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The problem of quantum gravity

Perturbative quantum gravity, viewed as an effective field theory, provides
a consistent description of quantum gravity in the low-energy regime

(Donoghue PRL1994, Burgess LivRevRel2004)

In this phenomenological approach, only the low-energy field content
and the symmetries of the action have to be prescribed.

Then, power-counting results allow to calculate perturbatively - including
loops - using a non-renormalizable effective Lagrangian.

fixed the typical energies of the process of interest and
the required accuracy, the appropriate phenomenological
Lagrangian contains only a finite number of terms.

The theory is predictive, once a finite number of coupling constants
has been measured.

A typical process of interest can be graviton scattering on Minkowski spacetime
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The problem of quantum gravity

Perturbative quantum gravity (as an effective field theory)
this approach naturally identifies the scale where it breaks down - the
physical cutoff - and requires new physics to unfreeze at such scale.

Hence it can be viewed as an effective field theoretical description of the
underlying physics at this scale.

The scale of interest here is MP ≈ 1019GeV

the underlying high-energy physics can be:

(i) still an ordinary local quantum field theory defined on a manifold with
a non-dynamical metric (M, ḡ), or

(ii) a quantum field theory defined on a bare manifoldM
(iii) or even something else.
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The problem of quantum gravity

Perturbative quantum gravity (as an effective field theory)
this approach naturally identifies the scale where it breaks down - the
physical cutoff - and requires new physics to unfreeze at such scale.

Hence it can be viewed as an effective field theoretical description of the
underlying physics at this scale.

The scale of interest here is MP ≈ 1019GeV

the underlying high-energy physics can be:

(i) still an ordinary local quantum field theory defined on a manifold with
a non-dynamical metric (M, ḡ), or

(ii) a quantum field theory defined on a bare manifoldM← LQG

(iii) or even something else.

mathematically well defined version of the Wheeler-DeWitt approach
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The loop approach to quantum gravity

important to probe the theory in the deep quantum regime, such as

- at the big bang singularity
- at the black hole singularity

on the other hand

it’s crucial to understand if the theory admits a regime where
large scale correlations are present and an ordinary quantum
field theoretical description is available.

This is a key test the loop approach has to pass to be considered a
physically viable approach to the problem of quantum gravity.
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important to probe the theory in the deep quantum regime, such as

- at the big bang singularity
- at the black hole singularity

on the other hand

it’s crucial to understand if the theory admits a regime where
large scale correlations are present and an ordinary quantum
field theoretical description is available.

This is a key test the loop approach has to pass to be considered a
physically viable approach to the problem of quantum gravity.

Recently, some progress in this direction has been made
C. Rovelli, “Graviton propagator from background-independent quantum gravity”, Phys. Rev. Lett. 97 (2006)

e. b., L. Modesto, C. Rovelli, and S. Speziale, “Graviton propagator in loop quantum gravity”, Class. Quant. Grav. 23 (2006)

e. b., L. Modesto, C. Rovelli, “Towards perturbative quantum gravity from spinfoams: 3-point correlation functions”, to appear

key point: dynamics of a state peaked on a classical geometry
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Outline of (the rest of) the talk

1 Motivation from Effective Field Theory

2 Strategy and the general philosophy→ Rovelli’s talk

3 Correlations at the vertex amplitude level

4 Large scale correlations
The dominant contribution
The perturbative action and measure
2- and 3-area correlation functions

5 Correlations in perturbative quantum Regge-calculus

6 Conclusions
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Boundary amplitude formalism at work

In LQG, the Hamiltonian constraint acts on a spin-network state
non-trivially only at nodes.

In spinfoam models, the action of the Hamiltonian constraint at a node is
given in terms of a spinfoam vertex amplitude.

b

b b

bb

j2 j3

j4j5

i1

⇑
j2 j3

j4j5

i2 i3

i4i5

j23
j24

j25 j34j35

j45

→ b

b

b b

bb

Hamiltonian constraint
corresponding to the
Barrett-Crane spinfoam
model acting on a state
with a 4-valent node

Such transition amplitude can be written in the following way:

〈 b b

bb |Ĥ| b 〉 =
(∏

f Af (jl)
)
Av(jl, in)
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)
Av(jl, in)

To capture the role of the vertex amplitude, this formula is best written in the
boundary amplitude formalism. The strategy is the following:

(i) cut out from the two-complex a 4-ball B4 containing a spinfoam vertex v

(ii) introduce a vertex amplitude Wv to codify the dynamics in the region B4;
it is a map from the boundary Hilbert space HS3 to C;

(iii) introduce a state ΨS3,q[s] ∈ HS3 to describe the state on S3 = ∂B4. The
role of the boundary state is to codify the dynamics outside B4.
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Boundary amplitude formalism at work

Transition amplitude 〈 b b

bb |Ĥ| b 〉 =
(∏

f Af (jl)
)
Av(jl, in) (1)

As the boundary of the 4-ball B4

intersects the two-complex giving
a graph Γ5,

Γ5 =
b b

b

b b

n1

n2

n3

n4n5

l12 l23

l34

l13l25

l14 l35

l24

l15

l45

the boundary Hilbert space HS3 is in fact an HΓ5
which has the spin networks

|j12, . . , j45, i1, . . , i5〉 as a basis. Hence, instead of equation (1), now we have
the spinfoam vertex amplitude

Wv(jmn, in) = 〈Wv|
b b

b

b b

i1

i2

i3

i4i5

j12 j23

j34

j13j25

j14 j35

j24

j15

j45

〉 =
( ∏

m<n

Af (jmn)
)

Av(jmn, in) (2)

Prescribing the action of the Hamiltonian constraint in this way, i.e. specifying
the vertex amplitude, makes it easier to guarantee its crossing symmetry.
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Correlations at the vertex amplitude level

The quantities we are interested in here are:
correlations of geometric operators at the vertex amplitude level

such as area-area correlations on a state ΨΓ5,q(jmn, in)

area-area correlations on a state ΨΓ5,q(jmn, in)

〈 Âm′n′ Âm′′n′′ 〉q =

∑

jmn

∑

in
Wv(jmn, in) Âm′n′ Âm′′n′′ ΨΓ5,q(jmn, in)

∑

jmn

∑

in
Wv(jmn, in)ΨΓ5,q(jmn, in)

or volume-volume correlation 〈 V̂n′ V̂n′′ 〉q.

