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The problem of quantum gravity

Perturbative quantum gravity, viewed as an effective field theory, provides J

a consistent description of quantum gravity in the low-energy regime
(Donoghue PRL1994, Burgess LivRevRel2004)

@ In this phenomenological approach, only the low-energy field content
and the symmetries of the action have to be prescribed.

@ Then, power-counting results allow to calculate perturbatively - including
loops - using a non-renormalizable effective Lagrangian.

fixed the typical energies of the process of interest and
the required accuracy, the appropriate phenomenological
Lagrangian contains only a finite number of terms.

@ The theory is predictive, once a finite number of coupling constants
has been measured.

A typical process of interest can be graviton scattering on Minkowski spacetime

E. Bianchi ( SNS, Pisa ) Large scales in LQG Loops’07 - Morelia 2/40



The problem of quantum gravity

Perturbative quantum gravity (as an effective field theory)

this approach naturally identifies the scale where it breaks down - the
physical cutoff - and requires new physics to unfreeze at such scale.

Hence it can be viewed as an effective field theoretical description of the
underlying physics at this scale.

The scale of interest here is Mp ~ 101°GeV

the underlying high-energy physics can be:
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The problem of quantum gravity

Perturbative quantum gravity (as an effective field theory)

this approach naturally identifies the scale where it breaks down - the
physical cutoff - and requires new physics to unfreeze at such scale.

Hence it can be viewed as an effective field theoretical description of the
underlying physics at this scale.

The scale of interest here is Mp ~ 101°GeV

the underlying high-energy physics can be:

@ (i) still an ordinary local quantum field theory defined on a manifold with
a non-dynamical metric (M, g), or

@ (ii) a quantum field theory defined on a bare manifold M «+— LQG

@ (iii) or even something else.

mathematically well defined version of the Wheeler-DeWitt approach
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The loop approach to quantum gravity

@ important to probe the theory in the deep quantum regime, such as

- at the big bang singularity
- at the black hole singularity

@ on the other hand

large scale correlations are present and an ordinary quantum

it's crucial to understand if the theory admits a regime where
field theoretical description is available. J

This is a key test the loop approach has to pass to be considered a
physically viable approach to the problem of quantum gravity.
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The loop approach to quantum gravity

@ important to probe the theory in the deep quantum regime, such as

- at the big bang singularity
- at the black hole singularity

@ on the other hand

it's crucial to understand if the theory admits a regime where
large scale correlations are present and an ordinary quantum
field theoretical description is available.

This is a key test the loop approach has to pass to be considered a
physically viable approach to the problem of quantum gravity.

Recently, some progress in this direction has been made
C. Rovelli, “Graviton propagator from background-independent quantum gravity”, Phys. Rev. Lett. 97 (2006)
e. b, L. Modesto, C. Rovelli, and S. Speziale, “Graviton propagator in loop quantum gravity”, Class. Quant. Grav. 23 (2006)

e. b, L. Modesto, C. Rovelli, “Towards perturbative quantum gravity from spinfoams: 3-point correlation functions”, to appear

key point: dynamics of a state peaked on a classical geometry J
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Outline of (the rest of) the talk

a Motivation from Effective Field Theory
9 Strategy and the general philosophy — Rovelli’s talk
9 Correlations at the vertex amplitude level
@ Large scale correlations
@ The dominant contribution
@ The perturbative action and measure
@ 2- and 3-area correlation functions

a Correlations in perturbative quantum Regge-calculus

6 Conclusions
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Outline of (the rest of) the talk
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Outline of (the rest of) the talk

9 Correlations at the vertex amplitude level
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Boundary amplitude formalism at work

@ In LQG, the Hamiltonian constraint acts on a spin-network state
non-trivially only at nodes.

@ In spinfoam models, the action of the Hamiltonian constraint at a node is
given in terms of a spinfoam vertex amplitude.

Hamiltonian constraint
corresponding to the
Barrett-Crane spinfoam
model acting on a state
72 g I with a 4-valent node

Such transition amplitude can be written in the following way:

CORCIHI D) = (T1y Ar (i) Au G in) |
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Boundary amplitude formalism at work

ORCIA X =

Hamiltonian constraint
corresponding to the
Barrett-Crane spinfoam
model acting on a state
with a 4-valent node

(T1; A () AuGits in)
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Boundary amplitude formalism at work

Hamiltonian constraint
corresponding to the
Barrett-Crane spinfoam
model acting on a state
72 g 3 with a 4-valent node

ORCIE| ) = (T15 Ar() Au (i i) J

To capture the role of the vertex amplitude, this formula is best written in the
boundary amplitude formalism. The strategy is the following:
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Boundary amplitude formalism at work

ORCIH| ) = (T15 Ar() Au i in) J

To capture the role of the vertex amplitude, this formula is best written in the
boundary amplitude formalism. The strategy is the following:

(i) cut out from the two-complex a 4-ball B, containing a spinfoam vertex v

(i) introduce a vertex amplitude W, to codify the dynamics in the region By;
it is a map from the boundary Hilbert space Hgs to C;
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Boundary amplitude formalism at work

