

Quantum Extensions of Classically Singular Spacetimes – The CGHS Model

Victor Taveras Pennsylvania State University Loops '07 Morelia, Mexico 6/29/07 Work with Abhay Ashtekar and Madhavan Varadarajan

CGHS Model

Action: $S(g,\phi,f) = \frac{1}{2G} \int d^2x \sqrt{|g|} \left[e^{-2\phi} \left(R + 4\nabla^a \phi \nabla_a \phi + 4\kappa^2 \right) + G\nabla^a f \nabla_a f \right]$

•Free Field Equation for f $\Box f = 0$ •Dilaton is completely determined by stress energy due to f.

•Field Redefinitions: $\Phi = e^{-2\phi}$ $\Theta = e^{2\rho - 2\phi}$ $g_{ab} = e^{2\rho}\eta_{ab}$

•Equations of motion $\partial_+\partial_-\Phi + \kappa^2\Theta = 2GT_{+-}$ $\Phi\partial_+\partial_-\ln\Theta = 2GT_{+-}$

$$-\partial_{+}^{2}\Phi + \partial_{+}\Phi\partial_{+}\ln\Theta = 2GT_{++}$$
$$-\partial_{-}^{2}\Phi - \partial_{-}\Phi\partial_{-}\ln\Theta = 2GT_{--}$$

Callan, Giddings, Harvey, and Strominger (1992)

BH Collapse Solutions in CGHS

- Black Hole Solutions
- Physical spacetime has a singularity.
- True DOFs in f₊ and f_{-.}

Giddings and Nelson (1992)

Numerical Work

Incorporated the backreaction into an effective term in the action

•Equations discretized and solved numerically. Evolution breaks down at the singularity and near the endpoint of evaporation.

MTT
f+

Lowe (1993), Piran & Strominger (1993)

Quantum Theory

Operator Equations:

 $\begin{array}{rcl} \partial_+\partial_-\hat{\Phi}+\kappa^2\hat{\Theta}&=&2G\hat{T}_{+-}\\ \hat{\Phi}\partial_+\partial_-\ln\hat{\Theta}&=&2G\hat{T}_{+-} \end{array} + \mbox{ Boundary conditions } \end{array}$

- For Φ an operator valued distribution and Θ a positive operator

- $\hat{\Omega} = \hat{\Phi} \Theta^{-1}$ well defined everywhere even though $\langle \hat{\Omega} \rangle$ may vanish
- Ideally we would like to be able to specify $\hat{T}_{+-}(\hat{\Theta}, \hat{\Phi})$ (work in progress)

• Even without $\hat{T}_{+-}(\hat{\Theta}, \hat{\Phi})$ one can proceed by making successive approximations to the full quantum theory

Bootstrapping

 $\Omega = 0$

• 0th order – Put $\hat{T}_{+-} = 0$ Compute $\langle \hat{g}^{ab} \rangle = \langle \hat{\Omega} \rangle \eta^{ab}$ in the state $|0_{-}\rangle \otimes |C_{f_{+}}\rangle$ This yields the BH background.

analysis.

- 1st order Interpret the vacuum on the \mathfrak{I}_R^+ of the BH background metric, this is precisely the Hawking effect.
- 2^{nd} order Semiclassical gravity (mean field approximation) : Ignore fluctuations in Φ and Θ , but not f. $\partial_+\partial_-\langle\hat{\Phi}\rangle + \kappa^2\langle\hat{\Theta}\rangle = 2G\langle\hat{T}_{+-}\rangle$ $\langle\hat{\Phi}\rangle\partial_+\partial_-\ln\langle\hat{\Theta}\rangle = 2G\langle\hat{T}_{+-}\rangle$ Use $\langle\hat{T}_{+-}\rangle$ determined from the trace anomaly. Agreement with analytic solution near \mathcal{I}_R^+ obtained by asymptotic

Asymptotic Analysis

•Expand Φ and Θ in inverse powers of x⁺.

•Idea: We should have a decent control of what is going on near \mathfrak{I}_R^+ since curvatures and fluxes there are small

$$\partial_- M_B = -\langle \hat{T}_{--} \rangle$$

•The Hawking flux and the Bondi mass go to 0 and the physical metric approaches the flat one.

• \mathbb{J}_R^+ agrees with background \mathbb{J}_R^+ .

Summary

- To 0th order we recover the black hole background.
- To higher orders in the truncation, not only do we recover the Hawking effect but we obtain a self-consistent system of semiclassical equations.
- \mathfrak{I}_R^+ of the semiclassical metric coincides with that of the background metric thus there is no information loss.
- The pure state resembles a thermal state in the past of \mathcal{I}^+_R
- The quantum spacetime is larger than the classical spacetime.

Future Work

• Need to extend QFT on CST to QFT on QG.