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Spin Foams What?

Start with a triangulated 4-manifold T (T* > A, — the set of
dual n-simplices). A spin foam is a coloring of the triangulation
faces (A»). A spin foam model assigns an amplitude to each
spin foam F:

A(F) = T Ar(f) T] Aete) T] Av(v).

felo ec, VEA,

Also, to the triangulation as a whole and expectation values to
observables

Z=S"A(F), (0)= 12 " O(F)A(F).
F F

Sum over all histories — discrete path integral!
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Start with a triangulated 4-manifold T (T* > A, — the set of
dual n-simplices). A spin foam is a coloring of the triangulation
faces (A»). A spin foam model assigns an amplitude to each
spin foam F:

A(F) = T Ar(f) T] Aete) T] Av(v).

felo ec, veD,

Also, to the triangulation as a whole and expectation values to
observables

Z=S"A(F), (0)= 12 " O(F)A(F).
F F

Sum over all histories — discrete path integral!

Goal — compute these sums numerically.



Barrett-Crane Model What?

A spin foam model for Riemannian General Relativity.

» Historically, obtained as a constrained version of
discretized BF theory.

» Can also be derived from Group Field Theory.
» Specifies vertex amplitude (10/ symbol):

BC vertex — unique
rotationally invariant.

The jj x are
balanced irreps (j @ J) of
Spin(4) = SU(2) x SU(2).

3 Ji3 4

» Several choices for amplitudes Ag(f) and Ag(e).
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g-deformation What?
For g = 1, no deformation.

First, deal with SU(2).
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g-deformation What?

For g = 1, no deformation.

First, deal with SU(2).

U(su(2)) generated by: Uy(su(2)) generated by (X ~ g273):
22 _ 2—2
or,0_l=4o0 o ,0_|=4———
[o4,0-] 3 [o4,0-] T
[U3,J:|:]::|:20:t ZUiIQUiZ
Irreps classified by: Irreps classified by (generic q):
j=0,%.1,3,... j=0,%.1,3,...
dim;j =2/ +1 dimj =2/ + 1

ROUqg=¢e™" j<i-1
U(spin(4)) = U(su(2)) © U(su(2))  Ugq (spin(4)) = Ug(su(2)) @ Uy (su(2))

Spin networks: graphs —— ribbon graphs.



Regularization Why?

Application of g-deformation.

» For g a root of unity (ROU) the number of irreps is finite.
Partition function Z is automatically finite.
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Regularization Why?
Application of g-deformation.
» For g a root of unity (ROU) the number of irreps is finite.
Partition function Z is automatically finite.
» Ponzano-Regge model for 3-d Riemannian GR (1968). An
early spin foam model — divergent.
» At a ROU q, this model is regularized. Constructed by
Turaev and Viro as a state sum for 3-manifold invariants
(1992).
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Regularization Why?
Application of g-deformation.
» For g a root of unity (ROU) the number of irreps is finite.
Partition function Z is automatically finite.
» Ponzano-Regge model for 3-d Riemannian GR (1968). An
early spin foam model — divergent.
» At a ROU q, this model is regularized. Constructed by
Turaev and Viro as a state sum for 3-manifold invariants
(1992).

» DFKR model (Barrett-Crane variation due to De Pietri,
Freidel, Krasnov & Rovelli, 1999) — also divergent,
discovered from numerical investigation (2002).

» At a ROU q, the DFKR model is also regularized.
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Cosmological Constant Why?

Application of g-deformation.

In Loop Quantum Gravity, SU(2) spin networks are embedded
in a spatial slice.

» The spin network basis describes states
of quantum spatial geometry.
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Cosmological Constant Why?

Application of g-deformation.
In Loop Quantum Gravity, SU(2) spin networks are embedded

in a spatial slice.

» Kodama state |KC; \) — approximates deSitter space, a
vacuum with positive Cosmological Constant, A > 0.

» Smolin (1995) argues that invariance under large gauge
transformations discretizes the CC, A ~ 1/r.

» The spin network basis describes states
of quantum spatial geometry.
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Cosmological Constant Why?

Application of g-deformation.

In Loop Quantum Gravity, SU(2) spin networks are embedded
in a spatial slice.

>

The spin network basis describes states
of quantum spatial geometry.

)

Kodama state |K; A\) — approximates deSitter space, a
vacuum with positive Cosmological Constant, A > 0.

Smolin (1995) argues that invariance under large gauge
transformations discretizes the CC, A ~ 1/r.

Expansion coefficients give topological link and graph

With precisely q = exp(in/r)!

q
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g-Barrett-Crane model How?

» Ingredients for g-deformation have been in the literature for
some time.
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BC vertex still rotationally invariant, ribbon structure trivial.
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g-Barrett-Crane model How?

