Loops07, Mexico 25-30 june 2007 Loop quantum black hole and evaporation

Leonardo Modesto Department of Physics, Bologna and INFN Bologna

OUTLINE

Non singular black hole from loop quantum gravity.

Semiclassical analysis and evaporation.

The Schwarzschild solution inside the horizon

$$egin{aligned} ds^2 = -rac{dT^2}{\left(rac{2MG_N}{T}-1
ight)} + \left(rac{2MG_N}{T}-1
ight) dr^2 + T^2(\sin^2 heta d\phi^2 + d heta^2) \end{aligned}$$

 $T \in]0, 2MG_N[, r \in] - \infty, +\infty[.$

The Kantowski-Sachs space-time $(\mathbf{R} \times \mathbf{R} \times \mathbf{S}^2)$:

$$ds^{2} = -N^{2}(t)dt^{2} + a^{2}(t)dr^{2} + b^{2}(t)(\sin^{2}\theta d\phi^{2} + d\theta^{2})$$

Loop quantum black hole

Classical theory **Invariant 1-form connection** $A_{[t]}$: $A_{[1]} = A_r(t) \tau_3 dr + (A_1(t) \tau_1 + A_2(t) \tau_2) d\theta + (A_1(t) \tau_2 - A_2(t) \tau_1) \sin \theta d\phi + \tau_3 \cos \theta d\phi$ Invariant densitized triad: $\boldsymbol{E}_{[1]} = \boldsymbol{E}^{\boldsymbol{r}}(t) \tau_{\boldsymbol{\vartheta}} \sin \theta \frac{\partial}{\partial \boldsymbol{n}} + (\boldsymbol{E}^{\boldsymbol{1}}(t) \tau_{\boldsymbol{1}} + \boldsymbol{E}^{\boldsymbol{\vartheta}}(t) \tau_{\boldsymbol{\vartheta}}) \sin \theta \frac{\partial}{\partial \theta} + (\boldsymbol{E}^{\boldsymbol{1}}(t) \tau_{\boldsymbol{\vartheta}} - \boldsymbol{E}^{\boldsymbol{\vartheta}}(t) \tau_{\boldsymbol{\vartheta}}) \frac{\partial}{\partial \theta}$ Gauss constraint and Hamiltonian constrains: $G \sim A_1 E^2 - A_2 E^1$ $H_{E} = \frac{sgn[det(E_{[1]})]}{\sqrt{|E^{r}|[(E^{1})^{2} + (E^{2})^{2}]}} \left[2A_{r}E^{r}(A_{1}E^{1} + A_{2}E^{2}) + \left((A_{1})^{2} + (A_{2})^{2} - 1\right)[(E^{1})^{2} + (E^{2})^{2}] \right]$ For the Kantowski-Sachs space-time we fix the gauge $E^2 = E^1$ and so $A_2 = A_1$ The Hamiltonian constraint becomes: $H_E = \frac{sgn(E)}{\sqrt{|E|}|E^1|} \left[2AEA_1E^1 + (2(A_1)^2 - 1)(E^1)^2\right]$

Volume of the spatial section: $V = \int dr \, d\phi \, d\theta \, \sqrt{q} = 4\pi \sqrt{2}R \sqrt{|E|} |E^1|$

Background triad and co-triad: ${}^{o}e_{I}^{a} = diag(1, 1, \sin^{-1}\theta)$ ${}^{o}\omega_{a}^{I} = diag(1, 1, \sin\theta)$

	$a^2(t)$	0	o		$2\frac{(\boldsymbol{E^1})^2}{ \boldsymbol{E} }$	0	0	
$q_{ab} =$	0	$b^2(t)$	0	=	0	$ m{E} $	0	
	0	0	$b^2(t) \sin^2 \theta$		0	0	$ E \sin^2 \theta$	

Classical phase space

Canonical pairs : (A, E) and (A_1, E^1)

Symplectic structure:
$$\{A, E\} = \frac{\kappa}{l_P}$$
, $\{A_1, E^1\} = \frac{\kappa}{4l_P}$