ORCIH| ) = (T15 Ar() Au i in) J

To capture the role of the vertex amplitude, this formula is best written in the
boundary amplitude formalism. The strategy is the following:

(i) cut out from the two-complex a 4-ball B, containing a spinfoam vertex v

(i) introduce a vertex amplitude W, to codify the dynamics in the region By;
it is a map from the boundary Hilbert space Hgs to C;

(iii) introduce a state Wgs ,[s] € Hgs to describe the state on S = 9B,. The
role of the boundary state is to codify the dynamics outside By.
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Boundary amplitude formalism at work

Transition amplitude :K |H| >< (T1; As () Av Gty in) (1)J

As the boundary of the 4-ball B, Ts =
intersects the two-complex giving
a graph I's,

the boundary Hilbert space Hgs is in fact an Hr, which has the spin networks
|7125- -, 745,01, ., 15) @s a basis. Hence, instead of equation (1), now we have
the spinfoam vertex amplitude

(2)J

Prescribing the action of the Hamiltonian constraint in this way, i.e. specifying
the vertex amplitude, makes it easier to guarantee its crossing symmetry.

Wv(jmnain) = <Wv| ’m
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Correlations at the vertex amplitude level

The guantities we are interested in here are:
correlations of geometric operators at the vertex amplitude level

@ such as area-area correlations on a state U, ,(jmn, in)

area-area correlations on a state Ur, ,(jmn, in)

Zin W'u (]mn; Zn) Am’n’ Am”n“ \IIF5,q(jmn7 'Ln)
ijn Ein W (]mna 'Ln) \Ill"s,q(jmna Zn)

Jmn

i 2
<Am/n/ Am//n// >q =

@ or volume-volume correlation (V. V).

Technically, these are correlations of coloring, as for instance

Am/n’\IIF5,q(jmna Zn) - 87TGN V jm’n’ (jm’n/ + ]-)\IIF5,q(jmn7 Zn) .
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Correlations at the vertex amplitude level

The guantities we are interested in here are:
correlations of geometric operators at the vertex amplitude level

@ such as area-area correlations on a state U, ,(jmn, in)

area-area correlations on a state Ur, ,(jmn, in)

<A A > _ ijn Zin Wv(jmn; zn) Am’n’ Am”n” \IJFs,q(jmnvin)
e Z]‘m" Ei” Wv(jmnain) ‘I’qu(jmmin)

@ or volume-volume correlation (V. V).
The idea is that

in order to have large scale correlations in a realistic situation J
where - an appropriate boundary semiclassical stateis chosen
- asum over two-complexes is considered

correlations have to be present already at the level of vertex amplitudes )
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Boundary state

A spinnetwork state |I's, jmn, in) € Hr, describes a quantum geometry on a
manifold S* consisting of

@ 5 chunks of space (one for each node of the graph I'5)
and, as each chunk meets the other four chunks, they identify in the whole
@ 10 patches as prescribed by the connectivity the graph I's.

This picture comes from the fact that the

- an eigenstate of the volume operator of aregion containing anode of I'5
state |I's, jmmn , tn) iS Simultaneusly

- an eigenstate of the area operator of asurface cut by alink of I's

Here, we are interested in a state |T's, ¢) on Hr. which is peaked
both on the intrisic and on the extrinsic geometry of S3. J

As such, we are looking for a mildly semiclassical state:
@ same connectivity of the state described above

@ but peaked both on area and on its conjugate momentum (and similarly
for volume)
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Boundary state

Here, we are interested in a state |I's, ¢) on Hp, which is peaked
both on the intrisic and on the extrinsic geometry of S3. J

As such, we are looking for a mildly semiclassical state:

@ same connectivity of the state described above

@ but peaked both on area and on its conjugate momentum (~ for volume)
We take the following ansatz: [T's,q) = > > C'f(in)¥;q 6, (mn)[Ts, dimns in)
- With ¥ 4 (4mn) given by n Jmn

(0) —1 Z¢mn]mn

- L (= in0) (oa =
Wito (mn) = ex0 (=5 32 3 @mmyion VOl )e m<n

m<n p<q Jmn Jpq

- and for instance
f(in) = 1 for admitted intertwiners (given the j,,,) and 0 otherwise J
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Boundary state

Here, we are interested in a state |I's, ¢) on Hp, which is peaked
both on the intrisic and on the extrinsic geometry of S3. J

As such, we are looking for a mildly semiclassical state:
@ same connectivity of the state described above
@ but peaked both on area and on its conjugate momentum (~ for volume)

We take the following ansatz: [T's,q) = > > C'f(in)¥;q 6, (mn)[Ts, dimns in)

- with 0,60 (Jmn) given by tn Jmn
] i ; g —i Z¢(O) Jmn
; 1 = 5o) Gpg—359)) mn
W0 (mn) = P (=5 D= D 0un) o OO Je m<n
m<n p<q Jmn .]pq

- and for instance
f(in) = 1 for admitted intertwiners (given the j,,,) and 0 otherwise J

