

Spin foam vertex and loop gravity

J Engle, R Pereira and C Rovelli

Centre de Physique Théorique

CNRS Case 907, Université de la Méditerranée, F-13288 Marseille, EU

- \hookrightarrow the BC model and its problems
- \hookrightarrow SO(4) Plebanski action

- \hookrightarrow the BC model and its problems
- \hookrightarrow SO(4) Plebanski action
- Classical setup
 - \hookrightarrow Regge calculus
 - $\hookrightarrow \text{lattice GR}$

- \hookrightarrow the BC model and its problems
- \hookrightarrow SO(4) Plebanski action
- Classical setup
 - \hookrightarrow Regge calculus
 - \hookrightarrow lattice GR
- Quantization
 - $\hookrightarrow \text{constraints}$
 - \hookrightarrow projection onto LQG states
 - \hookrightarrow vertex: a proposal

- \hookrightarrow the BC model and its problems
- \hookrightarrow SO(4) Plebanski action
- Classical setup
 - \hookrightarrow Regge calculus
 - $\hookrightarrow \text{lattice GR}$
- Quantization
 - $\hookrightarrow \text{constraints}$
 - \hookrightarrow projection onto LQG states
 - \hookrightarrow vertex: a proposal

Conclusion

[Barrett,Crane '97]

State of art and the BC model

[Barrett,Crane '97]

Quantization of the classical tetrahedron imposing a set of constraints à là Dirac: [Baez,Barrett '99]

 $\hat{C}|\psi\rangle = 0$

State of art and the BC model

[Barrett,Crane '97]

Quantization of the classical tetrahedron imposing a set of constraints à là Dirac: [Baez,Barrett '99]

$$\hat{C}|\psi\rangle = 0$$

unique solution of the constraints

[Reisenberger '99]

State of art and the BC model

[Barrett,Crane '97]

Quantization of the classical tetrahedron imposing a set of constraints à là Dirac: [Baez,Barrett '99]

$$\hat{C}|\psi\rangle = 0$$

Boundary states do not agree with LQG states and problems in the calculation of non diagonal components of the propagator. [Alesci,Rovelli to appear] and talk by Carlo Rovelli.

$$S_P[B,\omega] = \int B^{IJ} \wedge F_{IJ}(\omega) + \phi_{IJKL} B^{IJ} \wedge B^{KL}$$

$$S_P[B,\omega] = \int B^{IJ} \wedge F_{IJ}(\omega) + \phi_{IJKL} B^{IJ} \wedge B^{KL}$$

 \hookrightarrow constrained BF theory

$$S_P[B,\omega] = \int B^{IJ} \wedge F_{IJ}(\omega) + \phi_{IJKL} B^{IJ} \wedge B^{KL}$$

 \hookrightarrow constrained BF theory

Constraints:

$$\epsilon_{IJKL} B^{IJ}_{\mu\nu} B^{KL}_{\alpha\beta} = V \epsilon_{\mu\nu\alpha\beta}$$

$$S_P[B,\omega] = \int B^{IJ} \wedge F_{IJ}(\omega) + \phi_{IJKL} B^{IJ} \wedge B^{KL}$$

 \hookrightarrow constrained BF theory

Constraints:

$$\epsilon_{IJKL} B^{IJ}_{\mu\nu} B^{KL}_{\alpha\beta} = V \epsilon_{\mu\nu\alpha\beta}$$

Two sectors of solutions: [Reisenberger '98;De Pietri,Freidel '99;Perez '02]

$$B = (\pm) e \wedge e$$
$$B = (\pm) \star (e \wedge e)$$

 \hookrightarrow Simplicial discretization of a 4-dimensional space time: 4-simplices (v), tetrahedra (t) and triangles (f)

 \hookrightarrow Simplicial discretization of a 4-dimensional space time: 4-simplices (v), tetrahedra (t) and triangles (f)

