Recent Work on Computing Lorentzian Spin Foams

Joshua L. Willis Abilene Christian University

26 June 2007

Outline of Talk

- Review computational challenges for Lorentzian spin foam models
- Summary of existing method for the tetrahedral network (6J)
- Recoupling Theory for SL(2,C)
- The analogue of the Christensen-Egan algorithm for the Lorentzian 10J
- Outlook for numerical implementation

Spin Foam Models of Quantum Gravity

• Assign partition function to 2-complexes in spacetime

 $Z = \sum_{\text{colorings faces}} \prod_{\text{faces}} A_F(f) \prod_{\text{edges}} A_E(e) \prod_{\text{vertices}} A_V(v)$

- Would like to study numerically to investigate phase structure, semiclassical limit
- Definition involves a sum over labellings of 2-complexes, and possibly over different complexes as well.
- But evaluating summand is computationally hard for just one labeling, because the vertex amplitude A_v is hard to compute

Why are they computationally hard?

- For Riemannian models (Spin(4) gauge group) efficient algorithm known that re-expresses 10J as a sum over 6J symbols (Racah coefficients)
- For Lorentzian models (SL(2,C) gauge group) no such efficient algorithm was known; 6J symbols themselves are hard.
- Why? They are defined by integrals that are high-dimensional with oscillatory integrands.

$$6J = \int_{H^4} \prod_{i=1}^{4} dx_i \ K_{\rho_1}(x_1, x_2) \cdots K_{\rho_6}(x_3, x_4)$$
$$10J = \int_{H^5} \prod_{i=1}^{5} dx_i \ K_{\rho_1}(x_1, x_2) \cdots K_{\rho_{10}}(x_4, x_5)$$

$$K_{\rho}(x,y) = rac{\sin(\rho r)}{\rho \sinh r}$$
 $r = d_{\text{hyp}}(x,y)$

A Better Algorithm for Lorentzian 6J

 Using group-theoretic techniques, can re-express the Lorentzian 6J as a sum of products of Clebsch-Gordan coefficients for SL(2,C). Analogous to similar formula for SU(2) Racah coefficients:

 $6J \propto \sum_{J} (2J+1) C_{00}^{0\rho_1} C_{J0}^{0\rho_5} C_{J0}^{0\rho_4} C_{00}^{0\rho_6} C_{J0}^{0\rho_4} C_{00}^{0\rho_3} C_{00}^{0\rho_2} C_{J0}^{0\rho_5} C_{J0}^{0\rho_3}$

- These coefficients can be calculated recursively; thus, very efficiently.
- Much more efficient than direct integration, but convergence can still require many terms.
- Can further speed convergence by using asymptotic form of Clebsch-Gordan coefficients (this is the hard part of both the derivation and coding).

Tet(1,1,1,1,1,1)

Vegas Monte-Carlo Integration

Summation Algorithm

Calls	Value	Time (sec)
10 ³	$0.041267 \pm 21.4\%$	0.0070
104	$0.126242 \pm 4.03\%$	0.0430
10 ⁵	$0.122350 \pm 1.53\%$	0.4309
106	$0.118190 \pm 0.490\%$	4.933
107	$0.117902 \pm 0.192\%$	69.99
10 ⁸	$0.118459 \pm 0.0532\%$	436.6

Terms	Value	Time (sec)
10 ²	0.118087292	pprox 0.00002
10 ³	0.118283570	pprox 0.0002
104	0.118306260	0.002
10 ⁵	0.118299794	0.0200
10 ⁶	0.118300212	0.198
107	0.118300200	1.98
10 ⁸	0.118300196	19.9

Accelerated Summation Algorithm

Terms	Value	Time (sec)
10 ²	0.1183001969	pprox 0.0002
10 ³	0.1183001969	pprox 0.002
104	0.1183001969	0.0170

Toward the 10J

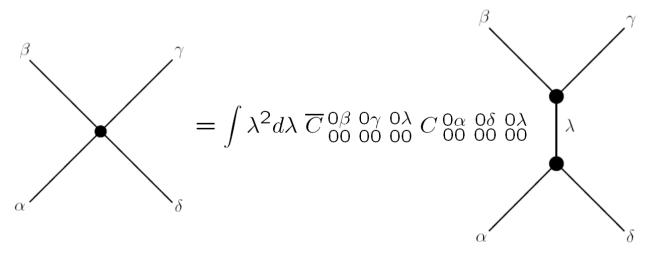
- The reason for calculating the 6J is to use it in calculating the 10J, hoping that this method is more efficient or more accurate than the direct integration.
- To do this, we need to use recoupling theory for SL(2,C) in the same way that the Riemannian algorithms rely on recoupling theory for SU(2).
- This can be done, and leads to diagrammatic techniques similar to those used for SU(2) spin networks
- Such techniques can be proven using known identities for SL(2,C) matrix elements and Clebsch-Gordan coefficients.