Despite being very naive, we expect that this proposal
should be quite general at least for jr(,% >1 J
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Boundary state: large j

—1 ¢(0) Jmn
; Ly Um0 g =iy~ 2
Wi oo mn) = e (=5 3 - Ao e Je ™
m<n p<q ]mn]pq

@ we restrict attention to a symmetric situation with jffz),gb = jo and quS,ZL = ¢o
@ moreover, we assume jo > 1

due to the gaussian form of the state which is peaked on the value j, with
dispersion /79, we have that j,,, is essentially restricted to be in the range

1. . L.
(1- ﬁ)Jo < Jmn < (14 ﬁ)]o

This peakedness property is a kinematical property
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Boundary state: large j

(0) (0)y. ¢ Z¢£221jmn

Wi oo mn) = e (=5 3 - Ao OO Jlo =

m<n p<q Jmn Jpq

@ we restrict attention to a symmetric situation with j\"4 = jo and ¢\un = o

@ moreover, we assume jo > 1

due to the gaussian form of the state which is peaked on the value j, with
dispersion /79, we have that j,,, is essentially restricted to be in the range
1 1
1——)jo < Jmn < (1 4+ —)Jo
ey vy

This peakedness property is a kinematical property

if this state is to be considered semiclassical also in the dynamical sense, it
depends on the specific spinfoam model for the dynamics chosen J
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Boundary state: large j

. . . —i Z¢ Jmn
. (]mn .77(7921) (]pq _31(92)) "
o0 (Jmn) = exp ( Z Z ®(mn)(pq) /0) .(0) e msn
2m<n p<q 7(737)1 pq) )

@ we restrict attention to a symmetric situation with ;') = j, and ¢\ = ¢,

@ moreover, we assume jy > 1

due to the gaussian form of the state which is peaked on the value j, with
dispersion /5y, we have that j,,,, is essentially restricted to be in the range

1 1
( \/J—O)]o J ( \/J—O)Jo
This peakedness property is a kinematical property

if this state is to be considered semiclassical also in the dynamical sense, it
depends on the specific spinfoam model for the dynamics chosen J

We will discuss this in the following and show that,
for the Barrett-Crane model, it fixes the angle ¢.
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Correlations at the vertex amplitude level

The guantities we are interested in here are:
correlations of geometric operators at the vertex amplitude level

@ such as area-area correlations on a state Y, ;(jmn, in)

~ ~ T
<A A ) = ijn Zin Wy (jmna Zn) Amrns Am”n” ‘lll“an(jmn’ Zn)
e e ijn Ein Wv (]mna 'Ln) \I/Fsﬂ(jm’m 7:n)

@ or volume-volume correlation (V. V).

Technically, these are correlations of coloring.
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Correlations at the vertex amplitude level
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correlations of geometric operators at the vertex amplitude level
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—T ; : .
<A A > . ijn Zin Wv(]mnﬂn) Am’n’ Am”n” \I,Fs,q(]mnvln)
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Technically, these are correlations of coloring.
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The Barrett-Crane model for 4-d Riemannian gravity

A i m n,k
'u mn7 n L .
Jm R T R

WEON E FA 2

lmnsin [ — in . -L ‘R

. . . . = C . . . ’

AR g VUL fiE i Gmoms G iwem)
m<n n

This model is defined taking a branching function defined in the following way:

- on links
L

G im . = 0k iRy Ol (i, +35)
- on nodes PN L R .
o Oprpri 3 forky, ky, k, admissible

otherwise
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The Barrett-Crane model for 4-d Riemannian gravity

A i m n,k
'u mn7 n L .
Jm R T R

WEON E FA 2

lmnsin [ — in . -L ‘R

. . . . = C . . . ’

AR g VUL fiE i Gmoms G iwem)
m<n n

This model is defined taking a branching function defined in the following way:
- on links

Gk gl = 57L7R o, ny (G +IB )
- on nodes kf K
Fi e = w2 Eagle-Pereira-Rovelli model
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The Barrett-Crane model

Av(lmn; Zn) - ABC<ZI2/27 .. 7l45/2)

Asc(iz, - jss) =Y (ﬁ ) jl .

Wv mn,zn = H Af mn v mn»zn)

m<n

= ( H (2ln + l)Nf>ABC(lmn/2)

m<n

The face amplitude is generally taken with the exponent N, = 2
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Integral formulae for Agc(ji2, - -, jus5)

ABC(jl?a .. )j45) =

S b o= [ a9l inal, w2l ), o)

we can express Barrett-Crane vertex amplitude as an integral over SU(2)?

