Universe with cosmological constant in Loop Quantum Cosmology

LOOPS '07, MORELIA 25-30 JUNE 2007

Tomasz Pawlowski

(work by Abhay Ashtekar, Eloisa Bentivegna, TP)

Purpose of the talk

- Solution Section 1.5 Isotropic flat universe with massless scalar field in LQC: Recent results for $\Lambda = 0$ (A Ashtekar, TP, P Singh gr-qc/0607039): change of dynamics due to quantum geometric effects.
 - Existence of large semiclassical (contracting) universe preceding expanding one.
 - Bounce at energy density $\rho = \rho_c \approx 0.82 \rho_{\text{Pl}}$.
- Presented work: Extension to the case of nonvanishing cosmological constant (preliminary investigation in gr-qc/0607039).
 - Questions:
 - Does the qualitative picture (bounce, preexisting branch) remain ?
 - If yes, does ρ_c still play fundamental role ?
 - What new properties the models with Λ possess ?
 - Due to distinct mathematical properties of an evolution operator +ve and -ve Λ have to be investigated separately.

LQC quantization scheme

Considered model: flat isotropic (FRW) universe Matter content: massless scalar field

Basic variables:

geometry: A_a^i , E_i^a in isotropic situation reexpressed in terms of coefficients c, p. matter: field ϕ and conjugate momentum p_{ϕ} .

- Quantization method following LQG:
 - Geometric DOF: triads p and holonomies h raised to operators.
 Matter DOF: standard (Schrodinger) quantization.
 - Kinematical Hilbert space:

 $\mathcal{H}_{\rm kin} = \mathcal{H}_g \otimes \mathcal{H}_\phi =: L^2(\bar{\mathbb{R}}_{\rm Bohr}, \mathrm{d}\mu_{\rm Bohr}) \otimes \mathrm{L}^2(\mathbb{R}, \mathrm{d}\phi)$

- Basis of \$\mathcal{H}_g\$: eigenstates of \$\hat{p}\$ for convenience labeled by \$v\$ s.t.
 \$\hat{p} |v \rangle = 2 \cdot 3^{\frac{1}{6}} \pi \gamma \sigma(v) |v|^{\frac{2}{3}} |v \rangle\$
- Quantization of Hamiltonian constraint $C_{\text{grav}} + C_{\text{matt}} = 0$: Its geometric components reexpressed in terms of holonomies (Thiemann method), next raised to operators.

Evolution operator

The quantized constraint may be written in the form similar to Klein-Gordon equation:

$$\partial_{\phi}^{2}\Psi(v,\phi) = -\Theta\Psi(v,\phi) = -\Theta_{o}\Psi(v,\phi) - \Theta_{\Lambda}\Psi(v,\phi)$$

where Θ is divided onto two parts:

- 'kinetic' part Θ_o corresponding to case $\Lambda = 0$ $\Theta_o \Psi(v, \phi) = C^+(v)\Psi(v+4, \phi) + C^o(v)\Psi(v, \phi) + C^-(v)\Psi(v-4, \phi)$,
- 'potential' term modification due to cosmological constant $\Theta_{\Lambda}\Psi(v,\phi) = \Lambda C(v)\Psi(v,\phi).$
- So Both Θ_o and Θ_Λ symmetric on the domain \mathcal{D} of finite combin. of $|v\rangle$.
- Reinterpretation of the system as free one evolving with respect to ϕ .
- Few important details:
 - No *C*-symmetry violation interactions \Rightarrow states symmetric with respect to reflection in v.
 - Domain of v naturally splits onto family of sets preserved by action of Θ and reflection in v: L_ε := {v ∈ ℝ : v = ±ε + 4n, n ∈ ℤ}. In consequence H_g = ⊕H_ε, where H_ε contains functions supported on L_ε only

Observables

- Left-hand side negatively definite, thus we take only positive part of Θ . Two sectors: positive and negative frequency. We take the positive part: $i\partial_{\phi}\Psi(v,\phi) = \sqrt{|\Theta|}\Psi(v,\phi)$
- Dirac observables:
 - scalar field momentum: $\hat{p}_{\phi}\Psi(v,\phi) = -i\hbar\partial_{\phi}\Psi(v,\phi)$
 - volume at given ϕ : $|\hat{v}|_{\phi}\Psi(v,\phi') = \exp[i\sqrt{|\Theta|}(\phi'-\phi)]|v|\Psi(v,\phi)$

$\Lambda < 0$

Work by: E Bentivegna, TP

- Classically recollapsing system. Recollapse when energy density of \$\phi\$ satisfies: \$\rho_{\phi} + \Lambda / 8\pi G = 0\$
- Θ_{Λ} : approximately $\propto v^2$ potential. Θ is positively definite, essentially self-adjoint (J Lewandowski's talk), its spectrum is discrete.
- Selection of eigenstates:
 - Eigenfunctions are solutions to difference equation $\Theta \psi_{\omega}(v) = \omega^2 \psi_{\omega}(v).$
 - All $\psi_{\omega}(v)$ grow/decay exponentially for $|v| > v_r(\omega)$. Normalizable ones exist only for discrete family ω_n of eigenvalues. Each subspace of normalizable ψ_{ω} is 1-dimensional.
 - We select basis e_n of normalized ψ_{ω} .
- Physical states: $\Psi(v,\phi) = \sum_n \tilde{\Psi}_n e_n(v) \exp[i\omega_n(\phi \phi_o)]$
- Choice: Gaussian states sharply peaked about $\omega^* = \hbar^{-1} p_{\phi}^*$ and some large v^* for some initial ϕ

$$\tilde{\Psi}_n = \exp(-(\omega_n - \omega^*)^2/2\sigma^2)$$

$\Lambda < 0$: classical trajectory

$\Lambda < 0$: wave function

$\Lambda < 0$: quantum trajectory

$\Lambda < 0 \text{ - results}$

- State remains sharply peaked throughout the evolution.
- Expectation values follow classical trajectory till (total) energy density becomes comparable to ρ_c . In particular classical recollapse at point predicted by classical theory.
- Bounce exactly at $\rho_{\phi} + \Lambda/8\pi G = \rho_c$ joins two large semiclassical sectors.
- Solution Resulting evolution is periodic (with period depending on Λ).