Example: Expanding the 4-Valent Vertex

- All manipulations are based on re-expressing the kernels for Lorentzian spin networks in terms of matrix elements on SL(2,C).
- Use the identity:

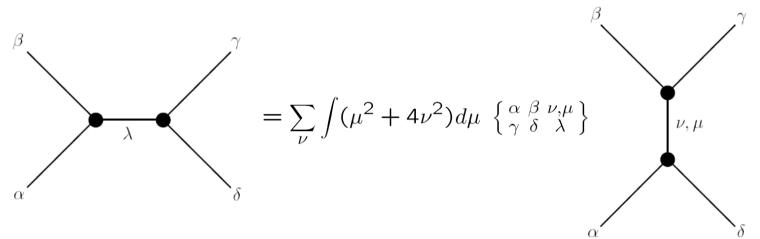
 $D_{J_{\alpha}M_{\alpha}00}^{0\alpha}(g)D_{J_{\beta}M_{\beta}00}^{0\beta}(g) = \int \lambda^2 d\lambda \,\overline{C} \,{}^{0\alpha}_{00} \,{}^{0\beta}_{00} \,{}^{0\lambda}_{00} \,\sum_{JM} C \,{}^{0\alpha}_{J_{\alpha}M_{\alpha}} \,{}^{0\beta}_{J\beta} \,{}^{0\lambda}_{JM} \,D_{JM00}^{0\lambda}(g)$

twice to prove the diagrammatic relation:



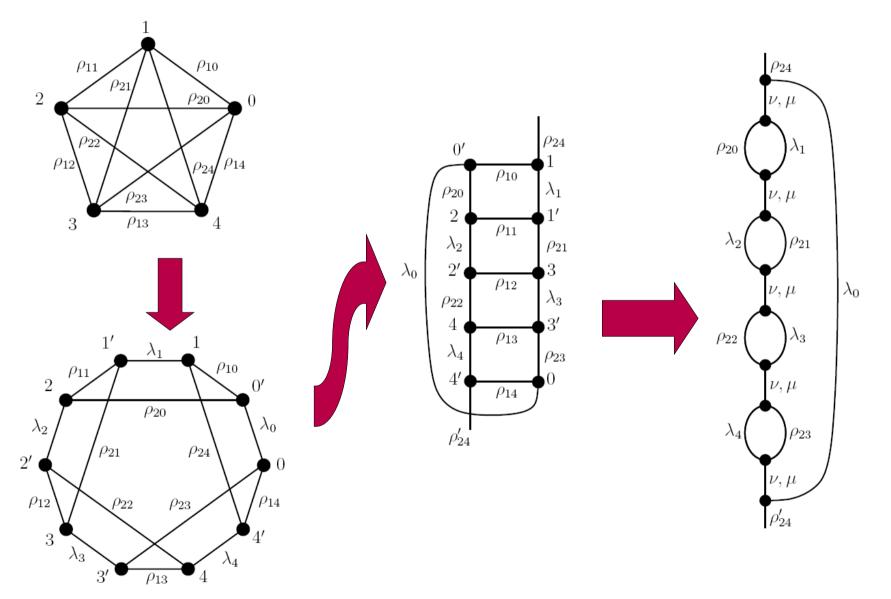
SL(2,C) Recoupling

 After suitably renormalizing the 3-valent vertex, can prove recoupling for SL(2,C) spin networks



 Note the appearance of a non-simple representation in the recoupling formula: this is unavoidable and an exactly analogous situation occurs in the Riemannian case, when we consider recoupling for Spin(4) spin networks.

Evaluating the 10J



A Formula for 10J's in terms of 6J's

- Combining all of these steps we get a formula analgous to the Christensen-Egan algorithm for the Riemannian 10J: $10J = \int \prod_{i=0}^{4} \left(\lambda_i^2 d\lambda_i\right) \sum_{\nu} \int (\mu^2 + 4\nu^2) d\mu \text{ (Prod of CG's)}$ $\begin{cases} \rho_{20} \lambda_0 \nu, \mu \\ \rho_{24} \lambda_1 \rho_{10} \end{cases} \begin{cases} \rho_{21} \lambda_1 \nu, \mu \\ \rho_{20} \lambda_2 \rho_{11} \end{cases} \begin{cases} \rho_{22} \lambda_2 \nu, \mu \\ \rho_{21} \lambda_3 \rho_{12} \end{cases} \begin{cases} \rho_{23} \lambda_3 \nu, \mu \\ \rho_{22} \lambda_4 \rho_{13} \end{cases} \begin{cases} \rho_{24} \lambda_4 \nu, \mu \\ \rho_{23} \lambda_0 \rho_{14} \end{cases}$
- Expresses 10J as a six-dimensional integral and onedimensional sum over 6J symbols.
- Thus, dimension of integral is reduced (from 9 to 6) and experimentation seems to indicate the integrand is in general less oscillatory. When triangle inequalities are violated it decays exponentially.

Numerical Implementation

- This has been implemented, but at present is not as fast as the existing direct integration
 - Need to improve asymptotics in 6J => faster 6J
 - Use importance sampling in integrals to take advantage of exponential decay.
 - Other methods of evaluating 6J?
- Hope to test these improvements in next couple of months.
- Thanks to: NSF grant OISE-0401966; Dan Christensen, Wade Cherrington, and Igor Khavkine for discussions.