Holonomies

 μ_0

 $heta=rac{\pi}{2}$

 $l_p \mu_0$

$$egin{aligned} egin{aligned} eta_I &= \exp \int eta_I^i au_i d\lambda \ eta_1 &= \exp \int eta_1^i au_i d\lambda = \exp [eta \mu_0 l_P au_3] \ eta_2 &= \exp \int eta_2^i au_i d\lambda = \exp [eta_1 \mu_0 \left(au_2 + au_1
ight)] \ eta_3 &= \exp \int eta_3^i au_i d\lambda = \exp [eta_1 \mu_0 \left(au_2 - au_1
ight)] \end{aligned}$$

 $Curvature \ F_{ab} \ in \ terms \ of \ holonomies: \quad F^i_{ab} \ \tau_i = \ ^o \omega^I_a \ ^o \omega^J_b \ \left[\frac{h_I h_J h_I^{-1} h_J^{-1} h_{[IJ]} - 1}{\epsilon(I) \epsilon(J)} \right]$

Hamiltonian constraint

Hamiltonian constraint

The solutions of the Hamiltonian constraint are in C^* dual of the dense subspace C of the kinematical space H_{kin} . A generic element of this space is: $\langle \psi | = \sum_{\mu_E, \mu_{E^1}} \psi(\mu_E, \mu_{E^1}) \langle \mu_E, \mu_{E^1} |$.

The constraint equation $\hat{H}_E |\psi\rangle = 0$ gives a relation for the coefficients $\psi(\mu_E, \nu_{E^1})$:

$$\begin{aligned} &-\alpha(\mu_{E} - 2\mu_{0}, \mu_{E^{1}} - 2\mu_{0})\psi(\mu_{E} - 2\mu_{0}, \mu_{E^{1}} - 2\mu_{0}) + \alpha(\mu_{E} + 2\mu_{0}, \mu_{E^{1}} - 2\mu_{0})\psi(\mu_{E} + 2\mu_{0}, \mu_{E^{1}} - 2\mu_{0}) \\ &+ \alpha(\mu_{E} - 2\mu_{0}, \mu_{E^{1}} + 2\mu_{0})\psi(\mu_{E} - 2\mu_{0}, \mu_{E^{1}} + 2\mu_{0}) - \alpha(\mu_{E} + 2\mu_{0}, \mu_{E^{1}} + 2\mu_{0})\psi(\mu_{E} + 2\mu_{0}, \mu_{E^{1}} + 2\mu_{0}) \\ &+ \frac{\sin(\mu_{0}^{2}/2) - \cos(\mu_{0}^{2}/2)}{2} \Big(\beta(\mu_{E}, \mu_{E^{1}} - 4\mu_{0})\psi(\mu_{E}, \mu_{E^{1}} - 4\mu_{0}) - \beta(\mu_{E}, \mu_{E^{1}})\psi(\mu_{E}, \mu_{E^{1}}) \\ &+ \beta(\mu_{E}, \mu_{E^{1}} + 4\mu_{0})\psi(\mu_{E}, \mu_{E^{1}} + 4\mu_{0})\Big) \\ &- \sin(\mu_{0}^{2}/2) \Big(\beta(\mu_{E}, \mu_{E^{1}} - 2\mu_{0})\psi(\mu_{E}, \mu_{E^{1}} - 2\mu_{0}) + \beta(\mu_{E}, \mu_{E^{1}} + 2\mu_{0})\psi(\mu_{E}, \mu_{E^{1}} + 2\mu_{0})\Big) \\ &= 0 \end{aligned}$$

$$\alpha(\mu_{E}, \mu_{E^{1}}) \equiv |\mu_{E}|^{\frac{1}{2}} (|\mu_{E^{1}} + \mu_{0}| - |\mu_{E^{1}} - \mu_{0}|)$$

$$\beta(\mu_{E}, \mu_{E^{1}}) \equiv |\mu_{E^{1}}| \left(|\mu_{E} + \mu_{0}|^{\frac{1}{2}} - |\mu_{E} - \mu_{0}|^{\frac{1}{2}} \right)$$

