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Introduction

Recent advances in loop quantum cosmology (LQC) indicate replacement of big-bang with big-bounce

for FRW cosmologies [Ashtekar, Pawlowski, Singh, KV, 2006-7]

Phenomenological effective theory incorporating holonomy features of Hamiltonian constraint operator

provides explanation for bounce: Friedmann equation modified H2 = 8πG
3 ρ (1 − ρ

ρc
), gravity repulsive

at high energies, bounce at ρ = ρc

Improved Hamiltonian constraint operator constructed (“µ” quantization vs “µ0”) - more physical

results, good semi-classical limit, ρc ≈ ρPL

What about black hole singularities?

Loop quantization of Schwarzschild interior Kantowski-Sachs model (“µ0” quant) [Ashtekar, Bojowald,

2006]

Analysis of phenomenological effective dynamics performed [Modesto, 2006]

This talk: analyze consequences of the improved quantization successful in LQC applied to

Schwarzschild interior
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Schwarzschild Interior

Inside Schwarzschild horizon, switching temporal and radial coordinates, metric become spatially

homogeneous Kantowski-Sachs type

ds2 = −N2(t) dt2 + gxx(t) dx2 + gΩΩ(t) dΩ2

Two triad components pb, pc two connection components b, c

ds2 = −N2(t) dt2 +
p2

b(t)

|pc(t)|
dx2 + |pc(t)| dΩ2

Dynamics determined from Hamiltonian

H =
−N

2Gγ2

[

2 b c
√

pc + (b2 + γ2)
pb√
pc

]

Schwarzschild solution

N2(t) =
(2m

t
− 1

)

−1

pb(t) = p
(0)
b t

√

2m

t
− 1 pc(t) = t2

ds2 = −
(2m

t
− 1

)

−1

dt2 +
(2m

t
− 1

)

dx2 + t2dΩ2
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Schwarzschild Interior

pb(t) = p
(0)
b t

√

2m

t
− 1 pc(t) = t2

ds2 = −
(2m

t
− 1

)

−1

dt2 +
(2m

t
− 1

)

dx2 + t2dΩ2

Singularity at t = 0: pc = 0 and pb = 0

Horizon at t = 2m: pc = 4m2 and pb = 0

Interpretation:

pc component directly determines two-sphere radius

Radial geodesics
(

dt

dτ

)2

=
(pc

p2
b

E2 + 2L
) 1

N2

E corresponds classically to energy at infinity, L = 0, 1 for massless/massive test particle, τ is proper

affine parameter/proper time for massless/massive particle

To interpret effective dynamics, calculate pc(τ)
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Quantum Dynamics

Want to incorporate holonomy effects of Hamiltonian constraint operator into effective semi-classical

description

Holonomies roughly exponentials of connection components b, c → eibδb etc

Holonomy length parameters δb, δc measure the magnitude of quantum corrections - classical limit for

δb, δc → 0

Original quantization of Schwarzschild interior assumed δb, δc were constants analogous to µ0

parameter of LQC (δb = δc = ρ from talk of Pullin)

More recent work of LQC has length parameters dependant on triad components - better semi-classical

limit, more physical results

Holonomy effects incorporated in form of effective Hamiltonian with connection components replaced

by holonomy equivalents

Hcl =
−N

2Gγ2

[

2 b c
√

pc + (b2 + γ2)
pb√
pc

]

Heff = − N

2Gγ2

[

2
sin bδb

δb

sin δcc

δc

√
pc +

( sin2bδb

δ2
b

+ γ2
) pb√

pc

]
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Effective Dynamics
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Effective Hamiltonian

First step in analyzing quantum corrections - not rigorous derivation of effects, possible additional

corrections

Has provided excellent accounting of big-bounce results of LQC for massless scalar field with Λ

Interested in phenomenological effects of these corrections, not necessarily final word

Effective Hamiltonian for δb, δc = const results: talks by Pullin and Modesto

Singularity avoided, bounce in two-sphere radius: pc ≥ γδm

Solution matches classical before bounce, connects to

another classical solution with different mass in general (can be made symmetric)
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Improved Effective Dynamics

In LQC, more physical results when µ = ∆
p1/2

Constrain by shrinking loop of Hamiltonian constraint to have minimum LQG area - ∆ = Amin

Schwarzschild interior anisotropic, so more possible ways to implement the δc, δb parameters

Two most interesting schemes:

A) More geometric approach - constrain classical area of holonomy loops to have minimum area

End result

δb =

√
∆√
pc

δc =
√

∆

√
pc

pb

B) Alternative approach - loop area dependent on transversal holonomy

δb =

√
∆√
pb

δc =

√
∆√
pc

A favored by stability analysis of quantum difference equation [Bojowald, Cartin, Khanna, 2007]

B applied to Bianchi I model [Chiou, 2006]

B gives similar results to the constant δ case
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Improved Effective Dynamics
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Focus on scheme A:

δb =

√
∆√
pc

δc =
√

∆

√
pc

pb

Heff = − N

2Gγ2

[

2
sin bδb

δb

sin δcc

δc

√
pc +

( sin2bδb

δ2
b

+ γ2
) pb√

pc

]

Equations of motion e.g. ṗc ∝ ∂Heff/∂c etc.

Too complicated for analytical solution, numerical integration of pc(T ):

Again, no singularity, asymptotes to a Nariai type solution

Nariai solution of classical GR: constant pc with cosmological

constant Λ

ds2 = −dt2 + A cosh2(
√

Λt)dx2 + 1/ΛdΩ2
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Improved Effective Dynamics
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Radial geodesic:

Decrease in two-sphere radius as classical singularity

approached

Damped oscillations in radius

particle settles in at finite radius dependant

only on ∆

For ∆ = Amin, pc ≈ .2l2p

Final radius Planckian, independent of black-hole mass

Interpret as repulsive gravity, similar to bouncing results of LQC

Caveat - effective Hamiltonian also predicts deviations from classical behavior near classical horizon.

Not clear if problem with quantization scheme, or Kantowski-Sachs approximation not to be trusted

there, or boundary matching more complicated
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Conclusion/Outlook

Each phenomenological study indicates singularity resolution of Schwarzschild black hole analogously

to LQC results

Detailed consequences dependant on quantization scheme

Two-interesting outcomes - wormhole like solution matching connecting two black holes, asymptote

into Nariai type space-time - in-falling particle trapped at finite Planckian radius

Results are indicative and arise from simple effective theory - requires more justification by analyzing

semi-classical states in quantum theory

Future - apply results to inhomogeneous spherically symmetric models for instance work of Campiglia,

Gambini, Pullin. Can investigate true collapse models.
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