Background and Definitions	Calculation	Applications	Conclusion
00000	00000	000	0

Entanglement Entropy in Loop Quantum Gravity

William Donnelly

University of Waterloo

Loops '07, Morelia

年 利二 年

Background and Definitions C	Calculation	Applications	Conclusion
00000 0	00000	000	0

- Entanglement Entropy
- The Schmidt Decomposition

2 Calculation

3 Applications

- Isolated Horizons
- Corrections to the Area Law

4 Conclusion

Background and Definitions	Calculation	Applications	Conclusion
Black Hole Entropy			

Observers outside a black hole horizon see thermal radiation.

The entropy of a black hole of horizon area A is

$$S_{\rm BH} = \frac{A}{4} \frac{c^3}{\hbar G}$$

Entropy occurs also for cosmological horizons and acceleration horizons.

Problem: find a statistical description of this entropy

$$S_{\rm BH} = -\operatorname{Tr}(\rho \log \rho)$$

Background and Definitions ○●○○○	Calculation	Applications	Conclusion O
Entanglement Entrop	у		

Consider a QFT on $\mathcal{M} = \mathbb{R} \times \Sigma$ and a state $|\psi\rangle \in \mathcal{H}_{\Sigma}$.

- For each $\Omega \subseteq \Sigma$, $\mathcal{H}_{\Sigma} = \mathcal{H}_{\Omega} \otimes \mathcal{H}_{\Omega^{C}}$
- Get a density matrix $ho_{\Omega} = {\rm Tr}_{{\cal H}_{\Omega}{\rm C}} |\psi
 angle \langle \psi |$

Definition

The entanglement entropy of Ω is the von Neumann entropy of ρ_{Ω}

$$S_E(\Omega) \equiv S(
ho_\Omega) = -\mathrm{Tr}
ho_\Omega\log
ho_\Omega$$

Proposal: Black hole entropy is entanglement entropy ¹

$$S_{\rm BH} = S_E$$

¹Bombelli, Koul, Lee, Sorkin. Phys. Rev. D 1986.

Plan: Compute S_E in loop quantum gravity,

• $\mathcal{H}_{\Omega} = Cyl(\Omega)$, cylindrical functions of an su(2) connection

 $Cyl(\Omega) \equiv \{\Psi : \Psi(A) = f(U(A, \gamma_1), \dots, U(A, \gamma_L))\}$

Functions depending on finitely many holonomies.

• $|\psi
angle$ a spin network state

Background and Definitions ○○○●○	Calculation	Applications	Conclusion O
The Schmidt Decor	mposition		

Every state $|\psi\rangle \in \mathcal{H}_{\Omega} \otimes \mathcal{H}_{\Omega^{\mathsf{C}}}$ has a Schmidt decomposition:

$$\left|\psi\right\rangle = \sum_{i\in\mathcal{I}}\sqrt{\lambda_{i}}\left|\psi_{i}^{\Omega}\right\rangle\otimes\left|\psi_{i}^{\Omega^{\mathsf{C}}}\right\rangle$$

Where

- $\{ |\psi_i^{\Omega} \rangle \}$ is an orthonormal set in \mathcal{H}_{Ω} .
- $\left\{ \left| \psi_i^{\Omega^{\mathsf{C}}} \right\rangle \right\}$ is an orthonormal set in $\mathcal{H}_{\Omega^{\mathsf{C}}}$.

•
$$\lambda_i > 0$$
 and $\sum_{i \in \mathcal{I}} \lambda_i = 1$.

The numbers $\{\lambda_i\}$ are called the *Schmidt coefficients*. The number of elements in \mathcal{I} is the *Schmidt rank*.
 Background and Definitions
 Calculation
 Applications
 Conclusion

 OOOO
 OOO
 OOO
 OOO
 OOO

Suppose we know the Schmidt decomposition

$$\left|\psi\right\rangle = \sum_{i\in\mathcal{I}}\sqrt{\lambda_{i}}\left|\psi_{i}^{\Omega}\right\rangle\otimes\left|\psi_{i}^{\Omega^{\mathsf{C}}}\right\rangle$$

Then we can compute the reduced density matrices in diagonal form

$$\rho_{\Omega} = \sum_{i \in \mathcal{I}} \lambda_i \left| \psi_i^{\Omega} \right\rangle \!\! \left\langle \psi_i^{\Omega} \right| \qquad \rho_{\Omega^{\mathsf{C}}} = \sum_{i \in \mathcal{I}} \lambda_i \left| \psi_i^{\Omega^{\mathsf{C}}} \right\rangle \!\! \left\langle \psi_i^{\Omega^{\mathsf{C}}} \right|$$

Note: both reduced density matrices have the same nonzero spectrum.

