Numerical Spin Foam Computations of Dual Yang-Mills Theory

Talk prepared for Loops 07 June 26

Presented by: Wade Cherrington University of Western Ontario Collaborators: Dan Christensen, Igor Khavkine

Based upon: arXiv:0705.2629v2

• Yang-Mills quantum field theories are the basic building blocks of the standard model.

$$\mathcal{L}_{\mathcal{QCD}} = -\sum_{q} \bar{q} (\not\!\!\!D + m)q - \frac{1}{4} G^{\alpha}_{\mu\nu} G^{\alpha}$$

• Yang-Mills quantum field theories are the basic building blocks of the standard model.

$$\mathcal{L}_{QCD} = -\sum_{q} \bar{q} (\not\!\!\!D + m)q - \frac{1}{4} G^{\alpha}_{\mu\nu} G^{\alpha}$$

• We shall focus on second term: *pure* Yang-Mills

• Yang-Mills quantum field theories are the basic building blocks of the standard model.

$$\mathcal{L}_{QCD} = -\sum_{q} \bar{q} (\not\!\!D + m)q - \frac{1}{4} G^{\alpha}_{\mu\nu} G^{\alpha}$$

- We shall focus on second term: *pure* Yang-Mills
- Need systematic method for questions with non-perturbative answers, i.e. confinement.

Conventional Lattice Gauge Theory

Conventional Lattice Gauge Theory

• Idea: Regularize space-time on a lattice. Estimate correlation functions using Monte Carlo.

$$\mathcal{Z} = \int \mathcal{D}A \, \exp(-S), \quad S \equiv S[A] = \frac{1}{4g^2} \int d^D x \, F^a_{\mu\nu} F^{\mu\nu}_a$$

Conventional Lattice Gauge Theory

• Idea: Regularize space-time on a lattice. Estimate correlation functions using Monte Carlo.

$$\mathcal{Z} = \int \left(\prod_{e \in E} dg_e\right) e^{-\sum_{p \in P} S(g_p)}$$

(Discrete holonomy around a plaquette)

• Facewise amplitudes are *character* expanded:

• Facewise amplitudes are *character* expanded:

$$e^{-S(g_p)} = \sum_i c_i \chi_i(g_p)$$

• Facewise amplitudes are *character* expanded:

$$e^{-S(g_p)} = \sum_i c_i \chi_i(g_p)$$

• Interchange summation with integration:

$$\mathcal{Z} = \int \left(\prod_{e \in E} dg_e\right) \prod_{p \in P} \sum_i c_i \chi_i(g_p) = \sum_{s:P \to J} \int \left(\prod_{e \in E} dg_e\right) \prod_{p \in P} c_{s(p)} \chi_{s(p)}(g_p)$$

• Facewise amplitudes are character expanded:

$$e^{-S(g_p)} = \sum_i c_i \chi_i(g_p)$$

Interchange summation with integration:

$$\mathcal{Z} = \int \left(\prod_{e \in E} dg_e\right) \prod_{p \in P} \sum_i c_i \chi_i(g_p) = \sum_{s:P \to J} \int \left(\prod_{e \in E} dg_e\right) \prod_{p \in P} c_{s(p)} \chi_{s(p)}(g_p)$$

 Many colorings vanish. To ``survive'' group integration, a plaquette coloring must satisfy certain conditions...

• One can work in the space of dual configurations and write

$$\sum_{s:P\to J}\int\left(\prod_{e\in E}dg_e\right)\prod_{p\in P}c_{s(p)}\chi_{s(p)}(g_p)$$

One can work in the space of dual configurations and write

$$\sum_{s:P\to J}\int\left(\prod_{e\in E}dg_e\right)\prod_{p\in P}c_{s(p)}\chi_{s(p)}(g_p)$$

• For small diagrams, these were worked out by hand exactly

One can work in the space of dual configurations and write

$$\sum_{s:P\to J}\int\left(\prod_{e\in E}dg_e\right)\prod_{p\in P}c_{s(p)}\chi_{s(p)}(g_p)$$

- For small diagrams, these were worked out by hand exactly
- In strong coupling limit, expansions in small diagrams become good a description of the physics.

• Spin foam methods give systematic means for the group integrals

• Spin foam methods give systematic means for the group integrals

$$\mathcal{Z} = \sum_{j} \left(\sum_{i} \prod_{v \in V} 18j^v(i_v, j_v) \prod_{e \in E} N^e(i_e, j_e) \right) \left(\prod_{p \in P} e^{-\frac{2}{\beta}j_p(j_p+1)} (2j_p+1) \right)$$

• Spin foam methods give systematic means for the group integrals

$$\mathcal{Z} = \sum_{j} \left(\sum_{i} \prod_{v \in V} 18j^v(i_v, j_v) \prod_{e \in E} N^e(i_e, j_e) \right) \left(\prod_{p \in P} e^{-\frac{2}{\beta}j_p(j_p+1)} (2j_p+1) \right)$$

• Configurations are spin foam, defined by both plaquette and edge labels.

