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Part 1
The case of vanishing
cosmological constant



Purpose: quantization of 2+1 gravity, without matter,
in euclidean signature, with non-zero cosmological
constant.

Method: Dirac program of quantization

Previous work: Karim Noui, Alejandro Perez — “Three-

Dimensional Loop Quantum Gravity: Physical Scalar
Product and Spin-foam Models”, 2004, gr-qc/0402110

Noui & Perez solved the problem with zero cosmologi-
cal constant. Following their approach, we shall see our-
selves naturally led to the study of a certain quantum

group.



e The Dirac quantization program means:

— Find an “auxiliary” Hilbert space Hgy, on which
the phase space variables of the theory act as oper-

i

ators and promote {-, -} to —z [+, ‘]

— Promote the constraints of the theory to self-adjoint
operators in H ..

— Characterize the space of the solutions of the con-
straints and define on it an inner product in order
to get a notion of physical probability. This will be
the “physical” Hilbert space Hppys

— Find a complete set of gauge invariant observables
(i.e., operators commuting with the constraints)



e For Euclidean General Relativity (expressed in connec-
tion variables), without cosmological constant, the ac-
tion is

S (A, e) :/ Tr e N F (A)]
M

and the constraints are:
— the Gauss constraint:
G; = D, E
— the vector constraints:
Va = Ezb aib
— the scalar constraint:

S =€ EYECEY,



Solving the quantized scalar constraint is difficult.

Fortunately, in 241 dimensions, the vector and scalar
constraints are equivalent to the curvature constraint:

r ;b =0
Haus is the completion of the space of cylindrical func-
tions.

Solving the Gauss constraint leads to the “auxiliary”
space Hiin C Hauz Of spin-network states.

Solving the curvature constraint leads to solutions in the
dual of Hpy;,,.



e The solutions of the curvature constraint are of the form
Ps, where s € ‘Hj;, and P is defined formally as

P=T]s (F (A)) - D[N] et Js TrIN-F(A)

rES su(2)

e The physical scalar product will thus be
(8, 8") phys = (P8, Ps') = (Ps, )

and the rightmost term is defined by a regularization (of
which it proves to be independent).



e In the process of constructing this regularization, one
uses the fact that

UlA]=14¢€F(A)+ 0 (€)

where the curvature is computed in a point and the
holonomy is considered along a curve of diameter smaller
than e around that point.

e One obtains that
<S, S/>ph,y$ — lﬂ% < H Z (2jp + 1) Xip (UP) 5 S/>
pEtriangulation jp

where the product is over all the plaquettes in the regu-
larization and the sum over all spins.



Part 11
The case of non-vanishing
cosmological constant



e¢ When a non-zero cosmological action is added, the ac-
tion becomes

S (A, e):/MTr[e/\F(A)]—I—%Tr[e/\e/\e]

e The curvature constraints now become:
) _
ab (AA) — O

where |
(Ay), = AL + §AeabE§>

and A = VA.

e In analogy to the case A = 0, we can use the formula

UlAy] =1+ F(A)) + 0 ()



e What are the modifications induced by A # 0 to the
theory?

e Consider a loop of spin 1. Diagramatically we can write:

( )

DO | —




e In the case A = 0, one deals with the SU(2) representa-
tion theory, which is encoded in the binor identity:

e For A # 0, we get a quantum binor identity:

St

where A = e2VA and D = A2+2A_2 (the quantum di-
mension).




e We consider the path-ordered expression of the holon-
omy:

1 tn_1
n(Ax) =14 (- /dt1 / dt, Ax (t1) ... Ax (t)
0

1<n

e We quantize it by replacing A° and E? with their cor-
responding operators.

e It is easy to check that

hn (A/\) |O> — hn (A) |0> — hn (A)



e Let now 1 act on some pre-existing . Formally, we want
to study

hy (Ax) > by (Ax) = hy (Ax) > by (A)

N /V
X

e The result is of the form

T

or, graphically,



e By areordering of certain products of matrices (analogue
to the normal ordering in QFT) one gets

4 XK
/ = A ~A7'D

X X



/

e The objects satisfy the three Reidemeister

X

\/) _ (24— A7'D)
K

Imoves.



-3t

S



e Let us denote by R : C* @ C* — C? ® C? the object

e In matrix form, it is:

e By the second Reidemeister move, we get that

R



e With these notations, the third Reidemeister move can
be written algebraically as

(RDN(I®R)(R'®I) =R " (ReI)(I®R),
which is the braid equation.

e We can apply now the Faddeev-Reshetikhin-Takhtadjian
construction and obtain a bi-algebra. An antipodal map
can also be constructed, thus obtaining a Hopf algebra.