Technically, these are correlations of coloring, as for instance

Âm′n′ΨΓ5,q(jmn, in) = 8πGN

√

jm′n′(jm′n′ + 1)ΨΓ5,q(jmn, in) .
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∑

jmn

∑

in
Wv(jmn, in)ΨΓ5,q(jmn, in)

or volume-volume correlation 〈 V̂n′ V̂n′′ 〉q.

The idea is that

in order to have large scale correlations in a realistic situation

where
{

- an appropriate boundary semiclassical state is chosen
- a sum over two-complexes is considered

correlations have to be present already at the level of vertex amplitudes
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Boundary state

A spinnetwork state |Γ5, jmn, in〉 ∈ HΓ5
describes a quantum geometry on a

manifold S3 consisting of

5 chunks of space (one for each node of the graph Γ5)

and, as each chunk meets the other four chunks, they identify in the whole

10 patches as prescribed by the connectivity the graph Γ5.

This picture comes from the fact that the
state |Γ5, jmn, in〉 is simultaneusly

8

<

:

- an eigenstate of the volume operator of a region containing a node of Γ5

- an eigenstate of the area operator of a surface cut by a link of Γ5

Here, we are interested in a state |Γ5, q〉 on HΓ5
which is peaked

both on the intrisic and on the extrinsic geometry of S3.

As such, we are looking for a mildly semiclassical state:

same connectivity of the state described above

but peaked both on area and on its conjugate momentum (and similarly
for volume)
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Here, we are interested in a state |Γ5, q〉 on HΓ5
which is peaked

both on the intrisic and on the extrinsic geometry of S3.

As such, we are looking for a mildly semiclassical state:

same connectivity of the state described above

but peaked both on area and on its conjugate momentum (∼ for volume)

We take the following ansatz: |Γ5, q〉 =
∑

in

∑

jmn

Cf(in)Ψj0,φ0
(jmn)|Γ5, jmn, in〉

- with Ψj0,φ0
(jmn) given by

Ψj0,φ0
(jmn) = exp

(

−1

2

∑

m<n

∑

p<q

α(mn)(pq)
(jmn−j(0)mn)(jpq−j(0)pq )

√

j
(0)
mn j

(0)
pq

)

e

−i
∑

m<n

φ(0)
mnjmn

- and for instance

f(in) = 1 for admitted intertwiners (given the jmn) and 0 otherwise
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α(mn)(pq)
(jmn−j(0)mn)(jpq−j(0)pq )

√

j
(0)
mn j

(0)
pq

)

e

−i
∑

m<n

φ(0)
mnjmn

- and for instance

f(in) = 1 for admitted intertwiners (given the jmn) and 0 otherwise

Despite being very naive, we expect that this proposal
should be quite general at least for j(0)mn ≫ 1
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Boundary state: large j0

Ψj0,φ0
(jmn) = exp

(

−1

2

∑

m<n

∑

p<q

α(mn)(pq)
(jmn−j(0)mn)(jpq−j(0)pq )

√

j
(0)
mn j

(0)
pq

)

e

−i
∑

m<n

φ(0)
mnjmn

we restrict attention to a symmetric situation with j(0)mn = j0 and φ(0)
mn = φ0

moreover, we assume j0 ≫ 1

due to the gaussian form of the state which is peaked on the value j0 with
dispersion

√
j0, we have that jmn is essentially restricted to be in the range

(
1− 1√

j0

)
j0 ≤ jmn ≤

(
1 +

1√
j0

)
j0

This peakedness property is a kinematical property
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This peakedness property is a kinematical property

if this state is to be considered semiclassical also in the dynamical sense, it
depends on the specific spinfoam model for the dynamics chosen
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√
j0, we have that jmn is essentially restricted to be in the range

(
1− 1√

j0

)
j0 ≤ jmn ≤

(
1 +

1√
j0

)
j0

This peakedness property is a kinematical property

if this state is to be considered semiclassical also in the dynamical sense, it
depends on the specific spinfoam model for the dynamics chosen

We will discuss this in the following and show that,
for the Barrett-Crane model, it fixes the angle φ0.
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Correlations at the vertex amplitude level

The quantities we are interested in here are:
correlations of geometric operators at the vertex amplitude level

such as area-area correlations on a state ΨΓ5,q(jmn, in)
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∑
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∑
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Technically, these are correlations of coloring.
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The Barrett-Crane model for 4-d Riemannian gravity

Av(lmn, in) =
∑

jL
mn,kL

n

∑

jR
mn,kR

n

f lmn,kn

jL
mn,kL

n ,jR
mn,kR

n

b

b b

b

b

b

bb

b

b

kL
1

kL
2

kL
3

kL
4kL

5

jL
12 jL

23

jL
34

jL
13

jL
25

jL
14 jL

35

jL
24

jL
15

jL
45

⊗

b

b b

b

b

b

bb

b

b

kR
1

kR
2

kR
3

kR
4kR

5

jR
12 jR

23

jR
34

jR
13

jR
25

jR
14 jR

35

jR
24

jR
15

jR
45

f lmn,in

jL
mn,iL

n ,jR
mn,iR

n
=
( ∏

m<n

clmn

jL
mn,jR

mn

)(∏

n

f in

iL
n ,iR

n
(jm′n, j

L
m′n, j

R
m′n)

)