• Spin foam methods give systematic means for the group integrals

$$\mathcal{Z} = \sum_{j} \left(\sum_{i} \prod_{v \in V} 18j^v(i_v, j_v) \prod_{e \in E} N^e(i_e, j_e) \right) \left(\prod_{p \in P} e^{-\frac{2}{\beta}j_p(j_p+1)} (2j_p+1) \right)$$

- Configurations are spin foam, defined by both plaquette and edge labels.
- Amplitude is *local* on configurations critical for a practical algorithm.

• Spin foam methods give systematic means for the group integrals

$$\mathcal{Z} = \sum_{j} \left(\sum_{i} \prod_{v \in V} 18j^v(i_v, j_v) \prod_{e \in E} N^e(i_e, j_e) \right) \left(\prod_{p \in P} e^{-\frac{2}{\beta}j_p(j_p+1)} (2j_p+1) \right)$$

- Configurations are spin foam, defined by both plaquette and edge labels.
- Amplitude is *local* on configurations critical for a practical algorithm.
- General theory of dual non-abelian spin foams (Wilson observables, etc):

arXiv:hep-lat/0110034 (R. Oeckl, H. Pfeiffer)

Efficient 18j

Use recoupling theory to find efficient, computable formulae for 18j symbols

Efficient 18j

Use recoupling theory to find efficient, computable formulae for 18j symbols

• Moves that connect any admissible configuration to any other

- Moves that connect any admissible configuration to any other
- A problem for past attempts at dual algorithms

- Moves that connect any admissible configuration to any other
- A problem for past attempts at dual algorithms
- Single plaquette changes won't work due to parity constraint

- Moves that connect any admissible configuration to any other
- A problem for past attempts at dual algorithms
- Single plaquette changes won't work due to parity constraint
- Find moves as local as possible (efficient updating)

Results:

(8x8x8 lattice)

• Gauge-invariant picture - Configurations of the simulation can describe mechanisms of confinement without gauge.

- Gauge-invariant picture Configurations of the simulation can describe mechanisms of confinement without gauge.
- Pure Yang Mills is of interest as a matter probe for spin foam quantum gravity.

- Gauge-invariant picture Configurations of the simulation can describe mechanisms of confinement without gauge.
- Pure Yang Mills is of interest as a matter probe for spin foam quantum gravity.
- Alternative approach to problems that are hard in conventional LGT i.e. dynamic fermions.

- Gauge-invariant picture Configurations of the simulation can describe mechanisms of confinement without gauge.
- Pure Yang Mills is of interest as a matter probe for spin foam quantum gravity.
- Alternative approach to problems that are hard in conventional LGT i.e. dynamic fermions.
- Possibly faster in some contexts

Challenges

Challenges

• High rejection rate

Challenges

- High rejection rate
- Long auto-correlation time

• Wilson loop observables

- Wilson loop observables
- Higher gauge groups: i.e. SU(3)

- Wilson loop observables
- Higher gauge groups: i.e. SU(3)
- Dimension 4

- Wilson loop observables
- Higher gauge groups: i.e. SU(3)
- Dimension 4
- Coupling to spin foam gravity:

- Wilson loop observables
- Higher gauge groups: i.e. SU(3)
- Dimension 4
- Coupling to spin foam gravity: <u>arXiv: gr-qc/0207041</u> (D. Oriti and H. Pfeiffer) <u>arXiv:0706.1534</u> (S. Speziale) Others?

• First results that show agreement between a nonabelian dual algorithm and conventional algorithm.

- First results that show agreement between a nonabelian dual algorithm and conventional algorithm.
- Of intrinsic interest as an alternative computational framework and physical picture

- First results that show agreement between a nonabelian dual algorithm and conventional algorithm.
- Of intrinsic interest as an alternative computational framework and physical picture
- A matter probe for spin foam quantum gravity

- First results that show agreement between a nonabelian dual algorithm and conventional algorithm.
- Of intrinsic interest as an alternative computational framework and physical picture
- A matter probe for spin foam quantum gravity
- See <u>arXiv:0705.2629v2</u> for details

- First results that show agreement between a nonabelian dual algorithm and conventional algorithm.
- Of intrinsic interest as an alternative computational framework and physical picture
- A matter probe for spin foam quantum gravity
- See <u>arXiv:0705.2629v2</u> for details
- Acknowledgements: Funding provided by NSERC, Computational resources provided by SHARCNET