Asc(j12, - -+ Jas) / I dew) I X9 (hmhy") J
s

U2)® 1<k<s5 1<m<n<5
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Integral formulae for Agc(ji2, - -, jus5)

Barrett-Crane vertex amplitude as an integral over SU(2)°

Agc(j12, -+, Jas) = /SU( H du(hk) H X(jmn)(hmhr_zl) J

2)® 1<k<5 1<m<n<5

@ group element hy, € SU(2) — spherical coordinates (¢, 0, ¢5) on S3
@ group element hj, — a unit-vector v, in R%:

Using Weyl representation formula with (v,,,, v,,) = cos ®,,,,

) . dQ Sin(2jmn + 1)@
Asc(j12, - -, Jas) = / H Y H ( jin"q) )P
(5)% 125<5 “T 1<m<n<s S Pmn
SO(4) invariance — fix coordinates on (5%)° so that the integrand depends
only on u = (P2,93, 03,4, 04, ¢a, 95,05, d5)

and integrate trivially over 1,01, ¢1, 02, ¢2, d3

ABC(jlg,...,j45):/DvH du; () [ sin (imn +1)@mn (1)) }

1=1...9 m<n
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Integral formulae for Agc(ji2, - -, jus5)

Barrett-Crane vertex amplitude as a 9-d angular integral

ABC(j127 e 7.]45 / H dul (U,) H Sin ((2]mn + 1)<13"m(u))

=1loc0) m<n

where f(u) is given by
167% (sinwug)? (sinug)? sinug (sinug)? sinus (sinur)? sin ug

f(u) = (271.2)5 H1§m<n§5 sin q)mn(u)

The ten angles ®,,,, between the vectors v,,, v, in R* can be written
explicitly in terms of the nine angles u = (Y, 13, 03,14, 04, b4, 15,05, ds5):

P12 =12, P13 =13, Pia=va, Pi15=15

Po3 = cos ™! (cos 12 cos 13 + cos 03 sin 1o sin 1,/;3)
-1

Poy =cos cos 1o cos by + cos 04 sin Py sinhy)

P34 = cos ™! (cos 13 cos by + (cos 3 cos B4 + cos ¢4 sin 03 sin 64) sin g sin 1py)
P35 = cos ™! (cos 13 cos Y5 + (cos 03 cos 05 + cos ¢35 sin 03 sin 65) sin Y3 sin 1/)5)

(
(
Doy = cos™ ! (cos g cos Y5 + cos 05 sin o sin 1/)5)
(
(
1 (

P45 =cos cos 1hy cos 5 + (cos Oy cos 05 + cos(ds — ¢a) sin 04 sin O5) sin P4 sin P5)
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Integral formulae for Agc(ji2, - -, jus5)

Barrett-Crane vertex amplitude as a 9-d angular integral

Apc(fia, - - -, jas) / I dui f(w) T sin ((2mn + 1)@ (w)) J

1=1...9 m<n

where f(u) is given by

f(u) 1674 (sinwug)? (sinug)? sinug (sinug)? sinus (sinuy)? sin ug
u) = _
(2m2)5 H1§m<n§5 sin @,,,,, ()

While the integrand is well defined, the function f(u) is singular for

configurations u; such that some ®,,,,, (u) = 0.
These points correspond to degenerate configurations of the five vectors v,

with two or more of them coinciding.
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Integral formulae for Agc(ji2, - -, jus5)

Barrett-Crane vertex amplitude as a 9-d angular integral

Aec. iz vdis) = [ TT dus f@) T sin (@i + D n(1) J

E119 m<n

where f(u) is given by

fu) 1674 (sinwug)? (sinug)? sinug (sinug)? sinus (sinur)? sin ug
u) = ,
(27w2)5 ngm<n§5 sin @, (u)

While the integrand is well defined, the function f(u) is singular for
configurations w; such that some ®,,,,,(u) = 0.

These points correspond to degenerate configurations of the five vectors v,,,
with two or more of them coinciding.

= introduce a quantity Agc.(jmn) defined as integral on a D,
D.= {domain D with ball of radius ¢ excised around degenerate configs}
The original vertex amplitude can be obtained taking the limit e — 0.

Agc(jiz, - - - jas) :giLI}JABCE(jlz,u-,Ms) J
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Integral formulae for Agc(ji2, - -, jus5)

Barrett-Crane vertex amplitude as a 9-d angular integral

ABCS(le, o 7.745 / H duz (’U,) H sin ((2jmn i ]-)<I)mn(u))

€ 4=1...9 m<n

The product [T sin ((2jjnn + 1)®mn(u)) can be written as a sum of 219 terms

[T sin (@imn + D@mn(u) =

)10
1<m<n<5 (249) m<n
1 2t b b
=5 > CDEMap (i3 (DM (2mn + D (w))
2 b=0 m<n

where we have introduced the integer b = 0, ..,1023 and the binary digit
notation with b,,,, € {0,1} so that

=0 (b12, b13, b4, b1s, bag, baa, bas, bza, bzs, bas) = (0,0,0,0,0,0,0,0,0,0)
(b12, b13, b14, b1s, bag, baa, bas, baa, bas, bas) = (1,0,0,0,0,0,0,0,0,0)
(b12, b13, b14, b1s, bag, baa, bas, bza, bzs, bas) = (0,1,0,0,0,0,0,0,0,0)

(b12, b13, b14, b1s, bag, baa, bas, baa, bas, bas) = (1,1,0,0,0,0,0,0,0,0)

|
bl

b=1023 — (bi2,b13,b14,b15,b23,b24, b2s, b3a, b3s, bas) = (1,1,1,1,1,1,1,1,1,1)