 \hookrightarrow Curvature is concentrated on triangles

 \hookrightarrow Simplicial discretization of a 4-dimensional space time: 4-simplices (v), tetrahedra (t) and triangles (f) \hookrightarrow Curvature is concentrated on triangles In 2d:

 \hookrightarrow Simplicial discretization of a 4-dimensional space time: 4-simplices (v), tetrahedra (t) and triangles (f)

 \hookrightarrow Curvature is concentrated on triangles

In our case:

To each t: $e(t) = e(t)_a^I v_I dx^a$

To each t: $e(t) = e(t)_a^I v_I dx^a$

To each pair (v, t): $e(v)_a^I = (V_{vt})^I {}_J e(t)_a^J \qquad (V_{tv} := V_{vt}^{-1})$

To each t: $e(t) = e(t)_a^I v_I dx^a$

To each pair (v, t): $e(v)_a^I = (V_{vt})^I {}_J e(t)_a^J \qquad (V_{tv} := V_{vt}^{-1})$

To each $f = t \cap t'$: $e(t') = U_{t't} e(t)$

and $:B(t)_{ab}^{IJ} = \epsilon^{IJ}{}_{KL}e(t)_a^K e(t)_b^L \to B_f(t) = \int_f B(t) \quad (B(t') = U_{t't}B(t)U_{tt'})$

To each t: $e(t) = e(t)_a^I v_I dx^a$

To each pair (v, t): $e(v)_a^I = (V_{vt})^I {}_J e(t)_a^J \qquad (V_{tv} := V_{vt}^{-1})$

To each $f = t \cap t'$: $e(t') = U_{t't} e(t)$

and $:B(t)_{ab}^{IJ} = \epsilon^{IJ}{}_{KL}e(t)_a^K e(t)_b^L \to B_f(t) = \int_f B(t) \quad (B(t') = U_{t't}B(t)U_{tt'})$

Flatness implies: $U_{t_1t_n} = V_{t_1v_{12}}...V_{v_{(n-1)n}t_n}$

To each t: $e(t) = e(t)_a^I v_I dx^a$

To each pair (v, t): $e(v)_a^I = (V_{vt})^I {}_J e(t)_a^J \qquad (V_{tv} := V_{vt}^{-1})$

To each $f = t \cap t'$: $e(t') = U_{t't} e(t)$

and $:B(t)_{ab}^{IJ} = \epsilon^{IJ}{}_{KL}e(t)_a^K e(t)_b^L \to B_f(t) = \int_f B(t) \quad (B(t') = U_{t't}B(t)U_{tt'})$

Flatness implies: $U_{t_1t_n} = V_{t_1v_{12}}...V_{v_{(n-1)n}t_n}$

To each t: $e(t) = e(t)_a^I v_I dx^a$

To each pair (v, t): $e(v)_a^I = (V_{vt})^I {}_J e(t)_a^J \qquad (V_{tv} := V_{vt}^{-1})$

To each $f = t \cap t'$: $e(t') = U_{t't} e(t)$

and $:B(t)_{ab}^{IJ} = \epsilon^{IJ}{}_{KL}e(t)_a^K e(t)_b^L \to B_f(t) = \int_f B(t) \quad (B(t') = U_{t't}B(t)U_{tt'})$

Flatness implies: $U_{t_1t_n} = V_{t_1v_{12}}...V_{v_{(n-1)n}t_n}$

Curvature is given by the holonomy around a link: $U_f(t_1) := V_{t_1v_{12}}...V_{v_{n1}t_1}$

-p.6

Discrete constraints

Closure: $\sum_{f \in t} B(t)_f = 0$

Discrete constraints

Closure: $\sum_{f \in t} B(t)_f = 0$

Simplicity constraints:

$$C_{ff} := {}^*B_f \cdot B_f = 0$$
$$C_{ff'} := {}^*B_f \cdot B_{f'} = 0$$

Discrete constraints

Closure: $\sum_{f \in t} B(t)_f = 0$

Simplicity constraints:

$$C_{ff} := {}^*B_f \cdot B_f = 0$$
$$C_{ff'} := {}^*B_f \cdot B_{f'} = 0$$

 \hookrightarrow the solutions to these constraints correspond to the two sectors of Plebanski theory.

