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State of art and the BC model
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Ĉ|ψ〉 = 0

unique solution of the constraints [Reisenberger ’99]
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[Barrett,Crane ’97]
Quantization of the classical tetrahedron imposing a set of constraints à là
Dirac: [Baez,Barrett ’99]

Ĉ|ψ〉 = 0

Boundary states do not agree with LQG states and problems in the
calculation of non diagonal components of the propagator. [Alesci,Rovelli
to appear] and talk by Carlo Rovelli.
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Plebanski action and constraints

SP [B,ω] =

∫

BIJ ∧ FIJ(ω) + φIJKLB
IJ ∧BKL
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Plebanski action and constraints

SP [B,ω] =

∫

BIJ ∧ FIJ(ω) + φIJKLB
IJ ∧BKL

↪→ constrained BF theory
Constraints:

εIJKLB
IJ
µνB

KL
αβ = V εµναβ

Two sectors of solutions: [Reisenberger ’98;De Pietri,Freidel ’99;Perez
’02]

B = (±) e ∧ e
B = (±) ? (e ∧ e)
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Regge discretization

↪→ Simplicial discretization of a 4-dimensional space time: 4-simplices (v),
tetrahedra (t) and triangles (f )
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Regge discretization

↪→ Simplicial discretization of a 4-dimensional space time: 4-simplices (v),
tetrahedra (t) and triangles (f )
↪→ Curvature is concentrated on triangles
In 2d:

θ

ϕ
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Regge discretization

↪→ Simplicial discretization of a 4-dimensional space time: 4-simplices (v),
tetrahedra (t) and triangles (f )
↪→ Curvature is concentrated on triangles
In our case:
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Discrete variables

To each t: e(t) = e(t)IavIdx
a
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To each pair (v, t): e(v)Ia = (Vvt)
I
J e(t)
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(

Vtv := V −1
vt

)
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Discrete variables

To each t: e(t) = e(t)IavIdx
a

To each pair (v, t): e(v)Ia = (Vvt)
I
J e(t)

J
a

(

Vtv := V −1
vt

)

To each f = t ∩ t′: e(t′) = Ut′t e(t)

and :B(t)IJab = εIJKLe(t)
K
a e(t)

L
b → Bf (t) =

∫

f
B(t) (B(t′) = Ut′tB(t)Utt′)

Flatness implies: Ut1tn = Vt1v12 ...Vv(n−1)ntn

Curvature is given by the holonomy around a link: Uf (t1) := Vt1v12 ...Vvn1t1
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Discrete constraints

Closure:
∑

f∈t B(t)f = 0
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Discrete constraints

Closure:
∑

f∈t B(t)f = 0

Simplicity constraints:

Cff := ∗Bf ·Bf = 0

Cff ′ := ∗Bf ·Bf ′ = 0

↪→ the solutions to these constraints correspond to the two sectors of
Plebanski theory.
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Boundary variables

tetrahedra (t) −→ nodes (n)

faces (f ) −→ links (l)
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Boundary variables

tetrahedra (t) −→ nodes (n)

faces (f ) −→ links (l)

Boundary variables:

Bf −→ Bl

Utt′ −→ Ul

↪→ phase space of a SO(4) Yang-Mills lattice gauge theory (!!)
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Dynamics I: bulk

Sbulk =
∑

f

Tr[Bf (t)Uf (t)]
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Dynamics I: bulk

Sbulk =
∑

f

Tr[Bf (t)Uf (t)]

↪→ approximates GR in the continuum limit

↪→ clear relation with the Regge action (!!):

SRegge =
∑

f

Af sin εf
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Dynamics II: boundary
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Dynamics II: boundary

t’

t

U1

U2

f

S∂∆ =
∑

f∈∂∆

Tr[Bf (t)Utt′ ]
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Summary of the classical theory

SLGR =
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f∈int∆
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Summary of the classical theory

SLGR =
∑

f∈int∆

Tr[Bf (t)Uf (t)] +
∑

f∈∂∆

Tr[Bf (t)Utt′ ]

∑

f∈t Bf (t) = 0,

Cff = ∗Bf (t) ·Bf (t) = 0,

Cff ′ = ∗Bf (t) ·Bf ′(t) = 0.

Boundary variables : {(Bl, Ul)}
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The off diagonal simplicity constraints do not form a closed algebra under
poisson brackets: [C12, C13] ∼ U [Baez,Barrett ’99]
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The off diagonal simplicity constraints do not form a closed algebra under
poisson brackets: [C12, C13] ∼ U [Baez,Barrett ’99]

Solution: impose them weakly.

|χ〉, |ψ〉 ∈ Hphys ⇔ 〈χ|Cff ′ |ψ〉 = 0
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For Cff , no problem: j+ = j−

The off diagonal simplicity constraints do not form a closed algebra under
poisson brackets: [C12, C13] ∼ U [Baez,Barrett ’99]

Solution: impose them weakly.

|χ〉, |ψ〉 ∈ Hphys ⇔ 〈χ|Cff ′ |ψ〉 = 0

Motivation: Gupta-Bleur, doubled system.
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Solution

A state |ψ〉 in He := Inv
(

H(j1,j1) ⊗ ...⊗H(j4,j4)

)

can be written (in a given
pairing) as:

|ψ〉 =
∑

ci+i− |i+i−〉
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Solution

A state |ψ〉 in He := Inv
(

H(j1,j1) ⊗ ...⊗H(j4,j4)

)

can be written (in a given
pairing) as:

|ψ〉 =
∑

ci+i− |i+i−〉

A solution to the constraints imposed weakly is given by symmetric states:
ci+i− = ci−i+

Question: Is there a subspace of He that matches the space of a SO(3)

intertwiner (as in LQG) ?