$Semiclassical\ analysis$

$$\begin{aligned} A &= c\tau_{3} dx + b\tau_{2} d\theta - b\tau_{1} \sin \theta d\phi + \tau_{3} \cos \theta d\phi, \\ E &= p_{c}\tau_{3} \sin \theta \frac{\partial}{\partial x} + p_{b}\tau_{2} \sin \theta \frac{\partial}{\partial \theta} - p_{b}\tau_{1} \frac{\partial}{\partial \phi}, \\ h_{1} &= \cos \frac{\delta c}{2} + 2\tau_{3} \sin \frac{\delta c}{2}, \quad h_{2} = \cos \frac{\delta b}{2} - 2\tau_{1} \sin \frac{\delta b}{2}, \quad h_{3} = \cos \frac{\delta b}{2} + 2\tau_{2} \sin \frac{\delta b}{2}. \\ H^{\delta} &= -\frac{2\hbar N}{\gamma^{3}\delta^{3} l_{p}^{2}} \operatorname{Tr} \left(\sum_{ijk} \epsilon^{ijk} h_{i}^{(\delta)} h_{j}^{(\delta)} h_{i}^{(\delta)-1} h_{k}^{(\delta)} \left\{ h_{k}^{(\delta)-1}, V \right\} + 2\gamma^{2}\delta^{2}\tau_{3} h_{1}^{(\delta)} \left\{ h_{1}^{(\delta)-1}, V \right\} \right) \\ H^{\delta} &= -\frac{1}{2\gamma G_{N}} \left\{ 2\sin \delta c \ p_{c} + \left(\sin \delta b + \frac{\gamma^{2}\delta^{2}}{\sin \delta b} \right) p_{b} \right\}. \\ N &= \frac{\gamma \sqrt{|p_{c}|} sgn(p_{c}) \delta^{2}}{16\pi G_{N} \sin \delta b} & \text{Hamilton e.m.} \rightarrow g_{\mu\nu}. \end{aligned}$$

$$Regular solution \rightarrow$$

 $R_{\mu
u
ho\sigma}R^{\mu
u
ho\sigma}$

$$Temperature : T_{BH} = \frac{8m}{\pi(64m^2 + \gamma^2 \delta^2)}.$$

$$Entropy :$$

$$S = \frac{A}{4l_P^2} + \frac{\gamma^2}{16} \ln\left(\frac{A}{4l_P^2}\right) + \frac{\gamma^2}{16} \ln\left(1 - \frac{4\pi\gamma^2 l_P^2}{16A}\right) + \text{const.}$$

$$Evaporation process. Luminosity and mass decreasing.$$

$$I(m) = \frac{2^{16}m^6 + 2^{10}\gamma^2 \delta^2 m^4}{60\pi(64m^2 + \gamma^2 \delta^2)^4},$$

$$-\frac{dm(v)}{dv} = L[m(v)].$$

Temperature for $p_c \rightarrow 0$

CONCLUSIONS

The classical black hole singularity in r = 0disappears from the quantum theory.

Classical divergent quantities are bounded in the quantum theory.

• Curvature invariant:
$$R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} = rac{48M^2 G_N^2}{b(t)^6} \rightarrow R_{\mu\nu\rho\sigma} \widehat{R^{\mu\nu\rho\sigma}} |\psi\rangle = rac{48M^2 G_N^2}{b^6} |\psi\rangle$$

is bounded for the Kantowski-Sachs model.

• The inverse volume operator $1/\sqrt{V}$ is bounded.

The Hamiltonian constraint gives a difference equation for the coefficients of the physical states and we can evolve across the singularity.

.. INSIDE ... ACROSS ... AND BEYOND ...

L. M., Disappearance of the black hole singularity in loop quantum gravity, Phys. Rev. D70 (2004) 124009,

L. M., The Kantowski-Sachs space-time in loop quantum gravity, Int. J. of Theor. Phys., gr-qc/0411032;

L. M., Loop quantum black hole, Class. Quant. Grav. 23 (2006) 5587-5601, gr-qc/0509078;

A. Ashtekar and M. Bojowald, Class. Quantum Grav. 23 (2006);

L. M., Evaporating loop quantum black hole, gr-qc/0612084;

L. M. , Black hole interior from loop quantum gravity, gr-qc/0611043;

L. M., Gravitational collapse in loop quantum gravity, gr-qc/0610074.

Semiclassical analysis and evaporation

New regular black hole solution.

For $m > rac{l_P}{\sqrt{2}}$

regular temperature, infinite evaporation time.

For $m \leqslant rac{l_P}{\sqrt{2}}$

Hot remnant.