Boundary variables

tetrahedra (t) \longrightarrow nodes (n)

faces $(f) \longrightarrow \text{links}(l)$

Boundary variables

tetrahedra (t) \longrightarrow nodes (n)

faces $(f) \longrightarrow \text{links}(l)$

Boundary variables:

$$\begin{array}{cccc} B_f & \longrightarrow & B_l \\ \\ U_{tt'} & \longrightarrow & U_l \end{array}$$

Boundary variables

tetrahedra (t) \longrightarrow nodes (n)

faces $(f) \longrightarrow \text{links} (l)$

Boundary variables:

 \hookrightarrow phase space of a SO(4) Yang-Mills lattice gauge theory (!!)

Dynamics I: bulk

$$S_{bulk} = \sum_{f} Tr[B_f(t)U_f(t)]$$

Dynamics I: bulk

$$S_{bulk} = \sum_{f} Tr[B_f(t)U_f(t)]$$

\hookrightarrow approximates GR in the continuum limit

Dynamics I: bulk

$$S_{bulk} = \sum_{f} Tr[B_f(t)U_f(t)]$$

\hookrightarrow approximates GR in the continuum limit

 \hookrightarrow clear relation with the Regge action (!!):

$$S_{Regge} = \sum_{f} A_f \sin \epsilon_f$$

Dynamics II: boundary

Dynamics II: boundary

Dynamics II: boundary

$$S_{\partial\Delta} = \sum_{f \in \partial\Delta} Tr[B_f(t)U_{tt'}]$$

Summary of the classical theory

 $S_{LGR} = \sum Tr[B_f(t)U_f(t)] + \sum Tr[B_f(t)U_{tt'}]$ $f \in int\Delta$ $f \in \partial \Delta$
Summary of the classical theory

$$S_{LGR} = \sum_{f \in int\Delta} Tr[B_f(t)U_f(t)] + \sum_{f \in \partial\Delta} Tr[B_f(t)U_{tt'}]$$

$$\sum_{f \in t} B_f(t) = 0,$$

$$C_{ff} = {}^*B_f(t) \cdot B_f(t) = 0,$$

$$C_{ff'} = {}^*B_f(t) \cdot B_{f'}(t) = 0.$$

Summary of the classical theory

$$S_{LGR} = \sum_{f \in int\Delta} Tr[B_f(t)U_f(t)] + \sum_{f \in \partial\Delta} Tr[B_f(t)U_{tt'}]$$

$$\sum_{f \in t} B_f(t) = 0,$$

$$C_{ff} = {}^*B_f(t) \cdot B_f(t) = 0,$$

$$C_{ff'} = {}^*B_f(t) \cdot B_{f'}(t) = 0.$$

Boundary variables : $\{(B_l, U_l)\}$

Introduction and state of art

- \hookrightarrow the BC model and its problems
- \hookrightarrow SO(4) Plebanski action
- Classical setup
 - \hookrightarrow Regge calculus
 - $\hookrightarrow \text{lattice GR}$

Introduction and state of art

- \hookrightarrow the BC model and its problems
- \hookrightarrow SO(4) Plebanski action
- Classical setup
 - \hookrightarrow Regge calculus
 - \hookrightarrow lattice GR
- Quantization
 - $\hookrightarrow \text{constraints}$
 - \hookrightarrow projection onto LQG states
 - \hookrightarrow vertex: a proposal

