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Black Hole Entropy

Observers outside a black hole horizon see thermal radiation.

The entropy of a black hole of horizon area A is

SBH =
A

4

c3

~G

Entropy occurs also for cosmological horizons and acceleration horizons.

Problem: find a statistical description of this entropy

SBH = −Tr(ρ log ρ)
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Entanglement Entropy

Consider a QFT on M = R× Σ and a state |ψ〉 ∈ HΣ.

For each Ω ⊆ Σ, HΣ = HΩ ⊗HΩC

Get a density matrix ρΩ = TrH
ΩC
|ψ〉〈ψ|

Definition

The entanglement entropy of Ω is the von Neumann entropy of ρΩ

SE (Ω) ≡ S(ρΩ) = −TrρΩ log ρΩ

Proposal: Black hole entropy is entanglement entropy 1

SBH = SE

1Bombelli, Koul, Lee, Sorkin. Phys. Rev. D 1986.
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Entanglement Entropy in Loop Quantum Gravity

Plan: Compute SE in loop quantum gravity,

HΩ = Cyl(Ω), cylindrical functions of an su(2) connection

Cyl(Ω) ≡ {Ψ : Ψ(A) = f (U(A, γ1), . . . ,U(A, γL))}

Functions depending on finitely many holonomies.

|ψ〉 a spin network state
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The Schmidt Decomposition

Every state |ψ〉 ∈ HΩ ⊗HΩC has a Schmidt decomposition:

|ψ〉 =
∑
i∈I

√
λi

∣∣ψΩ
i

〉
⊗
∣∣∣ψΩC

i

〉
Where{∣∣ψΩ

i

〉}
is an orthonormal set in HΩ.{∣∣∣ψΩC

i

〉}
is an orthonormal set in HΩC .

λi > 0 and
∑

i∈I λi = 1.

The numbers {λi} are called the Schmidt coefficients.
The number of elements in I is the Schmidt rank.
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The Schmidt Decomposition

Suppose we know the Schmidt decomposition

|ψ〉 =
∑
i∈I

√
λi

∣∣ψΩ
i

〉
⊗
∣∣∣ψΩC

i

〉
Then we can compute the reduced density matrices in diagonal form

ρΩ =
∑
i∈I

λi

∣∣ψΩ
i

〉〈
ψΩ

i

∣∣ ρΩC =
∑
i∈I

λi

∣∣∣ψΩC

i

〉〈
ψΩC

i

∣∣∣
Note: both reduced density matrices have the same nonzero spectrum.

The entanglement entropy is symmetric:

SE (Ω) = SE (ΩC) = −
∑
i∈I

λi log λi
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Link states

The link state |γ, j , a, b〉 is a matrix element of the holonomy of the
connection A

〈A|γ, j , a, b〉 ≡ R j(U(A, γ))ab

Split γ = γ1 ◦ γ2, giving Hγ = Hγ1 ⊗Hγ2

Insert a normalized identity intertwiner:

|γ, j , a, b〉 =
1√

2j + 1

2j+1∑
c=1

|γ1, j , a, c〉 ⊗ |γ2, j , c , b〉

=
1√

2j + 1

2j+1∑
c=1

This is a Schmidt decomposition of |γ, j , a, b〉
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Entanglement of Wilson loops

Let |γ, j〉 be a Wilson loop state for γ

|γ, j〉 ≡ 1√
2j + 1

2j+1∑
a=1

|γ, j , a, a〉

Add intertwiners at the boundary

|γ, j〉 =
1

2j + 1

2j+1∑
a,b=1

|γ1, j , a, b〉︸ ︷︷ ︸
∈HΩ

⊗ |γ2, j , b, a〉︸ ︷︷ ︸
∈H

ΩC

This is the Schmidt decomposition of |γ, j〉

SE (Ω) = 2 log(2j + 1)
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Entanglement of Wilson loops

Suppose γ intersects ∂Ω at n points

|γ, j〉 =
1

√
2j + 1

n

∑
a1,...,an

|γ1, j , a1, a2〉 ⊗ · · · ⊗ |γn, j , an, a1〉

=
1

√
2j + 1

n

∑
a1,...,an

(|γ1, j , a1, a2〉 ⊗ · · · )︸ ︷︷ ︸
∈HΩ

⊗ (|γ2, j , a2, a3〉 ⊗ · · · )︸ ︷︷ ︸
∈H

ΩC

The Schmidt rank is (2j + 1)n, so

SE (Ω) = n log(2j + 1)

Entanglement entropy counts intersections
of γ with ∂Ω
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Entanglement of spin networks

Let S = (Γ, jl , in) be a spin network,

|S〉 =

(⊗
n

in

)
◦

(⊗
l

|γl , jl , al , bl〉

)

Let P be the set of “punctures”, insert identity intertwiner at each p ∈ P:

|S〉 =
1√
N

2jp+1∑
ap=1

|SΩ, ap〉 ⊗ |SΩC , ap〉

The Schmidt rank is N =
∏

(2jp + 1) and

|SΩ, ap〉 ≡

(⊗
n∈Ω

in

)
◦

(⊗
l∈Ω

|γl , jl , al , bl〉

)
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Entanglement of spin networks

The entanglement entropy is

SE (Ω) =
∑
p∈P

log(2jp + 1)

The density matrix ρΩ is a gauge-invariant “mixed spin network state”.

partial trace−→

A pure spin network cannot have endpoints; a mixed spin network can.
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Relation to Isolated Horizons

Suppose we treat the horizon as an inner boundary.

Construct a boundary space H∂Ω such that

For each |S〉 ∈ HΩ ⊗HΩC there exists |S ′〉 ∈ HΩ ⊗H∂Ω

|S〉 and |S ′〉 agree on Ω:

TrH
ΩC
|S〉〈S | = TrH∂Ω

|S ′〉〈S ′|

Then the state of the boundary is

ρ∂Ω = TrHΩ
|S ′〉〈S ′|

This state is maximally mixed on a subspace of H∂Ω with dimension

rank(ρ∂Ω) =
∏
p∈P

(2jp + 1)
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Relation to Isolated Horizons

The isolated horizon approach2 has exactly such a Hilbert space

HIH =
⊕
P

HP
Ω︸︷︷︸

Open spin networks

ending at P

⊗ HP
∂Ω︸︷︷︸

U(1) Chern-Simons

states on ∂Ω−P

Trace over HP
Ω gives ρ∂Ω maximally mixed on HP

∂Ω

dim(HP
∂Ω) ∼

∏
p∈P

(2jp + 1)

We get the same result without having
to quantize an isolated horizon.

2Ashtekar, Baez, Corichi, Krasnov. Phys. Rev. Lett. 1998
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Corrections to SBH

For an arbitrary diffeomorphism-invariant Lagrangian, the classical black
hole entropy is 3

S = 2π

∮
∂Ω

Q

Where Q is a Noether charge depending on the Lagrangian.

Open Question: Is there a quantity Q such that when quantized

̂(
2π

∮
∂Ω

Q

)
|S〉 =

∑
p∈P

log(2jp + 1) |S〉

Knowing Q tells us corrections to the Lagrangian.

3Wald. Phys. Rev. D 1993.
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Conclusion

Entanglement provides a quantum source for black hole entropy.

It can be computed as a sum over punctures.

It agrees asymptotically with results from isolated horizons.

It applies to arbitrary horizons.

Open question:

Does SE (Ω) correspond to a geometric quantity?

Can we use this to predict corrections to the gravitational action?
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