» Ingredients for g-deformation have been in the literature for
some time.
» A special family of deformations (Yetter, 1999):

Ug,q-1(spin(4)) = Ug(su(2)) @ Ug-1(su(2))-

BC vertex still rotationally invariant, ribbon structure trivial.
» Intersection structure of 10/ symbol (only non-planar spin
network) fixed from the Crane-Yetter model (1994):

1

» Retains permutation
symmetry.

» Christensen-Egan
(2002) efficient
algorithm generalizes.
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Computer Simulation How?

» Implement Uy(su(2)) spin network evaluations — |g| > 1
numerically unstable! But ROU q is OK.
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Computer Simulation How?

» Implement U,(su(2)) spin network evaluations — |g| > 1
numerically unstable! But ROU q is OK.

tetrahedral network vs. g
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» Evaluate partition function and observables using
importance sampling (Metropolis algorithm):

(0) = 3 3" O(F)A(F)
F
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Computer Simulation How?

» Implement Uy(su(2)) spin network evaluations — |g| > 1
numerically unstable! But ROU g is OK.

» Evaluate partition function and observables using
importance sampling (Metropolis algorithm):

1
(0) =5 > O(F)A(F).
F
» Elementary move — add closed bubble in dual skeleton.

» Works well since A(F) > 0 when g = 1 or ROU, in the
absence of boundaries.
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Models How?
Perez-Rovelli (2000): J

A =13 Ae(e)

DFKR (2000):
Ar(r) = 1), AE(e){\,] .

Baez-Christensen (2002):

10/15



Observables How?

Spin foam observables depend on face spin labels:

. 1 .
spin avg. J(F) = ] fEZA:Z ()T,
spinvar.  (8J)%(F) = |A12| S (U] - (2.
fes

area avg. A(F) = |A12| > VUL + 11,
feds
1 LN Li(7)] = ()
Ci(F) = .
a(F) Ny dist(%’:)—d (6J)2)

Quantum half integers [j] = j when g =1, but || ~ sin(2j7/r)
when g = /.

spin cort.
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Observables Discontinuous as r — oo So What?

2.011 ... BCh, (4)

.- BCh, (J)

cs0s PR, (A) x 5000
1.5(| oeee PR, (J) x 2

I §K%§%%5A

1.0 °
OS’P . 5 —m--B--B- - ®m - W -—----
"m . .
0.01 | e
0 20 40 60 80 100 ¢g=1
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Single Spin Distribution

10
= - - bubble amplitude =50 (a)
10 — bubble amplitude g=1 !
1072 es00 spin distribution r=>50 s
P o
5 ««« spin distribution g=1 Pl
> 10 o
B
F10° o0,
8 5 oot
510"
T
10°
w0’
-8
10
i
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7
1()‘rl - - bubble amplitude r=40
10" — bubble amplitude g=1
10’ <oee spin distribution r=40
101 sson spin distribution =40, large triang.
>
=2
a
©
a
o
2
a

So What?
20, -
—j A0
- GG P
15{] - 14 )
W+ 7
10 i
5 e
% 5 10 i5 20 25

» SSD — frequency of
occurence of j.

» BA— A(F), where F
contains minimal bubble.
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Single Spin Distribution So What?

1 20 ‘ -
= - - bubble amplitude =50 (a) ? —J ) L (b)
10 — bubble amplitude g=1 ‘,: -- (j(j+1))1’2 /
10*2 ec00 spin distribution =50 4 15 - 4]
- ««+« spin distribution g=1 g P 1/2
5107 o (LA1L7+11)
% 107 -...... 10
S10° & .
T
w0’ >
s
10 P y
0 5 10 15 20 25 % 5 10 15 20 25
7 J
10; -~ bubble amplitude r=40 » SSD — frequency of
10, — bubble amplitude g=1 !
10° | ceee spin distribution r=40 occurence of .
101 sson spin distribution =40, large triang.
» BA— A(F), where F
contains minimal bubble.
» For PR and BCh, bubbles
dominate!
» Not for DFKR.
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Spin Correlation So What?
minimal triangulation larger triangulation
———=BCh

v=esPR
++++DFKR

1.0

o o o
B (o)) 0]

o
]

spin-spin correlation

0% 1 2 301234567
d d
Consistent with isolated bubble hypothesis.
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Summary and Outlook Summary

» Computer simulation of g-Barrett-Crane models now
possible and practical, for modest sized triangulations.
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Summary and Outlook Summary
» Computer simulation of g-Barrett-Crane models now
possible and practical, for modest sized triangulations.

» Observables show a discontinuity as g — 1 through roots
of unity. At odds with cosmological constant interpretation.

» BC models show strong dependence on edge and face
amplitudes.

» Outlook

» Simulations with |g| ~ 1.
» Spin correlation on larger triangulations.
» Lorentzian signature.

Thank you for your attention!
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