[1 (Hi@mntD®mn(@ _ =i@imntD®mn (W)
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Integral formulae for Agc(ji2, - -, jus5)

Barrett-Crane vertex amplitude as (the limit of) a sum of 2!° terms

PO

. . . 1 by . .
ABC(]lQ, ce ,j45) = gl_I)I(l) _ﬁ Z (_1)2 bmnA(Bc)a(.]127 cee 7.745)
b=0

with Ag’c)s given by a 9-d angular integral

A(Blgg(jlg, ey j45) = /D H du; f(u) exp (i Z (—=1)m (25 + 1)y (u))

& §=0l009 m<n

These formulae for the Barrett-Crane vertex amplitude will have a major role
in the following analysis.

| recall thet VW, (s in) = ([T @loon + ™) Anc(ln/2)

m<n

Loops’07 - Morelia 20/ 40
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Outline of the talk

@ Large scale correlations
@ The dominant contribution
@ The perturbative action and measure
@ 2- and 3-area correlation functions
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Large scale correlations

Restrict attention to the integer spin subspace of Hr,, i.e. consider only
SO(3) representations /,,,. Dynamics — Barrett-Crane model.

(0)
—zE e
\Illo o (lmn) = exp ( -5 E : § :a(mn)(PQ) = msn
; 2 0) 1(0)
Viih Zéq

m<n p<q

choose 119, = I, > 1 and qﬁ(mOZ«L = ¢

5lnm 1
- =0

I = lo + 5lmn = (14 kpmn)l with kmn = = N
0 ( ) 0 ) lo ( \/%)

for ip > 1 and k,,,, ~ O(1/y/1y) we have A,,, =~ 87tGnlo(1 + kpmn + O(k?))

area-area correlations

<Am/n/ Aml/nl/ >q =
520 Wollmn) Vimin (s + 1)/l (e + 1) Wi, 6o ()
Zlmn Wy (lmn) \Ijlo,% (lmn)

= (87TGN)

E. Bianchi ( SNS, Pisa ) Large scales in LQG Loops’07 - Morelia 22/40



Large scale correlations

Wi 50 (1 nn)o) = Cllp) ™4 % Xmmisnlo hnn ko =i dolokmn =i X2 golo |

617717}, 1
— O(——
lo ( Vi

lonn, = (]_ —+ kmn)lO with [ >1 and k,,, =

)

area eigenvalue — A, =~ 87Gnlo(1 + kpn + O(K?))
<Am % A m'’'n' > ~ 8’/TGN)21(2) X
/H dkrmn Wo (1 + kmn)lo) (1 + kpurns ) (1 + Kgrrrr) Wi, ¢>o((1 + Kmn)lo)

/H Ao Wor (1 + Ko )lo) Wig,60 (1 + ki )lo)

| N\

Quantity appearing in correlation formula

/ T[T dhmn P(kmn) AR (1 + Fnn)i0/2) Wig 90 (1 + Kmn)lo)

m<n

with P(k,,,) a polynomial in k,,,,
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Contribution of Agc to correlations

Quantity appearing in correlation formula

/ H dkmnp(kmn) Agge((l + kmn)10/2) \Illo,fﬁo((l + kmn)lo) =

m<n
9
— [ Tldus) [ TT dbma ) Clla)e 4 EEcmoalobnnton
De j—1 m<n

7/2 ((_1)bm'nq>'mn(u)_¢0)lOkmn ZE ((_1)bmn@mn(u)_¢0)l0
X e @

9
i2<(—1)bm"®mn(u)—¢o>lo .0
/DE []dusr(uye Ciggm)

Soll )e—% T mmyalo ((—1>“~m(b,,m<u)—¢232l) ((—1>bwbm<u)—¢;?,>>
0

%o

as lp — oo we have

11 5((—1)5"”1 Dy (1) — 9250)

m<n
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Contribution of Agc to correlations lg — o0

Quantity appearing in correlation formula

[ TT P n) ASL(CL+ Fona)lo/2) Wi 00 (1 + o) =

m<n
bmn
/ Hduz (( 1)°mn @ (w)— ¢0) OP(—i 5('0) )X
De j=1 a(bmn

Xé(l )e_é Z E a(nlzwl)(pq)lo ((—1)b’""‘1)mn(u)—</>5331) ((_1)bpq Dpq (")_(/)231)>
0

%o

as lp — oo we have

TT (-0 ®rnw) — 00)

m<n

as 0 < ®,,,(u) <mand0 < ¢y < 2w, only the term with b = 0 can contribute
— look for solutions of the equation

Dpn(u) = g9 Ym<n

— only two solutions @° and Piig
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Contribution of Agc to correlations lp — o0

Quantity appearing in correlation formula

as lp — oo we have

TT (-0 @) — 60

m<n

as0 < ®,,,(u) <mand 0 < ¢y < 2, only the term with b = 0 can contribute
— look for solutions of the equation

