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Outline of Talk

●Review computational challenges for 
Lorentzian spin foam models

●Summary of existing method for the tetrahedral 
network (6J)

●Recoupling Theory for SL(2,C)

● The analogue of the Christensen-Egan 
algorithm for the Lorentzian 10J

●Outlook for numerical implementation



  

Spin Foam Models of Quantum Gravity

● Assign partition function to 2-complexes in spacetime

● Would like to study numerically to investigate phase structure, 
semiclassical limit

● Definition involves a sum over labellings of 2-complexes, and 
possibly over different complexes as well.

● But evaluating summand is computationally hard for just one 
labeling, because the vertex amplitude A

V
 is hard to compute



  

Why are they computationally hard?

● For Riemannian models (Spin(4) gauge group) efficient algorithm 
known that re-expresses 10J as a sum over 6J symbols (Racah 
coefficients) 

● For Lorentzian models (SL(2,C) gauge group) no such efficient 
algorithm was known;  6J symbols themselves are hard.

● Why? They are defined by integrals that are high-dimensional 
with oscillatory integrands.



  

A Better Algorithm for Lorentzian 6J

● Using group-theoretic techniques, can re-express the Lorentzian 
6J as a sum of products of Clebsch-Gordan coefficients for 
SL(2,C).  Analogous to similar formula for SU(2) Racah 
coefficients:

● These coefficients can be calculated recursively; thus, very 
efficiently.

● Much more efficient than direct integration, but convergence can 
still require many terms.

● Can further speed convergence by using asymptotic form of 
Clebsch-Gordan coefficients (this is the hard part of both the 
derivation and coding).
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Toward the 10J

● The reason for calculating the 6J is to use it in calculating the 
10J, hoping that this method is more efficient or more accurate 
than the direct integration.

● To do this, we need to use recoupling theory for SL(2,C) in the 
same way that the Riemannian algorithms rely on recoupling 
theory for SU(2).

● This can be done, and leads to diagrammatic techniques similar 
to those used for SU(2) spin networks

● Such techniques can be proven using known identities for 
SL(2,C) matrix elements and Clebsch-Gordan coefficients.



  

Example: Expanding the 4-Valent Vertex

● All manipulations are based on re-expressing the kernels for 
Lorentzian spin networks in terms of matrix elements on SL(2,C).

● Use the identity:

twice to prove the diagrammatic relation:



  

SL(2,C) Recoupling

● After suitably renormalizing the 3-valent vertex, can prove 
recoupling for SL(2,C) spin networks

● Note the appearance of a non-simple representation in the 
recoupling formula: this is unavoidable and an exactly analogous 
situation occurs in the Riemannian case, when we consider 
recoupling for Spin(4) spin networks.



  

Evaluating the 10J



  

A Formula for 10J's in terms of 6J's

● Combining all of these steps we get a formula analgous to the 
Christensen-Egan algorithm for the Riemannian 10J:

● Expresses 10J as  a six-dimensional integral and one-
dimensional sum over 6J symbols.

● Thus, dimension of integral is reduced (from 9 to 6) and 
experimentation seems to indicate the integrand is in general 
less oscillatory.  When triangle inequalities are violated it decays 
exponentially.



  

Numerical Implementation

● This has been implemented, but at present is not as fast as the 
existing direct integration

• Need to improve asymptotics in 6J       faster 6J

• Use importance sampling in integrals to take advantage of 
exponential decay.

• Other methods of evaluating 6J?

● Hope to test these improvements in next couple of months.

● Thanks to: NSF grant OISE-0401966; Dan Christensen, Wade 
Cherrington, and Igor Khavkine for discussions.