Answer: Yes (!!). It is given by a suitable projection
He −→ Inv (H2j1 ⊗ ...⊗H2j4)
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Projection

Spinor notation for I ∈ He:
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= iA ... D

+ iA
′ ... D

′

−
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)(D′
1...D′

2j4
)

=: IAA
′ ... DD

′

= iA ... D

+ iA
′ ... D

′

−

Projection by symmetrization:

π : IAA′...DD′ 7−→ I(AA′)...(DD′) =: ia ... d

The projection chooses the highest SU(2) irreducible in the

decomposition: j ⊗ j = 0 ⊕ ... ⊕ 2j

The projection of the complete hilbert space of SO(4) s-nets can be
defined and it matches the hilbert space of SO(3) s-nets (!)
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Embedding

To every projection there is an embedding. The image of a SO(3)

intertwiner i, f(i) can be expanded in the SO(4) basis:

f(i) =
∑

i+,i−

f ii+i− |i+, i−〉
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intertwiner i, f(i) can be expanded in the SO(4) basis:

f(i) =
∑

i+,i−

f ii+i− |i+, i−〉

Its components can be seen as the evaluation of a 15j symbol:
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Embedding

To every projection there is an embedding. The image of a SO(3)

intertwiner i, f(i) can be expanded in the SO(4) basis:

f(i) =
∑

i+,i−

f ii+i− |i+, i−〉

The image of the embedding f [Inv (H2j1 ⊗ ...⊗H2j4)] =: Ke can be
interpreted as a subspace of He obtained by imposing a geometrical
constraint. Attention: It depends on a different choice of quantization:
Bf → ?Jf .
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Dynamics I: setup

Consider one 4-simplex. The amplitude is given by :

A(Uab) =

∫

∏

a

dVa δ(VaUabV
−1
b )
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Dynamics I: setup

Consider one 4-simplex. The amplitude is given by :

A(Uab) =

∫

∏

a

dVa δ(VaUabV
−1
b )

The quantum amplitude for a given boundary state |ψ〉 is given by

[Oeckl’03]:

A(ψ) :=

∫

dUab A(Uab) ψ(Uab)
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Dynamics II: vertex

For our model the vertex amplitude is given by:

A({jab}, {ia}) := A(ψ{jab},{ia}) =
∑

ia+i
a
−

15j

((

jab
2
,
jab
2

)

; (ia+, i
a
−)

)

f i
a

ia+i
a
−
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Dynamics II: vertex

For our model the vertex amplitude is given by:

A({jab}, {ia}) := A(ψ{jab},{ia}) =
∑

ia+i
a
−

15j

((

jab
2
,
jab
2

)

; (ia+, i
a
−)

)

f i
a

ia+i
a
−

The final amplitude is obtained by gluing 4-simplices:

Z =
∑

jf ,ie

∏

f

(dim jf
2 )2

∏

v

A(jf , ie)
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Conclusion

Lattice (covariant) formulation of GR

Clear analysis of the constraints

Weak constraining given by the projection
↪→ agreement with LQG states

Connection with other approaches: [Livine,Speziale
’07;Alexandrov ’07]

Geometrical interpretation forces quantization with the
dual SO(4) generators

Next step: semiclassical analysis and propagator.
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Doubled system

C∞(T ∗
R × T ∗

R) 3 f ((q1, p1), (q2, p2)) and {qa, pb} = δab
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√

2 and z̄ = (p− + iq−)/
√

2 ⇒
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]
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{q−, p−} = 1

Yet, z = (p− − iq−)/
√

2 and z̄ = (p− + iq−)/
√

2 ⇒
[

ẑ, ˆ̄z
]

= 1 and ẑ = ˆ̄z = 0

Solution: impose half of them (!) : ẑ|ψ〉 = 0 ⇒ 〈φ|ˆ̄z|ψ〉 = 0
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Complete proj. and emb.

π : D(j,j)(g+
l , g−l )AA

′

BB′ 7−→

D(j,j)(gl, gl)
(AA

′)
(BB′) = D(2j)(gl)

a
b
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BB′ 7−→

D(j,j)(gl, gl)
(AA

′)
(BB′) = D(2j)(gl)

a
b

f :
(

⊗

l D
(jl)(gl)

)

· (
⊗

n in) 7−→

∫

SO(4)N

∏

e dVe

(

⊗

l D
(

jl
2

,
jl
2
)
(

Vs(l)(g
+
l , g−l )V −1

t(l)

))

· (
⊗

n e(i)n)
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Projection as a geometrical constraint

Classically, the constraints Cff ′ force the Bfi
to span a 3d space.
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C =
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Projection as a geometrical constraint

Classically, the constraints Cff ′ force the Bfi
to span a 3d space.

Choose a fixed vector nI = δI0 normal to the tetrahedron.

Associate to each Bf the dual of a SO(4) generator ?Jf .

Then 4C4 = JIJf JIJf = J ijf J
ij
f = 2C3

The quantum constraint reads, up to quantization ambiguities:

C =

√

C3 +
~2

4
−
√

2C4 + ~2 +
~

2
= 0

This constraint selects the highest SU(2) irreducible.
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