This model is defined taking a branching function defined in the following way:
- on links

clmn

jL
mn,jR

mn
= δjL

mn,jR
mn

δlmn,(jL
mn+jR

mn)

- on nodes
fkn

kL
n ,kR

n
=







δkL
n ,kR

n

kL
n

for kn, k
L
n , k

R
n admissible

0 otherwise
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5

jR
12 jR

23

jR
34

jR
13

jR
25

jR
14 jR

35

jR
24

jR
15

jR
45

f lmn,in

jL
mn,iL

n ,jR
mn,iR

n
=
( ∏

m<n

clmn

jL
mn,jR

mn

)(∏

n

f in

iL
n ,iR

n
(jm′n, j

L
m′n, j

R
m′n)

)

This model is defined taking a branching function defined in the following way:
- on links

clmn

jL
mn,jR

mn
= δjL

mn,jR
mn

δlmn,(jL
mn+jR

mn)

- on nodes

fk1

kL
1 ,kR

1
=

b b b b

b b

b b b b

k1

l12

l12/2

kL
1 kR

1

l14

l14/2 Eagle-Pereira-Rovelli model
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The Barrett-Crane model

Av(lmn, in) = ABC(l12/2, . . , l45/2)

ABC(j12, . . , j45) =
∑

k1...k5

( 5∏

i=1

ki

)

b

b b

b

b

b

bb

b

b

k1

k2

k3

k4k5

j12 j23

j34

j13

j25

j14 j35

j24

j15

j45

⊗

b

b b

b

b

b

bb

b

b

k1

k2

k3

k4k5

j12 j23

j34

j13

j25

j14 j35

j24

j15

j45

Wv(lmn, in) =
( ∏

m<n

Af (lmn)
)
Av(lmn, in)

=
( ∏

m<n

(2lmn + 1)Nf

)

ABC(lmn/2)

The face amplitude is generally taken with the exponent Nf = 2
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Integral formulae for ABC(j12, . . , j45) 1/5

ABC(j12, . . , j45) =
∑

k1...k5

( 5∏

i=1

ki

)

b

b b

b

b

b

bb

b

b

k1

k2

k3

k4k5

j12 j23

j34

j13

j25

j14 j35

j24

j15

j45

⊗

b

b b

b

b

b

bb

b

b

k1

k2

k3

k4k5

j12 j23

j34

j13

j25

j14 j35

j24

j15

j45

Using formula

∑

k

k k

j1 j2

j3j4

m1 m2

m3m4

b

b

⊗ k

j1 j2

j3j4

m′
1 m′

2

m′
3m′

4

b

b

=

∫

SU(2)

dµ(h) D
(j1)
m1m′

1
(h)D

(j2)
m2m′

2
(h)D

(j3)
m3m′

3
(h)D

(j4)
m4m′

4
(h)

we can express Barrett-Crane vertex amplitude as an integral over SU(2)5

ABC(j12, . . , j45) =

∫

SU(2)5

∏

1≤k≤5

dµ(hk)
∏

1≤m<n≤5

χ(jmn)(hmh
−1
n )
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Integral formulae for ABC(j12, . . , j45) 2/5

Barrett-Crane vertex amplitude as an integral over SU(2)5

ABC(j12, . . , j45) =

∫

SU(2)5

∏

1≤k≤5

dµ(hk)
∏

1≤m<n≤5

χ(jmn)(hmh
−1
n )

group element hk ∈ SU(2)→ spherical coordinates (ψk, θk, φk) on S3

group element hk → a unit-vector vk in R
4:

Using Weyl representation formula with (vm, vn) = cos Φmn

ABC(j12, . . . , j45) =

∫

(S3)5

∏

1≤k≤5

dΩk

2π2

∏

1≤m<n≤5

sin(2jmn + 1)Φmn

sinΦmn

SO(4) invariance→ fix coordinates on (S3)5 so that the integrand depends
only on u = (ψ2, ψ3, θ3, ψ4, θ4, φ4, ψ5, θ5, φ5)

and integrate trivially over ψ1, θ1, φ1, θ2, φ2, φ3

ABC(j12, . . . , j45) =

∫

D

∏

i=1...9

dui f(u)
∏

m<n

sin
(
(2jmn + 1)Φmn(u)

)
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Integral formulae for ABC(j12, . . , j45) 3/5

Barrett-Crane vertex amplitude as a 9-d angular integral

ABC(j12, . . . , j45) =

∫

D

∏

i=1...9

dui f(u)
∏

m<n

sin
(
(2jmn + 1)Φmn(u)

)

where f(u) is given by

f(u) =
16π4

(2π2)5
(sinu1)

2 (sinu2)
2 sinu3 (sinu4)

2 sinu5 (sinu7)
2 sinu8

∏

1≤m<n≤5 sinΦmn(u)
.

The ten angles Φmn between the vectors vn, vm in R
4 can be written

explicitly in terms of the nine angles u = (ψ2, ψ3, θ3, ψ4, θ4, φ4, ψ5, θ5, φ5):

Φ12 =ψ2 , Φ13 = ψ3 , Φ14 = ψ4 , Φ15 = ψ5

Φ23 = cos
−1 `

cosψ2 cosψ3 + cos θ3 sinψ2 sinψ3
´

Φ24 = cos
−1 `

cosψ2 cosψ4 + cos θ4 sinψ2 sinψ4
´

Φ25 = cos
−1 `

cosψ2 cosψ5 + cos θ5 sinψ2 sinψ5
´

Φ34 = cos
−1 `

cosψ3 cosψ4 + (cos θ3 cos θ4 + cosφ4 sin θ3 sin θ4) sinψ3 sinψ4
´

Φ35 = cos
−1 `

cosψ3 cosψ5 + (cos θ3 cos θ5 + cosφ5 sin θ3 sin θ5) sinψ3 sinψ5
´

Φ45 = cos
−1 `

cosψ4 cosψ5 + (cos θ4 cos θ5 + cos(φ5 − φ4) sin θ4 sin θ5) sinψ4 sinψ5
´

E. Bianchi ( SNS, Pisa ) Large scales in LQG Loops’07 - Morelia 18 / 40



Integral formulae for ABC(j12, . . , j45) 3/5

Barrett-Crane vertex amplitude as a 9-d angular integral

ABC(j12, . . . , j45) =

∫

D

∏

i=1...9

dui f(u)
∏

m<n

sin
(
(2jmn + 1)Φmn(u)

)

where f(u) is given by

f(u) =
16π4

(2π2)5
(sinu1)

2 (sinu2)
2 sinu3 (sinu4)

2 sinu5 (sinu7)
2 sinu8

∏

1≤m<n≤5 sinΦmn(u)
.

