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Outline of Talk

e Review computational challenges for
Lorentzian spin foam models

e Summary of existing method for the tetrahedral
network (6J)

e Recoupling Theory for SL(2,C)

e The analogue of the Christensen-Egan
algorithm for the Lorentzian 10J

e Outlook for numerical implementation



Spin Foam Models of Quantum Gravity

Assign partition function to 2-complexes in spacetime
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colorings faces edges vertices

Would like to study numerically to investigate phase structure,
semiclassical limit

Definition involves a sum over labellings of 2-complexes, and
possibly over different complexes as well.

But evaluating summand is computationally hard for just one
labeling, because the vertex amplitude A is hard to compute



Why are they computationally hard?

For Riemannian models (Spin(4) gauge group) efficient algorithm
known that re-expresses 10J as a sum over 6J symbols (Racah

coefficients)

For Lorentzian models (SL(2,C) gauge group) no such efficient
algorithm was known; 6J symbols themselves are hard.

Why? They are defined by integrals that are high-dimensional
with oscillatory integrands.
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A Better Algorithm for Lorentzian 6J

Using group-theoretic techniques, can re-express the Lorentzian
6J as a sum of products of Clebsch-Gordan coefficients for
SL(2,C). Analogous to similar formula for SU(2) Racah
coefficients:
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These coefficients can be calculated recursively; thus, very
efficiently.

Much more efficient than direct integration, but convergence can
still require many terms.

Can further speed convergence by using asymptotic form of
Clebsch-Gordan coefficients (this is the hard part of both the
derivation and coding).



Tet(1,1,1,1,1,1)

Vegas Monte-Carlo Integration

Summation Algorithm

Calls Value Time (sec) Terms Value Time (sec)
103 0.041267 +21.4% 0.0070 10° 0.118087292 ~ 0.00002
104 0.126242 + 4.03% 0.0430 103 0.118283570 ~ 0.0002
10° 0.122350 + 1.53% 0.4309 10% 0.118306260 0.002
106 0.118190 + 0.490% 4.933 10° 0.118299794 0.0200
107 0.117902 £ 0.192% 69.99 10° 0.118300212 0.198
108 0.118459 + 0.0532% 436.6 107 0.118300200 1.98
108 0.118300196 19.9

Accelerated Summation Algorithm

Terms Value Time (sec)
10% 0.1183001969 ~ 0.0002
103 0.1183001969 ~ 0.002
104 0.1183001969 0.0170




Toward the 10J

The reason for calculating the 6J is to use it in calculating the
10J, hoping that this method is more efficient or more accurate
than the direct integration.

To do this, we need to use recoupling theory for SL(2,C) in the
same way that the Riemannian algorithms rely on recoupling
theory for SU(2).

This can be done, and leads to diagrammatic techniques similar
to those used for SU(2) spin networks

Such technigues can be proven using known identities for
SL(2,C) matrix elements and Clebsch-Gordan coefficients.



Example: Expanding the 4-Valent Vertex

e All manipulations are based on re-expressing the kernels for
Lorentzian spin networks in terms of matrix elements on SL(2,C).

e Use the identity:
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twice to prove the diagrammatic relation:
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SL(2,C) Recoupling

e After suitably renormalizing the 3-valent vertex, can prove
recoupling for SL(2,C) spin networks
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e Note the appearance of a non-simple representation in the
recoupling formula: this is unavoidable and an exactly analogous
situation occurs in the Riemannian case, when we consider
recoupling for Spin(4) spin networks.



Evaluating the 10J
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A Formula for 10J's in terms of 6J's

e Combining all of these steps we get a formula analgous to the
Chrlstensen -Egan algorithm for the Riemannian 10J:
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e Expresses 10J as a six-dimensional integral and one-
dimensional sum over 6J symboals.

e Thus, dimension of integral is reduced (from 9 to 6) and
experimentation seems to indicate the integrand is in general
less oscillatory. When friangle inequalities are violated it decays
exponentially.



Numerical Implementation

e This has been implemented, but at present is not as fast as the
existing direct integration

« Need to improve asymptotics in 6J ™ faster 6J

« Use importance sampling in integrals to take advantage of
exponential decay.

» Other methods of evaluating 6J7

e Hope to test these improvements in next couple of months.

e Thanks to: NSF grant OISE-0401966; Dan Christensen, Wade
Cherrington, and Igor Khavkine for discussions.