D (U> = oo Ym<n
— only two solutions @° and Piiy (exchange o4 « o5, i.e. ¢4 < &5)
Solution aO = (&27 1;37 637 1;47 é4a &47 1Z)5a §57 (55) with

o =3 = P4 =5 = Cosfl(—i) , 03 =04=05= Cosfl(—%) , ¢4 =2m — 00371(—%) ;b5 = 00371(—%)

1 1

corresponds to vectors v,, having a 4-dim span and angle between them
Prn = COS_l(@ma Up) = COS_l(_Z) = ¢ = Cosil(_i)' J
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Contribution of Agc to correlations lp>1

Quantity appearing in correlation formula

/ H dkn P (kmn) AI(Bb(%s((l + Emn)lo/2) Vi ¢, (1 4 kmn)lo) =

m<n
bmn
/ Hduz (( 1)Pmnd, ., (u)— ¢0) OP(—i 8(0) )><
D: =1 Obmn

Xé(lo)e—%zz(m(,j,n)(m)zo(( 1)@, (u)— ¢$,?21)(( 1)°P4 Py (u)— szsﬁ,i’,))

Po

For large (but finite) /o, to the integral [du contribute only the « such that

|(71)bm"q)mn( ) ¢’0| ~ f

=onlyb=0
= only u belonging to a ball B centered in @’ and of radius 1/+/Iy or to Bpgo

D. = Bgo UBpgzo UR.
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Contribution of Agc to correlations

Decomposing the angular domain D, in the following way
DE = Bﬂo U BPI_LO URE, J

with Bo a ball of radius 1/+/1 centered in 4", we have

|

ABC(jmn) - 210 <2ABCB 2 u hm A R +511£>I(1) Z (_I)menA(BbC)DE)

ASZY) and A5, contribute only in a exponentially suppressed way

/H ey P(Emn) ASZ (1 + Kmn)l0/2) Wi g0 (1 + Kmn)lo) = 0(1/1)) YN >0

/ LT dhomin P i) A (1 + Kl /2) i 06 (1 + Kimn)lo) = 0(1/1) YN >0

v

On the other hand, A‘BOC)&() (jmn) is suppressed only as a power of 1/l

J T P A2, (14 )i/ 2) B (1 + i) = O(L/E)
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Perturbative action and measure

Use method of the stationary phase:

/ - }_[ du f(u) e Z (27T)% \/|fd(ll )8;;:%") )|eiig+0((/1\>§+1)

Asymptotic analysis of A(BOC)BHO for jo > 1

z2joz (1 + ko +
AI(BOC)B;L0 (14 kmn)jo) = /B’ H du; f

4o ¢=1,..,9

= fixed the fluctuations k., find the stationary points ; of the phase S(u)

1
Su)= 32 (1 ki + 52) (1)
0

m<n

i.e. @ € Byo suchthat 0 =33, _ (14 ki + 2-) 2z

Strategy: solve for k,,, = 0, then perturbatively in &,,,, < 1 )
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Perturbative action and measure

Fixed the fluctuations k,,,, find the stationary points @; of the pahase S(u):
(bTVLIL

@ k,,, =0, look for angles u( in By, suchthat0 =3 _ <5 o

uo determined as a solution of @,,,,,(u) = ¢y is an isolateted stationary point
of SO (u) =3 . @ (u) in Byo, i.e. in a ball of radius 1/1/j around a°. J

@ perturbation theory in k,,,, < 1 around the stationary point @°

Solution as series, determined order by order [recall that k.., = O(1/+/50)]

1 1 .. .
= ﬂ0+u(1)+§ﬁ(2)+§ﬂ(5)+... with @™ = O(k")

Phase evaluated at stationary point

S(u +a® + 7(2) + 7<3) +..0= Z émn(“ )+ Z krrmq)mn(“ )+ Z Tq’mn(“ )+
0

m<n m<n m<n

1
+§ZZ( Z B, ij (@ )) (€D (1) + = (ZZZ( ; <1>mn,¢jz(ﬁo))ﬂgl)ﬁg»l)ﬁ%l)*‘
i J n

m<n

+323 (X kmn4>mn,ij(ﬂ°))ﬂ§”ﬂ§”> +Oo(k*)

i m<n
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turbative action and measure

The dependence on @® in S(a° + oV + $a® + £a® 4 ...) appears only
starting from the forth order in k,,,,. This is a straightforward consequence of
the function S(u) being evaluated at a stationary point.

= to obtain the value of S() up to O(k®) we need to compute the stationary
configuration @ only to first order in k,,,,:

375
11 B g (—18k13 + Tk13 + Th1g + Thkis + Tho3 + Thag + Thas — 8k3yq — 8k3s — 8kys)
cos™ T (—3) /3/5
cos—1(=1) / (7k12 — 18ky3 + Tk14 + Thkis + Thag — 8koy — 8kgs + Tkgy + Tk3s — 8kys)
Cos—l(fi) 2\f(7‘712 + k13 — k14 — k15 — 4k23 + 2k24 + 2k25 + 2k34 + 2k35 — 4kys5)
cosfl(—i) 13/5