The entanglement entropy is symmetric:

$$S_E(\Omega) = S_E(\Omega^{\mathsf{C}}) = -\sum_{i\in\mathcal{I}}\lambda_i\log\lambda_i$$

< ∃ →

Background and Definitions	Calculation ●0000	Applications	Conclusion
Link states			

The $\mathit{link state} | \gamma, j, a, b \rangle$ is a matrix element of the holonomy of the connection A

$$\langle A|\gamma, j, a, b \rangle \equiv R^{j}(U(A, \gamma))^{a}_{b}$$

 $\mathsf{Split}\ \gamma = \gamma_1 \circ \gamma_2 \text{, giving } \mathcal{H}_\gamma = \mathcal{H}_{\gamma_1} \otimes \mathcal{H}_{\gamma_2}$

Insert a normalized identity intertwiner:

1

$$|\gamma, j, \boldsymbol{a}, \boldsymbol{b}\rangle = \frac{1}{\sqrt{2j+1}} \sum_{c=1}^{2j+1} |\gamma_1, j, \boldsymbol{a}, \boldsymbol{c}\rangle \otimes |\gamma_2, j, \boldsymbol{c}, \boldsymbol{b}\rangle$$

$$\gamma \qquad b = \frac{1}{\sqrt{2j+1}} \sum_{c=1}^{2j+1} \gamma_1 \gamma_2 b$$

This is a Schmidt decomposition of $|\gamma, j, a, b\rangle$

Background and Definitions Calculation Applications Conclusion

Let $|\gamma,j\rangle$ be a Wilson loop state for γ

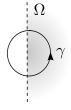
$$|\gamma,j\rangle\equiv\frac{1}{\sqrt{2j+1}}\sum_{\mathbf{a}=1}^{2j+1}|\gamma,j,\mathbf{a},\mathbf{a}\rangle$$

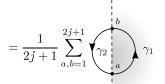
Add intertwiners at the boundary

$$|\gamma,j\rangle = rac{1}{2j+1} \sum_{a,b=1}^{2j+1} \underbrace{|\gamma_1,j,a,b
angle}_{\in\mathcal{H}_\Omega} \otimes \underbrace{|\gamma_2,j,b,a
angle}_{\in\mathcal{H}_\Omega^c}$$

This is the Schmidt decomposition of $|\gamma,j
angle$

$$S_E(\Omega) = 2\log(2j+1)$$





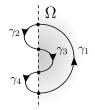
Suppose γ intersects $\partial \Omega$ at *n* points

$$\begin{aligned} |\gamma, j\rangle &= \frac{1}{\sqrt{2j+1}^n} \sum_{a_1, \dots, a_n} |\gamma_1, j, a_1, a_2\rangle \otimes \dots \otimes |\gamma_n, j, a_n, a_1\rangle \\ &= \frac{1}{\sqrt{2j+1}^n} \sum_{a_1, \dots, a_n} \underbrace{(|\gamma_1, j, a_1, a_2\rangle \otimes \dots)}_{\in \mathcal{H}_\Omega} \otimes \underbrace{(|\gamma_2, j, a_2, a_3\rangle \otimes \dots)}_{\in \mathcal{H}_\Omega c} \end{aligned}$$

The Schmidt rank is $(2j+1)^n$, so

$$S_E(\Omega) = n \log(2j+1)$$

Entanglement entropy counts intersections of γ with $\partial \Omega$



Background and Definitions	Calculation ○○○●○	Applications	Conclusion
Entanglement of spin	networks		

Let $S = (\Gamma, j_l, i_n)$ be a spin network,

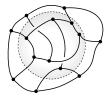
$$|S\rangle = \left(\bigotimes_{n} i_{n}\right) \circ \left(\bigotimes_{l} |\gamma_{l}, j_{l}, a_{l}, b_{l}\rangle\right)$$