· p. 12

 $\psi_{j_{l}^{+}j_{l}^{-}i_{n}^{+}i_{n}^{-}}(g_{l}^{+},g_{l}^{-}) = \left(\bigotimes_{l} D^{(j_{l}^{+})}(g_{l}^{+}) \cdot \bigotimes_{n} i_{n}^{+}\right) \left(\bigotimes_{l} D^{(j_{l}^{-})}(g_{l}^{-}) \cdot \bigotimes_{n} i_{n}^{-}\right)$

$$\psi_{j_{l}^{+}j_{l}^{-}i_{n}^{+}i_{n}^{-}}(g_{l}^{+},g_{l}^{-}) \!=\! \left(\bigotimes_{l} D^{(j_{l}^{+})}(g_{l}^{+}) \!\cdot\! \bigotimes_{n} i_{n}^{+}\right) \left(\bigotimes_{l} D^{(j_{l}^{-})}(g_{l}^{-}) \!\cdot\! \bigotimes_{n} i_{n}^{-}\right)$$

For C_{ff} , no problem: $j^+ = j^-$

$$\psi_{j_{l}^{+}j_{l}^{-}i_{n}^{+}i_{n}^{-}}(g_{l}^{+},g_{l}^{-}) = \left(\bigotimes_{l} D^{(j_{l}^{+})}(g_{l}^{+}) \cdot \bigotimes_{n} i_{n}^{+}\right) \left(\bigotimes_{l} D^{(j_{l}^{-})}(g_{l}^{-}) \cdot \bigotimes_{n} i_{n}^{-}\right)$$

For C_{ff} , no problem: $j^+ = j^-$

The off diagonal simplicity constraints do not form a closed algebra under poisson brackets: $[C_{12}, C_{13}] \sim \mathbb{U}$ [Baez,Barrett '99]

$$\psi_{j_{l}^{+}j_{l}^{-}i_{n}^{+}i_{n}^{-}}(g_{l}^{+},g_{l}^{-}) = \left(\bigotimes_{l} D^{(j_{l}^{+})}(g_{l}^{+}) \cdot \bigotimes_{n} i_{n}^{+}\right) \left(\bigotimes_{l} D^{(j_{l}^{-})}(g_{l}^{-}) \cdot \bigotimes_{n} i_{n}^{-}\right)$$

For C_{ff} , no problem: $j^+ = j^-$

The off diagonal simplicity constraints do not form a closed algebra under poisson brackets: $[C_{12}, C_{13}] \sim \mathbb{U}$ [Baez,Barrett '99]

Solution: impose them weakly.

$$|\chi\rangle, |\psi\rangle \in \mathcal{H}_{phys} \Leftrightarrow \langle \chi | C_{ff'} | \psi \rangle = 0$$

$$\psi_{j_{l}^{+}j_{l}^{-}i_{n}^{+}i_{n}^{-}}(g_{l}^{+},g_{l}^{-}) = \left(\bigotimes_{l} D^{(j_{l}^{+})}(g_{l}^{+}) \cdot \bigotimes_{n} i_{n}^{+}\right) \left(\bigotimes_{l} D^{(j_{l}^{-})}(g_{l}^{-}) \cdot \bigotimes_{n} i_{n}^{-}\right)$$

For C_{ff} , no problem: $j^+ = j^-$

The off diagonal simplicity constraints do not form a closed algebra under poisson brackets: $[C_{12}, C_{13}] \sim \mathbb{U}$ [Baez,Barrett '99]

Solution: impose them weakly.

$$|\chi\rangle, |\psi\rangle \in \mathcal{H}_{phys} \Leftrightarrow \langle \chi | C_{ff'} | \psi \rangle = 0$$

Motivation: Gupta-Bleur, doubled system.

A state $|\psi\rangle$ in $\mathcal{H}_e := \text{Inv}\left(\mathcal{H}_{(j_1,j_1)} \otimes ... \otimes \mathcal{H}_{(j_4,j_4)}\right)$ can be written (in a given pairing) as:

$$|\psi\rangle = \sum c_{i^+i^-} |i^+i^-\rangle$$

A state $|\psi\rangle$ in $\mathcal{H}_e := \text{Inv}\left(\mathcal{H}_{(j_1,j_1)} \otimes ... \otimes \mathcal{H}_{(j_4,j_4)}\right)$ can be written (in a given pairing) as:

$$|\psi\rangle = \sum c_{i^+i^-} |i^+i^-\rangle$$

A solution to the constraints imposed weakly is given by symmetric states: $c_{i^+i^-} = c_{i^-i^+}$

