methods give systematic means for the group integrals

• Configurations are spin foam, defined by both plaquette and edge labels.
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Spin foams: finer-grained diagrams

• Spin foam methods give systematic means for the group integrals

• Configurations are spin foam, defined by both plaquette and edge labels.

• Amplitude is local on configurations - critical for a practical algorithm.
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edge and plaquette labellings, respectively. A plaquette labelling j assigns an irreducible representation
of SU(2) to each element of P . These representations are labelled by non-negative half-integers (we will
denote this set by 1

2N) and are referred to as spins ; a labelling j is thus a map j : P → 1
2N. An edge

labelling i, on the other hand, is valued in a basis of maps that intertwine the representations of the
plaquettes incident on the same edge. In our present case, the choice of basis corresponds to a grouping
of the four incident plaquette spins into two pairs. When such an edge splitting has been made, the
intertwiners may also be labelled by spins, as described just before Definition 2.2 and in the Appendix.
Different choices of splitting can be made, but, some are more computationally efficient than others.
In writing (7), we assume a fixed choice of splitting has been made and so an edge labelling is a map
i : E → 1

2N.
In the first pair of parentheses of (7), there is a product of 18j symbols, each of which is a function

of the 18 spins which label the 12 plaquettes and 6 edges incident to a vertex v; we denote the spins
which appear by jv and iv. Next to it is a product of edge normalizations Ne depending on the edge
spin ie and on the four spins je labelling the plaquettes incident on e. It is important to recognize
that the 18j symbol, together with the Ne that appear together in the first parentheses, is a purely
representation-theoretic quantity (independent of the action chosen) and that, from a computational
viewpoint, it represents the non-trivial part of the amplitude evaluation. The value of an 18j symbol at
each vertex is uniquely fixed by the choice of edge splitting and edge normalization. Efficient algorithms
can be found (using diagrammatic techniques similar to those used in [8]) for computing the 18j symbols
and edge normalizations. Two of these are reviewed in the Appendix.

In the second parentheses of (7) there is a product of factors depending on jp only; these arise from
the character expansion coefficients of the heat kernel action (5) and are clearly straightforward to
compute.

For the purposes of this paper, we define a spin foam to be an assignment of spins and intertwiners
to the plaquettes and edges of the lattice2, respectively. We define supported spin foams to be those
with non-vanishing amplitude, and denote the set of them by F+. In terms of the supported spin foams
we can write (7) as:
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It turns out that the spin foams that actually make a non-zero contribution to Z are highly constrained,
a fact that is not manifest in (7) where every possible edge and plaquette coloring contributes a term.

2In spin foam quantum gravity, the 2-cells and 1-cells of a simplicial complex are typically used, rather than the
plaquettes and edges of a cubic lattice. The general definition of spin foam was introduced by Baez in [4].
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Spin foams: finer-grained diagrams

• Spin foam methods give systematic means for the group integrals

• Configurations are spin foam, defined by both plaquette and edge labels.

• Amplitude is local on configurations - critical for a practical algorithm.

• General theory of dual non-abelian spin foams (Wilson observables,etc):  
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Ergodicity - Getting there from here

• Moves that connect any admissible configuration to any other

• A problem for past attempts at dual algorithms

• Single plaquette changes won’t work due to parity constraint

• Find moves as local as possible (efficient updating)



Results:
(8x8x8 lattice)
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Why Dualize?

• Gauge-invariant picture - Configurations of the simulation 
can describe mechanisms of confinement without gauge. 

• Alternative approach to problems that are hard in 
conventional LGT i.e.  dynamic fermions.

• Possibly faster in some contexts

• Pure Yang Mills is of interest as a matter probe for spin foam 
quantum gravity.
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Challenges

• High rejection rate

• Long auto-correlation time
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Extending the algorithm

• Wilson loop observables

• Higher gauge groups:  i.e.  SU(3)

• Dimension 4 

• Coupling to spin foam gravity:
arXiv: gr-qc/0207041 (D. Oriti and H. Pfeiffer)
arXiv:0706.1534 (S. Speziale)
Others? 
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