J—(7k12 + Tkig — 18k14 + Th1s — 8kog + Thkoy — 8kag + Th3y — 8kzs + Tkas) )
Q\f(hz — k13 + k14 — k15 + 2kag — 4kpq + 2kas + 2k34 — 4k3s + 2kygs5) +O(k%)

L(km + k14 — 2k15 + ko3 + koa — 2ka5 — 2k34 + k35 + k45)

3
cos*l(_i) . /O (7k12 +7k13 + Tk14 — 18k15 — 8kag — 8kay + Thkas — 8k3q + Tk3s + Tkas)
cos_l(—%) \f(ku — k13 — k14 + k15 + 2k23 + 2kgg — 4kos — 4k3q + 2k35 + 2kyg5)

AL(’Cls — 2ki14 + k15 + k23 — 2kaq + ko5 + k3a — 2k35 + kas)

Substituting in S(a° + @™ +...) , we find

1
S(@(kmn)) =S80+ > Bmnkmn+ = > > Kimn)(pq)kmnkpgt
m<n 2 m<n p<q

+ ; 32 20 3 Iy pa) (ra) Emn kpghrs + O(k%)
m<n p<lqgr<s
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turbative action and measure

The dependence on @® in S(a° + oV + $a® + £a® 4 ...) appears only
starting from the forth order in k,,,,. This is a straightforward consequence of

the function S(u) being evaluated at a stationary point.

= coefficients:

Sp = 10005_1(71/4) , Bmn = cos_1(71/4)

-9 T/2 T/2 T/2 /2

7/2 29 172 T/2 7)2
772 7/2 L9 772 ‘i

| 772 72 772 L9 —a

K _ V57 7y i —4 o
(mn)(pa) = 7/2 -4 T/2 -4 7/2
772 —4 L4 772 772

24 o772 772 L4 o172

—a 72 Lio7/2 172

—a L4 72 o772

7/2
~a
7/2
~4
7/2
-}9
7/2
/2
~a
7/2

7/2
—4
/2
7

T7/2
3
-9
7/5
7/2

189 |3 347 |3 14
Ta2)a2)a2) =~ 5o\5 @ fana2as) = T\ 0 fanvaney = -5

. _+39JT§ I _ 453JT; P _
12)(23)(34) =T 5o\ 5 Ta23)(14) T T\ 0 fa2)@3)s) =

5

—4
7/2
7?2
~4
7/2
7/2
7:9

2
%

3
[
.
10\s

—4 -4
7/2 -4
Z4 0 7/2
7/2  7/2
772 L4
24 7/2
7/2  1/2
772 1/2
Z9  7/2
7/2 29
T(12)(23)(13) = —

141 [3
20 \5

Substituting in S(a® +a» +...) , we find

1
S(@(kmn)) =S80+ > Bmnkmn+ = > > Kimn)(pq)kmnkpat
m<n m<np<q

1
+ 5 X 2 X lmmywa)rs) kmnkpakrs + O(kY)

m<np<lqgr<s
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Perturbative action and measure

Recall stationary phase formula:

‘ iAS(u) 2m\% (@) €25(@n) i INCEE
U ==

We have that, perturbatively in k,,,,,

8%s

512 [5 3 17 5
det = —(10 ——k —(k k ks 11(k k kos+k- kss+kas O(k
e durow, |~ Trrar 3( Sk12+ 2( 13+k1a+k15)+11(kog+koa+kos+ksatkss+kas))+O(k?)
and
F@) 128ﬂ(l L (2 ks 4 (ks + kua + K1) — (kas + kaa + kas + kaa + kas + kas)) ) + O(?)
ay= Bv2 12 L _
105 7l'6 10 4 12 1 13 14 15 23 24 25 34 35 45

Notably, the ratio appearing in stationary phase formula

(@) C12v2 (3\* 9
|det( 925 |_)‘ — 576 <5> (1— % Z k'mn) +O(k2)a

Oui Buj TRER

is symmetric under exchange of the ten k,,,,.
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Perturbative action and measure

From W, to perturbative action and measure

Slom 6lmn

Wo(lo + Olmn) = ( I 2t0)™7( o (2zo>)Nf)ABc((1 + 2 o/?)
m<n

~ N0 30) (1 + (Ny —%) &l’”" + 0512 /zg)) etSto@lmn) 4 R(1g+6l,m)

v

where R(ly + dl,,,,,) gives an exponentially suppressed contribution to the
correlation functions and Sy, (6l,,.,,) is given by

1 K (mn)(pq)
St (Olmn) =100lo + D $00lmn + 5 > D — 7 blmndlpg+

m<n m<n p<q 0

Z 3Oy ) I“””’(pq’ Zmn)Pa)(re) 57 61y bls + O(514/13)

3! m<n p<qr<s

numerical coefficients K ,,,)(pq) @Nd L(nn)(pg)(rs) — COMputed explicitly
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2- and 3-area correlation functions

Sl 1
Apn = 817Gy lmn(lmn+1):87rGNlo(1+ g (1/13))

Correlations of coloring at the vertex amplitude level

5lmn

< Sl Ly, 1
I

—=) =

1K — «
0 lo o o o

o () (we) T O1/15)