- p. 14

A state $|\psi\rangle$ in $\mathcal{H}_e := \text{Inv}\left(\mathcal{H}_{(j_1,j_1)} \otimes ... \otimes \mathcal{H}_{(j_4,j_4)}\right)$ can be written (in a given pairing) as:

$$|\psi\rangle = \sum c_{i^+i^-} |i^+i^-\rangle$$

A solution to the constraints imposed weakly is given by symmetric states: $c_{i^+i^-} = c_{i^-i^+}$

Question: Is there a subspace of \mathcal{H}_e that matches the space of a SO(3) intertwiner (as in LQG) ?

A state $|\psi\rangle$ in $\mathcal{H}_e := \text{Inv}\left(\mathcal{H}_{(j_1,j_1)} \otimes ... \otimes \mathcal{H}_{(j_4,j_4)}\right)$ can be written (in a given pairing) as:

$$|\psi\rangle = \sum c_{i^+i^-} |i^+i^-\rangle$$

A solution to the constraints imposed weakly is given by symmetric states: $c_{i^+i^-} = c_{i^-i^+}$

Question: Is there a subspace of \mathcal{H}_e that matches the space of a SO(3) intertwiner (as in LQG) ?

Answer: Yes (!!). It is given by a suitable projection $\mathcal{H}_e \longrightarrow \operatorname{Inv} (\mathcal{H}_{2j_1} \otimes ... \otimes \mathcal{H}_{2j_4})$

Spinor notation for $I \in \mathcal{H}_e$:

 $I^{(A_1\ldots A_{2j_1})(A_1'\ldots A_{2j_1}')} \cdots (D_1\ldots D_{2j_4})(D_1'\ldots D_{2j_4}')} =: I^{\mathcal{A}\mathcal{A}'} \cdots \mathcal{D}\mathcal{D}' = i_+^{\mathcal{A}} \cdots \mathcal{D} \ i_-^{\mathcal{A}'} \cdots \mathcal{D}'$

Spinor notation for $I \in \mathcal{H}_e$:

$$I^{(A_1\ldots A_{2j_1})(A'_1\ldots A'_{2j_1})} \cdots (D_1\ldots D_{2j_4})(D'_1\ldots D'_{2j_4})} =: I^{\mathcal{A}\mathcal{A}'} \cdots \mathcal{D}\mathcal{D}' = i_+^{\mathcal{A}} \cdots \mathcal{D} \ i_-^{\mathcal{A}'} \cdots \mathcal{D}'$$

Projection by symmetrization:

$$\pi : I^{\mathcal{A}\mathcal{A}'\dots\mathcal{D}\mathcal{D}'} \longmapsto I^{(\mathcal{A}\mathcal{A}')\dots(\mathcal{D}\mathcal{D}')} =: i^{a \dots d}$$

Spinor notation for $I \in \mathcal{H}_e$:

$$I^{(A_1\ldots A_{2j_1})(A'_1\ldots A'_{2j_1})} \cdots (D_1\ldots D_{2j_4})(D'_1\ldots D'_{2j_4})} =: I^{\mathcal{A}\mathcal{A}'} \cdots \mathcal{D}\mathcal{D}' = i_+^{\mathcal{A}} \cdots \mathcal{D} \ i_-^{\mathcal{A}'} \cdots \mathcal{D}'$$

Projection by symmetrization:

$$\pi : I^{\mathcal{A}\mathcal{A}'\dots\mathcal{D}\mathcal{D}'} \longmapsto I^{(\mathcal{A}\mathcal{A}')\dots(\mathcal{D}\mathcal{D}')} =: i^{a \dots d}$$