While the integrand is well defined, the function f(u) is singular for
configurations ui such that some Φmn(u) = 0.
These points correspond to degenerate configurations of the five vectors vn,
with two or more of them coinciding.
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Integral formulae for ABC(j12, . . , j45) 3/5

Barrett-Crane vertex amplitude as a 9-d angular integral

ABCε(j12, . . . , j45) =

∫

Dε

∏

i=1...9

dui f(u)
∏

m<n

sin
(
(2jmn + 1)Φmn(u)

)

where f(u) is given by

f(u) =
16π4

(2π2)5
(sinu1)

2 (sinu2)
2 sinu3 (sinu4)

2 sinu5 (sinu7)
2 sinu8

∏

1≤m<n≤5 sinΦmn(u)
.

While the integrand is well defined, the function f(u) is singular for
configurations ui such that some Φmn(u) = 0.
These points correspond to degenerate configurations of the five vectors vn,
with two or more of them coinciding.

⇒ introduce a quantity ABCε(jmn) defined as integral on a Dε

Dε=
{
domain D with ball of radius ε excised around degenerate configs

}

The original vertex amplitude can be obtained taking the limit ε→ 0.

ABC(j12, . . . , j45) = lim
ε→0

ABCε(j12, . . . , j45)
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Integral formulae for ABC(j12, . . , j45) 4/5

Barrett-Crane vertex amplitude as a 9-d angular integral

ABCε(j12, . . . , j45) =

∫

Dε

∏

i=1...9

dui f(u)
∏

m<n

sin
(
(2jmn + 1)Φmn(u)

)

The product
∏

sin
(
(2jmn + 1)Φmn(u)

)
can be written as a sum of 210 terms

Y

1≤m<n≤5

sin
`

(2jmn + 1)Φmn(u)
´

=
1

(2 i)10

Y

m<n

“

e
+i(2jmn+1)Φmn(u) − e

−i(2jmn+1)Φmn(u)
”

=

= −
1

210

210−1
X

b=0

(−1)
P

bmn exp
`

i
X

m<n

(−1)
bmn (2jmn + 1)Φmn(u)

´

where we have introduced the integer b = 0, . . , 1023 and the binary digit
notation with bmn ∈ {0, 1} so that

b = 0 → (b12, b13, b14, b15, b23, b24, b25, b34, b35, b45) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

b = 1 → (b12, b13, b14, b15, b23, b24, b25, b34, b35, b45) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

b = 2 → (b12, b13, b14, b15, b23, b24, b25, b34, b35, b45) = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

b = 3 → (b12, b13, b14, b15, b23, b24, b25, b34, b35, b45) = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

· · ·
b = 1023 → (b12, b13, b14, b15, b23, b24, b25, b34, b35, b45) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
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Integral formulae for ABC(j12, . . , j45) 5/5

Barrett-Crane vertex amplitude as (the limit of) a sum of 210 terms

ABC(j12, . . . , j45) = lim
ε→0
− 1

210

210−1∑

b=0

(−1)
P

bmnA
(b)
BCε(j12, . . . , j45)

with A(b)
BCε given by a 9-d angular integral

A
(b)
BCε(j12, . . . , j45) =

∫

Dε

∏

i=1...9

dui f(u) exp
(
i
∑

m<n

(−1)bmn(2jmn + 1)Φmn(u)
)

These formulae for the Barrett-Crane vertex amplitude will have a major role
in the following analysis.

[

recall that Wv(lmn, in) =
( ∏

m<n

(2lmn + 1)Nf

)

ABC(lmn/2)
]
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Outline of the talk

1 Motivation from Effective Field Theory

2 Strategy and the general philosophy→ Rovelli’s talk

3 Correlations at the vertex amplitude level

4 Large scale correlations
The dominant contribution
The perturbative action and measure
2- and 3-area correlation functions

5 Correlations in perturbative quantum Regge-calculus

6 Conclusions
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Large scale correlations

Restrict attention to the integer spin subspace of HΓ5
, i.e. consider only

SO(3) representations lmn. Dynamics→ Barrett-Crane model.

Ψl0,φ0
(lmn) = exp

(

− 1

2

∑

m<n

∑

p<q

α(mn)(pq)
(lmn−l(0)mn)(lpq−l(0)pq )

√

l
(0)
mn l

(0)
pq

)

e

−i
∑

m<n

φ(0)
mnlmn

choose l(0)mn = l0 ≫ 1 and φ(0)
mn = φ0

lmn = l0 + δlmn = (1 + kmn)l0 with kmn =
δlmn

l0
= O(

1√
l0

)

for l0 ≫ 1 and kmn ∼ O(1/
√
l0) we have Amn ≈ 8πGN l0(1 + kmn +O(k2))

area-area correlations

〈 Âm′n′ Âm′′n′′ 〉q =

= (8πGN )2
∑

lmn
Wv(lmn)

√

lm′n′(lm′n′ + 1)
√

lm′′n′′(lm′′n′′ + 1) Ψl0,φ0
(lmn)

∑

lmn
Wv(lmn)Ψl0,φ0

(lmn)
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Large scale correlations