$\Lambda > 0$

Work by: A Ashtekar, E Bentivegna, TP

- Classically two distinct classes: ever-expanding and ever-contracting. In both classes v reaches infinity for finite $\phi = \phi_o$. Solutions parametrized by proper time end there. Can they be extended ?
 - Yes: One can introduce new variable such that domain of v is compact in it and equation of motion (wrt. ϕ) is analytic in it. In consequence EOM can be analytically extended.
 - Behavior of energy density shows that no 'new' regions of domain produced. Extension simply identifies $v = +\infty$ with $v = -\infty$.
 - Extended solutions: at infinity universe transits from expanding to contracting phase.
- On the quantum level: Θ_{Λ} is approximately $\propto -v^2$ potential (unbounded from below). Hamiltonians of such system are usually not self-adjoint. Is that the case here ? If yes, can we identify the extensions ?

$\Lambda > 0$: classical trajectory

Self-adjoint extensions: general

General mathematical theorem (see eg. Simon, Reed).

- **9** Consider operator Θ symmetric on the domain \mathcal{D} .
- Deficiency subspaces \mathcal{K}_{\pm} : spaces of solutions to equation

 $\Theta\varphi_{\pm}(v) = \pm i\varphi_{\pm}(v)$

which belong to \mathcal{H}_g . Their dimensions: k_{\pm} – deficiency indexes.

Depending on k_{\pm} following cases possible:

- $k_+ = k_- = 0$: Θ is essentially self-adjoint (unique extension).
- $k_+ \neq k_-$: no self-adjoint extensions.
- $k_+ = k_- \neq 0$: many self-adjoint extensions
- 3rd case: All the extensions can be constructed as follows:
 - Take the set of all partial isometries (operators preserving inner product with possible nontrivial kernel) $U_{\alpha} : \mathcal{K}_{+} \to \mathcal{K}_{-}$.
 - Each U_α defines a self-adjoint extension of Θ to the domain
 D_α = {ψ + a(φ₊ + U_α(φ₊)); ψ ∈ D, a ∈ C} where φ₊ is in initial space (not in kernel) of U_α.
 - \mathcal{D}_{α} are the only extensions of \mathcal{D} .

Self-adjoint extensions: $\Lambda > 0$

Method presented on previous slide can be applied to case $\Lambda > 0$ (Analysis done thus far for $\mathcal{H}_{\epsilon=0}$ only).

- The analysis:
 - Functions φ_{\pm} found numerically, as (normalizable) solutions to difference equation $\Theta \varphi_{\pm} = \pm i \varphi_{\pm}$.
 - Due to symmetry in v for $\epsilon = 0 \varphi_{\pm}$ are determined by their initial values at v = 0 only. Thus we have $k_{+} = k_{-} = 1$.
 - Choose normalized φ_{\pm} . Then all the partial isometries are of the form $U_{\alpha}\varphi_{+} = e^{i\alpha}\varphi_{-}$.
 - Since \mathcal{D} finite combinations of $|v\rangle$ the behavior at $v \to \infty$ of wave functions is for each extension identical to behavior of $a(\varphi_+ + U_\alpha \varphi_+)$.
 - In consequence basis of \mathcal{D}_{α} can be selected out of eigenfunctions converging to $a(\varphi_{+} + U_{\alpha}\varphi_{+})$ at $v \to \infty$.
- Results:
 - All extensions of Θ have discrete spectra. We choose +ve parts.
 - Then the physical states have form analogous to the one for $\Lambda < 0$. We can repeat the analysis done for that case.

$\Lambda > 0$: wave function

$\Lambda > 0$: quantum trajectory

$\Lambda > 0$: energy density

$\Lambda > 0$ – results

We can construct Gaussian states sharply peaked about ω^* and analyze exp. values of observables.

The results are the same for all extensions:

- States remain sharply peaked through the evolution.
- States follow classical trajectory until total energy density approaches critical, when gravity becomes repulsive and state bounces.
- Bounce joins deterministically contracting and expanding sectors.
- For all extensions the expanding universe after reaching infinite volume (or, equivalently $\rho = \Lambda/8\pi G$) reflects back into contracting one.
- Due to quantum bounce and reflection at infinity we again have cyclic evolution.

Summary

- For both signs of Λ the results of $\Lambda = 0$ hold. Constructed semiclassical wave packets have the following properties:
 - They follow appropriate classical trajectories till energy density becomes Planckian, in which case we observe bounce.
 - Bounce at $\rho_{\phi} + \Lambda/8\pi G$ always joins two large semiclassical sectors (epochs) of considered universe.
 - For $\Lambda < 0$ evolution operator has unique self-adjoint extension, whereas for $\Lambda > 0$ (in the sector of $\epsilon = 0$) there exists one-parameter family of extensions. Latter property is expected to be shared by eg. hyperbolic k = -1 model.
 - Due to bounce and, either classical recollapse or reflection at infinity evolution is periodic in ϕ .
- Remaining problem: Analysis done so far for $\epsilon = 0$ only. Work in progress for generic ϵ . Also many extensions, however set of them may be in principle bigger.