The projection chooses the highest SU(2) irreducible in the

decomposition: $j \otimes j = 0 \oplus ... \oplus 2j$

Projection

Spinor notation for $I \in \mathcal{H}_e$:

$$I^{(A_1\ldots A_{2j_1})(A'_1\ldots A'_{2j_1})} \cdots (D_1\ldots D_{2j_4})(D'_1\ldots D'_{2j_4})} =: I^{\mathcal{A}\mathcal{A}'} \cdots \mathcal{D}\mathcal{D}' = i_+^{\mathcal{A}} \cdots \mathcal{D} \ i_-^{\mathcal{A}'} \cdots \mathcal{D}'$$

Projection by symmetrization:

$$\pi : I^{\mathcal{A}\mathcal{A}'\dots\mathcal{D}\mathcal{D}'} \longmapsto I^{(\mathcal{A}\mathcal{A}')\dots(\mathcal{D}\mathcal{D}')} =: i^{a \dots d}$$

The projection chooses the highest SU(2) irreducible in the

decomposition: $j \otimes j = 0 \oplus ... \oplus 2j$

The projection of the complete hilbert space of SO(4) s-nets can be defined and it matches the hilbert space of SO(3) s-nets (!)

Embedding

To every projection there is an embedding. The image of a SO(3) intertwiner *i*, f(i) can be expanded in the SO(4) basis:

$$f(i) = \sum_{i_{+}, i_{-}} f^{i}_{i+i_{-}} |i_{+}, i_{-}\rangle$$

Embedding

To every projection there is an embedding. The image of a SO(3) intertwiner *i*, f(i) can be expanded in the SO(4) basis:

$$f(i) = \sum_{i_+, i_-} f^i_{i+i_-} |i_+, i_-\rangle$$

Its components can be seen as the evaluation of a 15j symbol:

-p.16

Embedding

To every projection there is an embedding. The image of a SO(3) intertwiner *i*, f(i) can be expanded in the SO(4) basis:

$$f(i) = \sum_{i_{+},i_{-}} f^{i}_{i+i_{-}} |i_{+},i_{-}\rangle$$

The image of the embedding $f [Inv (\mathcal{H}_{2j_1} \otimes ... \otimes \mathcal{H}_{2j_4})] =: \mathcal{K}_e$ can be interpreted as a subspace of \mathcal{H}_e obtained by imposing a geometrical constraint. Attention: It depends on a different choice of quantization: $B_f \to \star J_f$.

Dynamics I: setup

Consider one 4-simplex. The amplitude is given by :

$$A(U_{ab}) = \int \prod_{a} dV_a \,\delta(V_a U_{ab} V_b^{-1})$$

Dynamics I: setup

Consider one 4-simplex. The amplitude is given by :

$$A(U_{ab}) = \int \prod_{a} dV_a \,\delta(V_a U_{ab} V_b^{-1})$$

The quantum amplitude for a given boundary state $|\psi\rangle$ is given by

[Oeckl'03]:

$$A(\psi) := \int dU_{ab} A(U_{ab}) \psi(U_{ab})$$

Dynamics II: vertex

For our model the vertex amplitude is given by:

$$A(\{j_{ab}\},\{i^a\}) := A(\psi_{\{j_{ab}\},\{i^a\}}) = \sum_{\substack{i^a_+ i^a_-}} 15j\left(\left(\frac{j_{ab}}{2},\frac{j_{ab}}{2}\right);(i^a_+,i^a_-)\right) f^{i^a_+}_{i^a_+ i^a_-}$$

Dynamics II: vertex

For our model the vertex amplitude is given by:

$$A(\{j_{ab}\},\{i^a\}) := A(\psi_{\{j_{ab}\},\{i^a\}}) = \sum_{\substack{i^a_+ i^a_-}} 15j\left(\left(\frac{j_{ab}}{2},\frac{j_{ab}}{2}\right);(i^a_+,i^a_-)\right) f^{i^a_+}_{i^a_+i^a_-}$$