Ψl0,φ0
((1 + kmn)l0) = C(l0) e

− 1
2

PP

α(mn)(pq)l0 kmn kpq e−i
P

φ0l0kmn e−i
P

φ0l0

lmn = (1 + kmn)l0 with l0 ≫ 1 and kmn =
δlmn

l0
= O(

1√
l0

)

area eigenvalue→ Amn ≈ 8πGN l0(1 + kmn +O(k2))

〈 Âm′n′ Âm′′n′′ 〉q ≈ 8πGN )2l20 ×

×

∫
∏

dkmnWv((1 + kmn)l0) (1 + km′n′) (1 + km′′n′′)Ψl0,φ0
((1 + kmn)l0)

∫
∏

dkmnWv((1 + kmn)l0)Ψl0,φ0
((1 + kmn)l0)

Quantity appearing in correlation formula
∫
∏

m<n

dkmnP (kmn)A
(b)
BCε((1 + kmn)l0/2)Ψl0,φ0

((1 + kmn)l0)

with P (kmn) a polynomial in kmn
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Contribution of ABC to correlations

Quantity appearing in correlation formula

∫
∏

m<n

dkmnP (kmn)A
(b)
BCε((1 + kmn)l0/2)Ψl0,φ0

((1 + kmn)l0) =

=

∫

Dε

9∏

i=1

duif(u)

∫
∏

m<n

dkmnP (kmn)C(l0)e
− 1

2

PP

α(mn)(pq)l0kmnkpq ×

× ei
P

(

(−1)bmnΦmn(u)−φ0

)

l0kmn

e
i
P

(

(−1)bmnΦmn(u)−φ0

)

l0

=

∫

Dε

9∏

i=1

duif(u)e
i
P

(

(−1)bmnΦmn(u)−φ0

)

l0
P
(
− i ∂

∂φ
(0)
mn

)
×

×C̃(l0)e
− 1

2

PP

α−1
(mn)(pq)

l0

(

(−1)bmnΦmn(u)−φ(0)
mn

)(

(−1)bpq Φpq(u)−φ(0)
pq

)
∣
∣
∣
φ0

as l0 →∞ we have
∏

m<n

δ
(

(−1)bmnΦmn(u)− φ0

)
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Contribution of ABC to correlations l0 →∞
Quantity appearing in correlation formula

∫
∏

m<n

dkmnP (kmn)A
(b)
BCε((1 + kmn)l0/2)Ψl0,φ0

((1 + kmn)l0) =

=

∫

Dε

9∏

i=1

duif(u)e
i
P

(

(−1)bmnΦmn(u)−φ0

)

l0
P
(
− i ∂

∂φ
(0)
mn

)
×

×C̃(l0)e
− 1

2

PP

α−1
(mn)(pq)

l0

(

(−1)bmnΦmn(u)−φ(0)
mn

)(

(−1)bpq Φpq(u)−φ(0)
pq

)
∣
∣
∣
φ0

as l0 →∞ we have
∏

m<n

δ
(

(−1)bmnΦmn(u)− φ0

)

as 0 ≤ Φmn(u) ≤ π and 0 ≤ φ0 ≤ 2π, only the term with b = 0 can contribute
→ look for solutions of the equation

Φmn(u) = φ0 ∀m < n

→ only two solutions ū0 and P ū0
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Contribution of ABC to correlations l0 →∞
Quantity appearing in correlation formula

as l0 →∞ we have
∏

m<n

δ
(

(−1)bmnΦmn(u)− φ0

)

as 0 ≤ Φmn(u) ≤ π and 0 ≤ φ0 ≤ 2π, only the term with b = 0 can contribute
→ look for solutions of the equation

Φmn(u) = φ0 ∀m < n

→ only two solutions ū0 and P ū0 (exchange v̄4 ↔ v̄5, i.e. φ̄4 ↔ φ̄5)

Solution ū0 =
(
ψ̄2, ψ̄3, θ̄3, ψ̄4, θ̄4, φ̄4, ψ̄5, θ̄5, φ̄5

)
with

ψ̄2 = ψ̄3 = ψ̄4 = ψ̄5 = cos
−1

(−
1

4
) , θ̄3 = θ̄4 = θ̄5 = cos

−1
(−

1

3
) , φ̄4 = 2π − cos

−1
(−

1

2
) , φ̄5 = cos

−1
(−

1

2
)

corresponds to vectors v̄n having a 4-dim span and angle between them
Φ̄mn = cos−1(v̄m, v̄n) = cos−1(− 1

4 ) ⇒ φ0 = cos−1(− 1
4 ).
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Contribution of ABC to correlations l0 ≫ 1

Quantity appearing in correlation formula

∫
∏

m<n

dkmnP (kmn)A
(b)
BCε((1 + kmn)l0/2)Ψl0,φ0

((1 + kmn)l0) =

=

∫

Dε

9∏

i=1

duif(u)e
i
P

(

(−1)bmnΦmn(u)−φ0

)

l0
P
(
− i ∂

∂φ
(0)
mn

)
×

×C̃(l0)e
− 1

2

PP

α−1
(mn)(pq)

l0

(

(−1)bmnΦmn(u)−φ(0)
mn

)(

(−1)bpq Φpq(u)−φ(0)
pq

)
∣
∣
∣
φ0

For large (but finite) l0, to the integral
∫
du contribute only the u such that

|(−1)bmnΦmn(u)− φ0| .
1√
l0

⇒ only b = 0
⇒ only u belonging to a ball Bū0 centered in ū0 and of radius 1/

√
l0 or to BPū0

Dε = Bū0 ∪ BPū0 ∪Rε
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Contribution of ABC to correlations
Decomposing the angular domain Dε in the following way

Dε = Bū0 ∪ BPū0 ∪Rε,

with Bū0 a ball of radius 1/
√
l0 centered in ū0, we have

ABC(jmn) = − 1

210

(

2A
(0)
BCBū0

+ lim
ε→0

A
(0)
BCRε

+ lim
ε→0

210−1∑

b=1

(−1)
P

bmnA
(b)
BCDε

)

