Proposal for Quantum Gravity Phenomenology without Lorentz Symmetry Violation

Yuri Bonder Instituto de Ciencias Nucleares, UNAM

LOOPS'07 29 June 2007, Morelia, Mexico

In collaboration with D. Sudarsky and A. Corichi

Contents

Motivation

The proposal

QG Phenomenology

Conclusions

Motivation

- ▶ QG theory is unknown, we are looking for QG Phenomenology.
- Through Lorentz Symmetry Violations?
 - Serious experimental bounds.
 - A preferential frame (space-time discreteness) + QFT radiative corrections ⇒ observable LSV's effects (Collins et al., 2004).
- Assuming some granular structure of space-time, by which other ways (besides LSV) can QGP manifest?

- ► The metric is NOT the only fundamental object of space-time.
- We consider a space-time with *some* granular structure whose building blocks are Lorentz Invariant.
- The only way of proceeding is by using symmetry principles.

Analogy with solid state physics

Macroscopic symmetry = microscopic symmetry

 \Rightarrow the microscopic symmetry doesn't manifest through a symmetry violation.

Macroscopic symmetry \neq microscopic symmetry

 \Rightarrow there is chance to detect the microscopic symmetry through the roughness in its surface.

Analogy with solid state physics

Cubic crystal	Space-time
Cubic cells	Granular unit of space-time
Cubic symmetry	Lorentz Symmetry
Cubic crystal's surface	$R_{\mu\nu\rho\sigma} = 0$ (g.s. is not manifest through LSV)
Spherical crystal's surface	$R_{\mu\nu\rho\sigma} \neq 0$ (g.s. sensed by matter fields)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $R_{\mu\nu}(x)$ is locally determined by $T_{\mu\nu}^{fields}(x)$. Thus, coupling $R_{\mu\nu}$ to the fields looks like self-interaction \Rightarrow we focus on Weyl.

Non-minimal coupling of Weyl tensor with matter fields

- ► We seek the coupling terms of Weyl with fermion matter fields that are minimally suppressed by *M*_{Pl}.
- The must obvious coupling terms are proportional to $W_{\mu\nu\rho\sigma}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}$ which vanish identically.
- ► Other "obvious" coupling terms are suppressed by higher orders of *M*_{Pl}.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► What can we do?

Non-minimal coupling of Weyl tensor with matter fields

Let S be the 6-dimensional space of 2-forms. The (2, 2) Weyl tensor is a self-adjoint map S → S, therefore it can be diagonalized:

$$W_{\mu\nu}{}^{\rho\sigma}\Xi^{(s)}_{\rho\sigma} = \lambda^{(s)}\Xi^{(s)}_{\mu\nu}.$$

Solution: we can construct coupling terms using $\lambda^{(s)}$ and $\Xi^{(s)}_{\mu\nu}$. In addition, S has a metric $G_{\mu\nu\rho\sigma}$ that can be used to normalize the non-null eigenbivectors according to

$$G^{\mu\nu\rho\sigma}\Xi^{(s)}_{\mu\nu}\Xi^{(s)}_{\rho\sigma}=\pm 1.$$

The problem of degeneration

- The proposal requires a unique way to choose among the normalized eigenbivectors Ξ^(s)_{µν}.
- A degeneracy in the Weyl eigenvalue equation is a problem because any linear combination of the degenerated eigenbivectors has the same eigenvalue.
- Unfortunately

$$\epsilon_{\mu\nu}{}^{\rho\sigma}W_{\rho\sigma}{}^{\alpha\beta}(\epsilon^{-1}){}^{\gamma\delta}_{\alpha\beta} = W_{\mu\nu}{}^{\gamma\delta},$$

implies that $\Xi_{\mu\nu}^{(l)}$ and $\widetilde{\Xi}_{\mu\nu}^{(l)} \equiv \epsilon_{\mu\nu}{}^{\rho\sigma}\Xi_{\rho\sigma}^{(l)}$ correspond to the same eigenvalue $\lambda^{(l)}$ (l = 1, 2, 3).

