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Gauge–string duality

Conjecture that gauge theory has an equivalent or effective
description in terms of string–like degrees of freedom.

String model of hadron scattering [Nambu, Nielsen, Susskind 1970]

Strong–coupling expansion, flux lines [Wilson 1974]

Large N limit [’t Hooft 1974]

Continuum and lattice models of Nambu–Goto string

Critical string theory [Polyakov 1981]

AdS–CFT correspondence [Maldacena 1997]
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Renormalization in Yang–Mills theory

Search for an effective low–energy description of gauge theories
that incorporates non–perturbative effects.

perturbative renormalization not sufficient

non–perturbative effects due to flux lines, monopoles, vortices . . . ?

 confinement and hadron spectrum of QCD?

 mass generation for gauge bosons of electroweak theory? [’t Hooft 1998]
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Part I: Exact string representation of 3d SU(2) YM theory

FC, Igor Khavkine, arXiv:0706.3423 [hep-th]
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SU(2) lattice gauge theory in 3 dimensions

Partition function on a cubic lattice κ:

Z =

∫ (

∏

e⊂κ
dUe

)

exp
(

− β S({Ue})
)

Coupling:

β =
4

ag2
+

1

3

The action is a sum of face/plaquette actions:

S =
∑

f ⊂κ

Sf
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Spin foam representation

The amplitudes of the corresponding spin foam sum can be factorized into
6j–symbols. Then, the partition function appears like a sum over spin
foams on a modified lattice κ̃:

j1

j2

j3

j4

j5

j6

Every edge is shared by
three faces.
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Spin foam representation

j1

j2

j3

j4

j5

j6

Av = j1

j2

j3
j4

j5

j6
=

{

j1 j2 j3
j4 j5 j6

}

Z =
∑

F | ∂F=∅

(

∏

f ⊂κ̃

(2jf + 1)

)(

∏

v⊂κ̃

Av

)(

∏

f ⊂κ

(−1)2jf e
− 2

β
jf (jf +1)

)
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Idea for string representation

For spin networks in boundary ∂κ̃:

Thickening (or framing) of 1–skeleton of boundary.

Fill each thickened edge of spin je with Ne = 2je lines without label.

1 1/2

3/2
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Idea for string representation

For spin foams:

Thickening (or framing) of 2–skeleton of lattice κ̃.

Fill each thickened face of spin jf with Nf = 2jf disks without label.
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Glueing at vertices

Only difficult part:

Glueing of surfaces near vertices.
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Bijection between worldsheets and spin foams

We restrict the surfaces such that

thickened faces are only intersected transversely, and

the intersections are disks.

We also take equivalence classes under homeomorphisms that preserve
these conditions. Each equivalence class is called a worldsheet.

We then prove that there is a bijection between the set of such
worldsheets and the set of spin foams on κ̃.

FC, Igor Khavkine, arXiv:0706.3423 [hep-th]
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String representation of partition function

Thus, we can translate spin foam sums into sums over worldsheets, and
get an exact string representation of the lattice Yang–Mills theory:

Z =
∑

w | ∂w=∅

(

∏

f ⊂κ̃

(Nf + 1)

)(

∏

v⊂V

Av ({Nf /2})

)(

∏

f ⊂κ

(−1)Nf e
− 1

2β
Nf (Nf +2)

)

Here, Nf is the number of sheets in each cell.
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Difference to Nambu–Goto string

When a worldsheet does not run more than once through faces (i.e. when
Nf ≤ 1), the 6j–symbols in the amplitude become trivial and the exponent
in the amplitude is proportional to the area of the worldsheet. In these
cases, the weighting resembles that of the Nambu–Goto string.

In general, however, a worldsheet intersects several times with the same
cell, and then we have an interaction due to nonlinear dependences on Nf .
That is, in addition to interactions by merging and splitting, there is an
interaction of directly neighouring strings.

Florian Conrady (IGPG Penn State) Spin foams, gauge–string duality . . . Loops 07, Morelia 14 / 29



Part II: Renormalization in Yang–Mills theory
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SU(2) lattice gauge theory in the continuum limit

Assume that we start from the SU(2) lattice gauge theory

〈O〉 =

∫
(

∏

e⊂κ
dUe

)

O({Ue}) exp
(

− β S({Ue})
)

in the continuum limit. I.e. the physical length of the cutoff a is much
smaller than the characteristic length scale L of the observable O.

q q
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Lattice gauge theory at strong coupling

To first approximation, the effective theory at scale L can be described by
the same path integral with lattice cutoff a′ ≃ L and a larger coupling g ′:

〈O〉 =

∫ (

∏

e⊂κ′

dUe

)

O({Ue}) exp
(

− β′ S({Ue})
)

q q

Problem: This is not derived from the full theory, and the connection to
the UV physics is missing.
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Effective spin foam representation?

It would be preferable to start from the theory with small cutoff a, and
integrate out the high energy fluctuations.

q q

What would be the form of the effective spin foam representation?