The final amplitude is obtained by gluing 4-simplices:

$$Z = \sum_{j_f, i_e} \prod_f (\dim \frac{j_f}{2})^2 \prod_v A(j_f, i_e)$$

Lattice (covariant) formulation of GR

- Lattice (covariant) formulation of GR
- Clear analysis of the constraints

- Lattice (covariant) formulation of GR
- Clear analysis of the constraints
- Weak constraining given by the projection → agreement with LQG states

- Lattice (covariant) formulation of GR
- Clear analysis of the constraints
- Weak constraining given by the projection
 → agreement with LQG states
- Connection with other approaches: [Livine,Speziale '07;Alexandrov '07]

- Lattice (covariant) formulation of GR
- Clear analysis of the constraints
- Weak constraining given by the projection → agreement with LQG states
- Connection with other approaches: [Livine,Speziale '07;Alexandrov '07]
- Geometrical interpretation forces quantization with the dual SO(4) generators

- Lattice (covariant) formulation of GR
- Clear analysis of the constraints
- Weak constraining given by the projection
 → agreement with LQG states
- Connection with other approaches: [Livine,Speziale '07;Alexandrov '07]
- Geometrical interpretation forces quantization with the dual SO(4) generators
- Next step: semiclassical analysis and propagator.

 $\mathcal{C}^{\infty}(\mathcal{T}^*\mathbb{R} \times \mathcal{T}^*\mathbb{R}) \ni f((q_1, p_1), (q_2, p_2)) \text{ and } \{q_a, p_b\} = \delta_{ab}$

$\mathcal{C}^{\infty}(\mathcal{T}^*\mathbb{R} \times \mathcal{T}^*\mathbb{R}) \ni f((q_1, p_1), (q_2, p_2)) \text{ and } \{q_a, p_b\} = \delta_{ab}$

$$q_1 - q_2 = 0$$

 $p_1 - p_2 = 0$

 $\mathcal{C}^{\infty}(\mathcal{T}^*\mathbb{R} \times \mathcal{T}^*\mathbb{R}) \ni f((q_1, p_1), (q_2, p_2)) \text{ and } \{q_a, p_b\} = \delta_{ab}$

 $q_1 - q_2 = 0$ $p_1 - p_2 = 0$

Redefining: $q_{\pm} = (q_1 \pm q_2)/2$ and $p_{\pm} = (p_1 \pm p_2)/2 \Rightarrow q_- = p_- = 0$ and $\{q_-, p_-\} = 1$

 $\mathcal{C}^{\infty}(\mathcal{T}^*\mathbb{R} \times \mathcal{T}^*\mathbb{R}) \ni f((q_1, p_1), (q_2, p_2)) \text{ and } \{q_a, p_b\} = \delta_{ab}$

 $q_1 - q_2 = 0$ $p_1 - p_2 = 0$

Redefining: $q_{\pm} = (q_1 \pm q_2)/2$ and $p_{\pm} = (p_1 \pm p_2)/2 \Rightarrow q_- = p_- = 0$ and $\{q_-, p_-\} = 1$

Yet, $z = (p_- - iq_-)/\sqrt{2}$ and $\bar{z} = (p_- + iq_-)/\sqrt{2} \Rightarrow \left[\hat{z}, \hat{\bar{z}}\right] = 1$ and $\hat{z} = \hat{\bar{z}} = 0$

 $\mathcal{C}^{\infty}(\mathcal{T}^*\mathbb{R} \times \mathcal{T}^*\mathbb{R}) \ni f((q_1, p_1), (q_2, p_2)) \text{ and } \{q_a, p_b\} = \delta_{ab}$

 $q_1 - q_2 = 0$ $p_1 - p_2 = 0$

Redefining: $q_{\pm} = (q_1 \pm q_2)/2$ and $p_{\pm} = (p_1 \pm p_2)/2 \Rightarrow q_- = p_- = 0$ and $\{q_-, p_-\} = 1$