A
(b 6=0)
BCDε

and A(0)
BCRε

contribute only in a exponentially suppressed way
∫
∏

dkmnP (kmn)A
(b 6=0)
BCDε

((1 + kmn)l0/2)Ψl0,φ0
((1 + kmn)l0) = o(1/lN0 ) ∀N> 0

∫
∏

dkmnP (kmn)A
(0)
BCRε

((1 + kmn)l0/2)Ψl0,φ0
((1 + kmn)l0) = o(1/lN0 ) ∀N> 0

On the other hand, A(0)
BCBū0

(jmn) is suppressed only as a power of 1/l0
∫
∏

dkmnP (kmn)A
(0)
BCBū0

((1 + kmn)l0/2)Ψl0,φ0
((1 + kmn)l0) = O(1/ln̄0 )
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Perturbative action and measure

Use method of the stationary phase:
∫

D

∏

i=1,. . ,d

dui f(u) eiλS(u) =
∑

n

(2π

λ

)d
2 f(ūn) eiλS(ūn)

√∣
∣det

(
∂2S

∂ui∂uj

∣
∣
ūn

)∣
∣
e±i π

4 +O
(( 1

λ

) d
2 +1)

Asymptotic analysis of A(0)
BCBū0

for j0 ≫ 1

A
(0)
BCBū0

((1 + kmn)j0) =

∫

Bū0

∏

i=1,. . ,9

dui f(u) e
i 2j0

∑(
1 + kmn +

1

2j0

)
Φmn(u)

⇒ fixed the fluctuations kmn, find the stationary points ūi of the phase S(u)

S(u) =
∑

m<n

(
1 + kmn +

1

2j0

)
Φmn(u)

i.e. ūi ∈ Bū0 such that 0 =
∑

m<n

(
1 + kmn + 1

2j0

)
∂Φmn

∂ui

∣
∣
∣
ū

Strategy: solve for kmn = 0, then perturbatively in kmn ≪ 1
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Perturbative action and measure

Fixed the fluctuations kmn, find the stationary points ūi of the phase S(u):
kmn = 0, look for angles ū(0)

i in Bū0
such that 0 =

∑

m<n
∂Φmn

∂ui

∣
∣
∣
ū(0)

ū0 determined as a solution of Φmn(u) = φ0 is an isolateted stationary point
of S(0)(u) =

∑

m<n Φmn(u) in Bū0 , i.e. in a ball of radius 1/
√
j0 around ū0.

perturbation theory in kmn ≪ 1 around the stationary point ū0

Solution as series, determined order by order
[
recall that kmn = O(1/

√
j0)]

ū = ū0 + ū(1) +
1

2
ū(2) +

1

3!
ū(3) + . . . with ū(n) = O(kn)

Phase evaluated at stationary point

S(ū
0

+ ū
(1)

+
1

2
ū
(2)

+
1

3!
ū
(3)

+ . . .) =
X

m<n

Φmn(ū
0
) +

X

m<n

kmnΦmn(ū
0
) +

X

m<n

1

2j0
Φmn(ū

0
)+

+
1

2

X

i

X

j

“
X

m<n

Φmn,ij(ū
0
)
”

ū
(1)
i ū

(1)
j +

1

3!

 

X

i

X

j

X

l

“
X

m<n

Φmn,ijl(ū
0
)
”

ū
(1)
i ū

(1)
j ū

(1)
l

+

+ 3
X

i

X

j

“
X

m<n

kmnΦmn,ij(ū
0
)
”

ū
(1)
i ū

(1)
j

!

+ O(k
4
)
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Perturbative action and measure

The dependence on ū(2) in S(ū0 + ū(1) + 1
2 ū

(2) + 1
3! ū

(3) + . . .) appears only
starting from the forth order in kmn. This is a straightforward consequence of
the function S(u) being evaluated at a stationary point.

⇒ to obtain the value of S(ū) up to O(k3) we need to compute the stationary
configuration ū only to first order in kmn:

ū =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

cos−1(− 1
4
)

cos−1(− 1
4
)

cos−1(− 1
3
)

cos−1(− 1
4
)

cos−1(− 1
3
)

2π−cos−1(− 1
2
)

cos−1(− 1
4
)

cos−1(− 1
3
)

cos−1(− 1
2
)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

s

3/5
8

(−18k12 + 7k13 + 7k14 + 7k15 + 7k23 + 7k24 + 7k25 − 8k34 − 8k35 − 8k45)
s

3/5
8

(7k12 − 18k13 + 7k14 + 7k15 + 7k23 − 8k24 − 8k25 + 7k34 + 7k35 − 8k45)
1

2
√

2
(k12 + k13 − k14 − k15 − 4k23 + 2k24 + 2k25 + 2k34 + 2k35 − 4k45)

s

3/5
8

(7k12 + 7k13 − 18k14 + 7k15 − 8k23 + 7k24 − 8k25 + 7k34 − 8k35 + 7k45)
1

2
√

2
(k12 − k13 + k14 − k15 + 2k23 − 4k24 + 2k25 + 2k34 − 4k35 + 2k45)

−
√

3
4

(k13 + k14 − 2k15 + k23 + k24 − 2k25 − 2k34 + k35 + k45)
s

3/5
8

(7k12 + 7k13 + 7k14 − 18k15 − 8k23 − 8k24 + 7k25 − 8k34 + 7k35 + 7k45)
1

2
√

2
(k12 − k13 − k14 + k15 + 2k23 + 2k24 − 4k25 − 4k34 + 2k35 + 2k45)
√

3
4

(k13 − 2k14 + k15 + k23 − 2k24 + k25 + k34 − 2k35 + k45)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

+O(k
2
)

Substituting in S(ū0 + ū(1) + . . .) , we find

S(ū(kmn)) = S0 +
X

m<n

Bmnkmn +
1

2

X

m<n

X

p<q

K(mn)(pq)kmnkpq+

+
1

3!