Florian Conrady (IGPG Penn State) Spin foams, gauge–string duality . . . Loops 07, Morelia 18 / 29



First–order representation

When we expand the plaquette actions into characters, we obtain a
first–order formulation with variables Ue and jf .

Z =

∫ (

∏

e

dUe

)

∑

{jf }

(

∏

f

(2jf + 1)χjf (Uf ) e
− 2

β
jf (jf +1)

)

qbq

Integrating out Ue leads to the spin foam representation.
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BF Yang–Mills representation

Alternatively, we can use the Kirillov trace formula

χj (Uf ) =
(2j + 1)|ωf |/2

4π sin(|ωf |/2)

∫

S2

dn e
i (2j+1) n·ωf /2 , Uf = e

i ωa
f
σa/2 ,

and rewrite the path integral as

Z =

∫
(

∏

e

dUe

)

∑

{jf }

(

∏

f

2jf

)
∫

S2

(

∏

f

dnf

)

×

(

∏

f

|ωf |/2

sin(|ωf |/2)

)

exp

[

∑

f

(

i jf nf · ωf −
2

β
j2f

)

.

]

We approximated 2jf + 1 ≈ 2jf and jf (jf + 1) ≈ j2f .
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BF Yang–Mills representation

If we define vectors bf = jf nf , the path integral looks like a BF Yang–Mills
theory on the lattice:

Z =

∫ (

∏

e

dUe

)∫

R3





∏

f

d
3bf

∑

j∈Z+/2

δ(|bf | − j)





×

(

∏

f

|ωf |/2

sin(|ωf |/2)

)

exp

[

∑

f

(

i bf · ωf −
2

β
b2
f

)

]

Since spins are discrete, the lengths of the b–vectors are constrained to be
integers or half–integers.
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Monopole–like excitations

By applying the Poisson summation formula, we can get rid of the
discreteness constraint on the b–field, and get instead a Z–valued 2–form
m that is similar to monopoles of U(1):

Z =

∫ (

∏

e

dUe

)∫

R3

(

∏

f

d
3bf

)

∑

{mf }

×

(

∏

f

|ωf |/2

sin(|ωf |/2)

)

exp

[

∑

f

(

i bf · ωf −
2

β
b2
f + 4πi |bf |mf

)

]
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Block spin transformation

A possible technique for renormalization are block spin transformations.

Let us introduce block variables

bf ′ =
1

N

∑

f ⊂f ′

bf ≡ 〈b〉f ′

and
Ue′ =

∏

e⊂e′

Ue

that live on a coarser lattice κ′.

Florian Conrady (IGPG Penn State) Spin foams, gauge–string duality . . . Loops 07, Morelia 23 / 29



Block spin transformation

Then, we can rewrite the path integral as

Z =

∫
(

∏

e′
dUe′

)
∫

R3

(

∏

f ′
d

3bf ′

)

Z̃({Ue′}, {bf ′}) ,

where

Z̃({Ue′}, {bf ′})

=

∫ (

∏

e

dUe

)∫

R3

(

∏

f

d
3bf

)

∑

{mf }

δ
(

bf ′ − 〈b〉f ′
)

δ

(

Ue′ −
∏

e⊂e′

Ue

)

×

(

∏

f

|ωf |/2

sin(|ωf |/2)

)

exp

[

∑

f

(

i bf · ωf −
2

β
b2
f + 4πi |bf |mf

)

]

.
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Perturbation theory to integrate out UV variables?

Since the theory is weakly coupled in the UV regime, one could try to
integrate out the UV variables by perturbation theory.

In principle, we dispose of techniques to do perturbation theory with the
above path integral.

We can borrow the gauge–fixing method from the work by Freidel and
Louapre on 3d gravity. Freidel, Louapre, Nucl.Phys. B662, 279, 2003
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Zeroth order

If we just consider the partition function without block variables, the
zeroth order of perturbation theory gives

Z =

∫

R3

(

∏

v

d
3ϕv

)

∑

me

× exp

[

∑

e

(

−
2

β
(dϕe)

2 + 4πi |dϕe |me

)

]

.

FC, hep-th/0610236

This expression is similar to the photon–monopole representation of U(1)
lattice gauge theory. Could it be evaluated by similar methods?
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Effective spin foam representation?

After the block spin transformation, one would integrate out the block
connection Ue′ and obtain an effective spin foam representation.

An artists impression of the result:

q q
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Summary

We showed that 3d SU(2) lattice Yang–Mills theory has an exact
string representation:

◮ conceptually interesting
◮ surface picture might be useful for Monte Carlo simulations

(→ nonlocal moves)

We sketched a possible approach to renormalization in SU(2) lattice
Yang–Mills theory:

◮ incorporation of non–perturbative effects
(→ monopoles and block variables as backgrounds)

◮ computations feasible? right choice of block variables?
◮ aims: confinement in QCD, mass generation in electroweak theory
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