Let \mathcal{P} be the set of "punctures", insert identity intertwiner at each $p \in \mathcal{P}$:

$$|S
angle = rac{1}{\sqrt{N}}\sum_{a_p=1}^{2j_p+1}|S_\Omega,a_p
angle\otimes|S_{\Omega^{\mathsf{C}}},a_p
angle$$

The Schmidt rank is $N = \prod (2j_p + 1)$ and

$$|S_{\Omega}, a_{p}\rangle \equiv \left(\bigotimes_{n\in\Omega} i_{n}\right) \circ \left(\bigotimes_{l\in\Omega} |\gamma_{l}, j_{l}, a_{l}, b_{l}\rangle\right)$$

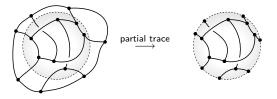


Background and Definitions	Calculation ○○○○●	Applications	Conclusion
Entanglement of spin	networks		

The entanglement entropy is

$$\mathcal{S}_{\mathcal{E}}(\Omega) = \sum_{
ho \in \mathcal{P}} \log(2j_{
ho} + 1)$$

The density matrix ρ_{Ω} is a gauge-invariant "mixed spin network state".



A pure spin network cannot have endpoints; a mixed spin network can.

Background and Definitions	Calculation	Applications ●○○	Conclusion
Relation to Isolated	Horizons		

Suppose we treat the horizon as an inner boundary.

Construct a boundary space $\mathcal{H}_{\partial\Omega}$ such that

- For each $|S\rangle \in \mathcal{H}_\Omega \otimes \mathcal{H}_{\Omega^C}$ there exists $|S'\rangle \in \mathcal{H}_\Omega \otimes \mathcal{H}_{\partial\Omega}$
- $|S\rangle$ and $|S'\rangle$ agree on Ω :

$$\operatorname{Tr}_{\mathcal{H}_{\Omega^{\mathsf{C}}}}|S
angle\!\langle S|=\operatorname{Tr}_{\mathcal{H}_{\partial\Omega}}|S'
angle\!\langle S'|$$

Then the state of the boundary is

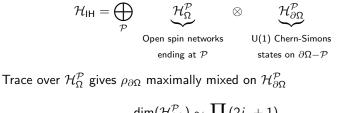
$$\rho_{\partial\Omega} = \operatorname{Tr}_{\mathcal{H}_{\Omega}} |S'\rangle\!\langle S'|$$

This state is maximally mixed on a subspace of $\mathcal{H}_{\partial\Omega}$ with dimension

$$\mathsf{rank}(
ho_{\partial\Omega}) = \prod_{p\in\mathcal{P}} (2j_p + 1)$$

Background and Definitions Calculation Conclusion Applications 000 Relation to Isolated Horizons

The isolated horizon approach² has exactly such a Hilbert space



$$\dim(\mathcal{H}^{\mathcal{P}}_{\partial\Omega}) \sim \prod_{\rho \in \mathcal{P}} (2j_{\rho} + 1)$$

We get the same result without having to quantize an isolated horizon.

²Ashtekar, Baez, Corichi, Krasnov. Phys. Rev. Lett. 1998

Background and Definitions Calculation Applications Conclusion o ○○○○○ ○● ○● ○

For an arbitrary diffeomorphism-invariant Lagrangian, the classical black hole entropy is $^{\rm 3}$

$$S=2\pi\oint_{\partial\Omega}Q$$

Where Q is a Noether charge depending on the Lagrangian.

Open Question: Is there a quantity Q such that when quantized

$$\widehat{\left(2\pi\oint_{\partial\Omega}Q
ight)}\ket{S}=\sum_{p\in\mathcal{P}}\log(2j_p+1)\ket{S}$$

Knowing *Q* tells us corrections to the Lagrangian.

³Wald. Phys. Rev. D 1993.

Background and Definitions	Calculation	Applications	Conclusion
Conclusion			

Entanglement provides a quantum source for black hole entropy.

- It can be computed as a sum over punctures.
- It agrees asymptotically with results from isolated horizons.
- It applies to arbitrary horizons.

Open question:

- Does $S_E(\Omega)$ correspond to a geometric quantity?
- Can we use this to predict corrections to the gravitational action?