X

m<n

X

p<q

X

r<s

I(mn)(pq)(rs)kmnkpqkrs + O(k
4
)
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Perturbative action and measure

The dependence on ū(2) in S(ū0 + ū(1) + 1
2 ū

(2) + 1
3! ū

(3) + . . .) appears only
starting from the forth order in kmn. This is a straightforward consequence of
the function S(u) being evaluated at a stationary point.

⇒ coefficients:
S0 = 10 cos

−1
(−1/4) , Bmn = cos

−1
(−1/4)

K(mn)(pq) =

q

3/5

4

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−9 7/2 7/2 7/2 7/2 7/2 7/2 −4 −4 −4
7/2 −9 7/2 7/2 7/2 −4 −4 7/2 7/2 −4
7/2 7/2 −9 7/2 −4 7/2 −4 7/2 −4 7/2
7/2 7/2 7/2 −9 −4 −4 7/2 −4 7/2 7/2
7/2 7/2 −4 −4 −9 7/2 7/2 7/2 7/2 −4
7/2 −4 7/2 −4 7/2 −9 7/2 7/2 −4 7/2
7/2 −4 −4 7/2 7/2 7/2 −9 −4 7/2 7/2
−4 7/2 7/2 −4 7/2 7/2 −4 −9 7/2 7/2
−4 7/2 −4 7/2 7/2 −4 7/2 7/2 −9 7/2
−4 −4 7/2 7/2 −4 7/2 7/2 7/2 7/2 −9

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

I(12)(12)(12) = −
189

80

v

u

u

u

u

t

3

5
, I(12)(12)(13) = +

347

160

v

u

u

u

u

t

3

5
, I(12)(12)(34) = −

14

5

v

u

u

u

u

t

3

5
, I(12)(23)(13) = −

141

20

v

u

u

u

u

t

3

5
,

I(12)(23)(34) = +
39

20

v

u

u

u

u

t

3

5
, I(12)(13)(14) = −

453

160

v

u

u

u

u

t

3

5
, I(12)(23)(45) = −

3

10

v

u

u

u

u

t

3

5

Substituting in S(ū0 + ū(1) + . . .) , we find

S(ū(kmn)) = S0 +
X

m<n

Bmnkmn +
1

2

X

m<n

X

p<q

K(mn)(pq)kmnkpq+

+
1

3!

X

m<n

X

p<q

X

r<s

I(mn)(pq)(rs)kmnkpqkrs + O(k
4
)
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Perturbative action and measure

Recall stationary phase formula:
∫

D

∏

i=1,. . ,d

dui f(u) eiλS(u) =
∑

n

(2π

λ

)d
2 f(ūn) eiλS(ūn)

√∣
∣det

(
∂2S

∂ui∂uj

∣
∣
ūn

)∣
∣
e±i π

4 +O
(( 1

λ

) d
2 +1)

We have that, perturbatively in kmn,
˛

˛

˛

˛

˛

det
∂2S

∂ui∂uj

˛

˛

˛

˛

˛

ū

=
512

177147

s

5

3

`

10 −
3

2
k12+

17

2
(k13+k14+k15)+11(k23+k24+k25+k34+k35+k45)

´

+O(k
2
)

and

f(ū) =
128

405

√
2

π6

“

1 −
1

10

“ 21

4
k12 +

1

4
(k13 + k14 + k15) − (k23 + k24 + k25 + k34 + k35 + k45)

””

+ O(k
2
)

Notably, the ratio appearing in stationary phase formula

f(ū)
√∣
∣det

(
∂2S

∂ui∂uj

∣
∣
ū

)∣
∣

=
12
√

2

5π6

(
3

5

) 3
4

(

1− 9

20

∑

m<n

kmn

)

+O(k2) ,

is symmetric under exchange of the ten kmn.
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Perturbative action and measure

From Wv to perturbative action and measure

Wv(l0 + δlmn) =
( ∏

m<n

(2l0)
Nf (1 +

δlmn

l0
+ 1/(2l0))

Nf

)

ABC
(
(1 +

δlmn

l0
)l0/2

)

≈ N l
10(Nf−

9
20 )

0

(

1 + (Nf−
9

20
)
∑

m<n

δlmn

l0
+O

(
δl2/l20

))

eiSl0
(δlmn) +R(l0+δlmn)

where R(l0 + δlmn) gives an exponentially suppressed contribution to the
correlation functions and Sl0(δlmn) is given by

Sl0(δlmn) =10φ0l0 +
∑

m<n

φ0δlmn +
1

2

∑

m<n

∑

p<q

K(mn)(pq)

l0
δlmnδlpq+

+
1

3!

∑

m<n

∑

p<q

∑

r<s

I(mn)(pq)(rs)

l20
δlmnδlpqδlrs +O(δl4/l30)

numerical coefficients K(mn)(pq) and I(mn)(pq)(rs) → computed explicitly
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2- and 3-area correlation functions

Amn = 8πGN

√

lmn(lmn + 1) = 8πGN l0

(

1 +
δlmn

l0
+

1

2l0
+O(1/l20)

)

Correlations of coloring at the vertex amplitude level

〈δlmn

l0
〉 = 0 +O(1/l0) , 〈δlmn

l0

δlpq

l0
〉 =

1

l0
(iK − α)−1

(mn)(pq) +O(1/l20)

To compute 〈 δlmn

l0

δlpq

l0
δlrs

l0
〉 improvement of the boundary state needed

Ψl0,φ0
(l0 + δlmn) =

(

1 + c1
∑

m<n

δlmn

l0
+O(δl2/l20)

)