The problem of degeneration

Solution: choose those linear combinations $\chi^{(l)}_{\mu\nu} = \alpha \Xi^{(l)}_{\mu\nu} + \beta \widetilde{\Xi}^{(l)}_{\mu\nu}$ satisfying

$$\epsilon^{\mu\nu\rho\sigma}\chi^{(l)}_{\mu\nu}\chi^{(l)}_{\rho\sigma} = 0.$$

• The proposal calls for the use of the space-time volume form \Rightarrow QG may violate the *P* symmetry. (Recall that the weaker the interaction, less symmetries respects. Einstein's gravity brakes this pattern).

A natural way of writing the less-suppressed coupling term of Weyl and the fermionic matter fields (taking into the account a possible flavor dependence) is

$$\mathcal{L} = \sum_{a,l} \sqrt{\lambda^{(l)}} \left\{ \xi_a^{(l)} \left(\frac{\sqrt{\lambda^{(l)}}}{M_{
m Pl}}
ight)^r \chi_{\mu
u}^{(l)} + \widetilde{\xi}_a^{(l)} \left(\frac{\sqrt{\lambda^{(l)}}}{M_{
m Pl}}
ight)^{\widetilde{r}} \widetilde{\chi}_{\mu
u}^{(l)}
ight\} \bar{\Psi}_a \gamma^\mu \gamma^
u \Psi_a$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where...

Phenomenology

In the linearized regime...

$$g_{\mu\nu} = \eta_{\mu\nu} + \gamma_{\mu\nu}.$$

If $\partial^{\mu}\bar{\gamma}_{\mu\nu} = 0$, neglecting $\mathcal{O}(\frac{1}{c})$ and considering $T_{\mu\nu} = \rho u_{\mu}u_{\nu}$, the only non-zero components of Weyl are

$$W_{0i}^{0j} = \partial_i \partial^j \Phi_N$$

$$W_{ij}^{kl} = -4\delta^{[k}_{[i}\partial_{j]}\partial^{l]}\Phi_N$$

where Φ_N is the Newtonian potential. (Same matrix).

Non-relativistic Hamiltonian

In order to obtain the non-relativistic Hamiltonian...

1. Solve the eigenvalue equation

$$(\partial_i \partial^j \Phi_N) q_j^{(l)} = \lambda^{(l)} q_i^{(l)}$$

2. Construct

$$D_i = \sum_l \left\{ \xi^{(l)} \left(rac{\sqrt{\lambda^{(l)}}}{M_{ ext{Pl}}}
ight)^r + \widetilde{\xi}^{(l)} \left(rac{\sqrt{\lambda^{(l)}}}{M_{ ext{Pl}}}
ight)^{\widetilde{r}}
ight\} \sqrt{\lambda^{(l)}} q_i^{(l)}.$$

3. The non-relativistic Hamiltonian (using the work of Kostelecky and Lane, 1999) takes the form

$$\mathcal{H}_{NR} = \vec{\sigma} \cdot \vec{D} + \left(\vec{\sigma} \cdot \frac{\vec{P}}{M}
ight) \left(\vec{D} \cdot \frac{\vec{P}}{M}
ight) - \left(1 - \frac{1}{2} \frac{P^2}{M^2}
ight) \frac{\vec{P}}{M} \cdot \vec{\sigma} imes \vec{D}.$$

where ...

Experimental Outlook

- Due to the tidal forces, we must take care when comparing experiments carried out in different places.
- ► Polarized matter is needed ⇒ many existing experiments don't work.
- Hughes-Drever experiments also fail (here the "field" is not ether-like, is produced by the Earth).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

In order to conclude

This is a concrete proposal for possible manifestations of QG which is based on the idea that space-time may have a granular structure that respect Lorentz Symmetry.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Bounds for the free parameters can be obtained.
- The model suggests new types of experiments.