To compute < 655‘1 ‘””> improvement of the boundary state needed

Sl
\Ifzo,¢o(lo+6lmn):(1+clz 7+ 0L /1))

m<n

(m")( ) .
X 6_% Em<n Ep<q - 0lmndlpg _'Lzm<n ¢’(V‘22L(l0+6lm,n)

in order to be of the same order of the contribution from the measure in W,

Sl Olpg Olrs . 1 , L o .
< lO T lO > = % Z ZIm’n’p’q’r’s’ (ZK—a)m’n’mn (’LK—O&)p,q,pq (ZK—a)r’s’rs+
1 9
+ e+ Ny - 20)( 3 (K =) b (K — )y + perm.) + O(1/13)

m/<n’
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Outline of the talk

a Correlations in perturbative quantum Regge-calculus
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Correlations in perturbative quantum Regge-calculus

In the previous section, we made no use of results from Regge-calculus )
Correlations of areas at the single-4-simplex level can be
computed in perturbative area-Regge-calculus too J

/ [T @64 n(sa) 5o +04) 64, 64, wo[sA]

/ [T @64 u(64) €5 (Ao +04) (54
The action for a single 4-simplex in length-Regge calculus is given by

S(Lrs) = ﬁ Zl<u<’u<z<5 Auvz(Lrs) (77 - guvz(Lrs))

For the configuration L, = L, the change of variables 6 L,.; — dA,,. is
well-defined and the action, perturbatively, is given by

<5Auvz 5Arst>0 =

S(Ao + 6A,m) - (10(7r—cos_1(1 /4) Ao + 3 (m — cos™ (1/4))5 Ao+

87T'GN

= Z u'UZ L 6Auvz(5Arst P = 31 Z u'UZ TSt Ikl 6Auv26Arst6Ahkl + O(5A4/Ag))
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Correlations in perturbative quantum Regge-calculus

The perturbative Area-Regge action S(A, + 64) can be compared to the
perturbative action coming from Agcs,, (Jo + 0Jmn)

S(Ao + 0Ayz) = (10(71'—(:05*1(1/4))140 + Z(T( —cos 1 (1/4))6 A+

8GN

1 Kuvz rst uvz rst hkl 4 3
=F 5 Z A 6Auv26A’r‘st + 5 3' Z —O5Auvz(5ATst6Ahkl + O((SA /AO))

v

520 (285mn) = 1060 2o+ Y _ 60 20jmn + 5 S (”"” (26 mn) (28 pq)+

m<n m<n p<q ‘70)

I’ITL’I’L ’l"S . .
+ 5 ZZZ( ’“’q (26n) (207pg) (267rs) + O(85%/32)

m<n p<qr<s

and they match up to third order once we identify
A[) . 5Auvz
d 25/ mn =
87TGN an J 87'I'GN

2jo =
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Outline of the talk

G Conclusions
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Conclusions

@ We have computed 2— and 3—area correlation functions for the
Barrett-Crane vertex

@ The result matches with the perturbative calculation in quantum
area-Regge calculus up to third order

@ Do we have to expect contributions from higher-curvature Regge terms?
— go beyond 3" order

@ Does the EPR vertex pass the area-correlation test?

@ Compute volume-volume correlations in EPR model

General reasoning behind the calculations presented:

correlations on a semiclassical state in the full theory can be compared to
correlations on the vacuum state of the perturbative theory around a classical
solution

— an elementary QM example
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An elementary QM example

Problem: study correlations of position /D[m(t)] o(t1) a(ty) eSEOU
(x(t2)a(tr)) =
/D[x(t)] (iSlz()/h
for a particle in a Coulomb potential
Sla(t)] = /+Oodt (lMi:i(t)ﬂ(t) - _—O‘) with a >0
—0 2 x(t)x(¢)

warning: non-gaussian path integral involved
hint 1: compute it perturbatively around a classical solution, x(t) = xq(t)+£(t)

too 1L . _ . .
Sualé(t)] = [ dt (ZMEDE W -K@)u¢ OF (-1 O O 0)+... )

hint 2: assume z¢(t) = circular orbit of radius R > A?”

Problem*: the result of the path integral can be defined using canonical
MEOdS  Wilzy, 2] = 5, i (@2) €T g (21)

Use it to compute correlations non-perturbatively. Identify the regime which
corresponds to the perturbative calculation above.
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An elementary QM example
Correlations on the non-perturbative vacuum state

/D[ t)] o(t1) z(ta) eSEOI/R
z(t2)x(t1 — o« )
(w(t2)ot)) o

fdwl fd:rg Vi (x2) xo W21, 22) 21 to(21) oot
= : l
Jday [dao §(x2) Wr (1, 22) to(21) Ze |02 |nim }

nim

Regime which corresponds to the perturbative calculation —

Correlations on a semiclassical state

Yuu (1) = Coxp (~ ey (e ~ (1)) (2}~ <m>) PR ()] > o
(a(ta)o(tr)), = L L V@) 2 W, 20081 V1) ey e,

Jdzy [dwy ¢, (x2) Wr (1, 22) g, (1)
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