×

× e− 1
2

P

m<n

P

p<q

α(mn)(pq)
l0

δlmnδlpq e−i
P

m<n φ(0)
mn(l0+δlmn)

in order to be of the same order of the contribution from the measure in Wv

〈δlmn

l0

δlpq

l0

δlrs

l0
〉 =

1

l20

∑

′

iIm′n′p′q′r′s′(iK−α)−1
m′n′mn(iK−α)−1

p′q′pq(iK−α)−1
r′s′rs+

+
1

l20
(c1+Nf−

9

20
)
( ∑

m′<n′

(iK−α)−1
m′n′mn(iK−α)−1

pq rs + perm.) +O(1/l20)
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5 Correlations in perturbative quantum Regge-calculus
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Correlations in perturbative quantum Regge-calculus

In the previous section, we made no use of results from Regge-calculus

Correlations of areas at the single-4-simplex level can be
computed in perturbative area-Regge-calculus too

〈δAuvz δArst〉0 =

∫
∏

dδA µ(δA) eiS(A0 + δA) δAuvz δArst Ψ0[δA]
∫
∏

dδA µ(δA) eiS(A0 + δA) Ψ0[δA]

The action for a single 4-simplex in length-Regge calculus is given by

S(Lrs) = 1
8πGN

∑

1<u<v<z<5Auvz(Lrs)
(
π − θuvz(Lrs)

)

For the configuration Lrs = L0, the change of variables δLrs → δAuvz is
well-defined and the action, perturbatively, is given by

S(A0 + δAuvz) =
1

8πGN

(

10(π−cos−1(1/4))A0 +
∑

(π − cos−1(1/4))δAuvz+

+
1

2

∑ K̃uvz rst

A0
δAuvzδArst +

1

3!

∑ Ĩuvz rst hkl

A2
0

δAuvzδArstδAhkl +O(δA4/A3
0)
)
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Correlations in perturbative quantum Regge-calculus

The perturbative Area-Regge action S(A0 + δA) can be compared to the
perturbative action coming from ABCBū0

(j0 + δjmn)

S(A0 + δAuvz) =
1

8πGN

(

10(π−cos−1(1/4))A0 +
∑

(π − cos−1(1/4))δAuvz+

+
1

2

∑ K̃uvz rst

A0
δAuvzδArst +

1

3!

∑ Ĩuvz rst hkl

A2
0

δAuvzδArstδAhkl +O(δA4/A3
0)
)

S2j0(2δjmn) = 10φ0 2j0+
∑

m<n

φ0 2δjmn +
1

2

∑

m<n

∑

p<q

K(mn)(pq)

(2j0)
(2δjmn)(2δjpq)+

+
1

3!

∑

m<n

∑

p<q

∑

r<s

I(mn)(pq)(rs)

(2j0)2
(2δjmn)(2δjpq)(2δjrs) +O(δj4/j30)

and they match up to third order once we identify

2j0 ≡
A0

8πGN
and 2δjmn ≡

δAuvz

8πGN
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Conclusions

We have computed 2− and 3−area correlation functions for the
Barrett-Crane vertex

The result matches with the perturbative calculation in quantum
area-Regge calculus up to third order

Do we have to expect contributions from higher-curvature Regge terms?
→ go beyond 3rd order

Does the EPR vertex pass the area-correlation test?

Compute volume-volume correlations in EPR model

General reasoning behind the calculations presented:

correlations on a semiclassical state in the full theory can be compared to
correlations on the vacuum state of the perturbative theory around a classical
solution

→ an elementary QM example
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An elementary QM example

Problem: study correlations of position

〈x(t2)x(t1)〉 =

∫

D[x(t)] x(t1)x(t2) e
iS[x(t)]/~

∫

D[x(t)] eiS[x(t)]/~

for a particle in a Coulomb potential

S[x(t)] =

∫ +∞

−∞

dt
(1

2
Mẋi(t)ẋi(t)− −α

√

xi(t)xi(t)

)

with α > 0

warning: non-gaussian path integral involved
hint 1: compute it perturbatively around a classical solution, x(t) = xcl(t)+ξ(t)

Sxcl [ξ(t)] =

∫ +∞

−∞

dt
(1

2
Mξ̇i(t)ξ̇i(t)−K(t)ijξ

i(t)ξj(t)−I(t)ijkξ
i(t)ξj(t)ξk(t)+. . .

)

hint 2: assume xcl(t) = circular orbit of radius R≫ ~

Mα

Problem*: the result of the path integral can be defined using canonical
methods WT [x1, x2] =

∑

n,l,m ψnlm(x2) e
iEnT ψ∗

nlm(x1) .

Use it to compute correlations non-perturbatively. Identify the regime which
corresponds to the perturbative calculation above.
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An elementary QM example

Correlations on the non-perturbative vacuum state

〈x(t2)x(t1)〉0 = “

∫

D[x(t)] x(t1)x(t2) e
iS[x(t)]/~

∫

D[x(t)] eiS[x(t)]/~

” =

=

∫
dx1

∫
dx2 ψ

∗
0(x2)x2WT (x1, x2)x1 ψ0(x1)

∫
dx1

∫
dx2 ψ

∗
0(x2)WT (x1, x2)ψ0(x1)

=
∑

nlm

eiEnT
∣
∣〈0|x̂|nlm〉

∣
∣
2

Regime which corresponds to the perturbative calculation→

Correlations on a semiclassical state

ψq1
(x1) = C exp

(

− 1

2
αij(x

i
1−xi

cl(t1))(x
i
1−xi

cl(t1))
)

eipcl(t1)x1 , |xcl(t1)| ≫
~

Mα

〈x(t2)x(t1)〉q =

∫
dx1

∫
dx2 ψ

∗
q2

(x2)x2WT (x1, x2)x1 ψq1
(x1)

∫
dx1

∫
dx2 ψ

∗
q2

(x2)WT (x1, x2)ψq1
(x1)

≈ 〈ξ(t2)ξ(t1)〉0
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