Yet, $z = (p_- - iq_-)/\sqrt{2}$ and $\bar{z} = (p_- + iq_-)/\sqrt{2} \Rightarrow \left[\hat{z}, \hat{\bar{z}}\right] = 1$ and $\hat{z} = \hat{\bar{z}} = 0$

Solution: impose half of them (!): $\hat{z}|\psi\rangle = 0 \Rightarrow \langle \phi|\hat{z}|\psi\rangle = 0$

Complete proj. and emb.

$$\pi : D^{(j,j)}(g_l^+, g_l^-)^{\mathcal{A}\mathcal{A}'} \mathcal{B}\mathcal{B}' \longmapsto$$

$$D^{(j,j)}(g_l,g_l)^{(\mathcal{A}\mathcal{A}')}{}_{(\mathcal{B}\mathcal{B}')} = D^{(2j)}(g_l)^a{}_b$$

Complete proj. and emb.

$$\pi : D^{(j,j)}(g_l^+, g_l^-)^{\mathcal{A}\mathcal{A}'}_{\mathcal{B}\mathcal{B}'} \longmapsto$$

 $D^{(j,j)}(g_l,g_l)^{(\mathcal{A}\mathcal{A}')}{}_{(\mathcal{B}\mathcal{B}')} = D^{(2j)}(g_l)^a{}_b$

$$f : \left(\bigotimes_l D^{(j_l)}(g_l) \right) \cdot \left(\bigotimes_n i_n \right) \longmapsto$$

$$\int_{SO(4)^N} \prod_e dV_e \left(\bigotimes_l D^{(\frac{j_l}{2}, \frac{j_l}{2})} \left(V_{s(l)}(g_l^+, g_l^-) V_{t(l)}^{-1} \right) \right) \cdot \left(\bigotimes_n e(i)_n \right)$$

– p. 21

Classically, the constraints $C_{ff'}$ force the B_{f_i} to span a 3d space.

- p. 22

Classically, the constraints $C_{ff'}$ force the B_{f_i} to span a 3d space.

Choose a fixed vector $n^{I} = \delta_{0}^{I}$ normal to the tetrahedron.

Classically, the constraints $C_{ff'}$ force the B_{f_i} to span a 3d space.

Choose a fixed vector $n^I = \delta_0^I$ normal to the tetrahedron.

Associate to each B_f the dual of a SO(4) generator $\star J_f$.

Classically, the constraints $C_{ff'}$ force the B_{f_i} to span a 3d space.

Choose a fixed vector $n^{I} = \delta_{0}^{I}$ normal to the tetrahedron.

Associate to each B_f the dual of a SO(4) generator $\star J_f$.

Then $4C_4 = J_f^{IJ} J_f^{IJ} = J_f^{ij} J_f^{ij} = 2C_3$

Classically, the constraints $C_{ff'}$ force the B_{f_i} to span a 3d space.

Choose a fixed vector $n^I = \delta_0^I$ normal to the tetrahedron.

Associate to each B_f the dual of a SO(4) generator $\star J_f$.

Then
$$4C_4 = J_f^{IJ} J_f^{IJ} = J_f^{ij} J_f^{ij} = 2C_3$$

The quantum constraint reads, up to quantization ambiguities:

$$C = \sqrt{C_3 + \frac{\hbar^2}{4}} - \sqrt{2C_4 + \hbar^2} + \frac{\hbar}{2} = 0$$

Classically, the constraints $C_{ff'}$ force the B_{f_i} to span a 3d space.

Choose a fixed vector $n^{I} = \delta_{0}^{I}$ normal to the tetrahedron.

Associate to each B_f the dual of a SO(4) generator $\star J_f$.

Then
$$4C_4 = J_f^{IJ} J_f^{IJ} = J_f^{ij} J_f^{ij} = 2C_3$$

The quantum constraint reads, up to quantization ambiguities:

$$C = \sqrt{C_3 + \frac{\hbar^2}{4}} - \sqrt{2C_4 + \hbar^2} + \frac{\hbar}{2} = 0$$

This constraint selects the highest SU(2) irreducible.