# **Effective Field Theory of General Relativity**

**1) Intro:** Watch your language! What can EFT do for you?

#### 2) Effective field theory in action

Potential between two nucleons Predictive use of non-renormalizeable theories

#### 3) Application to General Relativity Renormalization of GR

Quantum predictions

#### 4) Limitations of the effective field theory

#### 5) Matching to LQG etc

John Donoghue Morelia, 2007

### What is the problem with quantum gravity?

"Quantum mechanics and relativity are contradictory to each other and therefore cannot both be correct."

*"The existence of gravity clashes with our description of the rest of physics by quantum fields"* 

"Attempting to combine general relativity and quantum mechanics leads to a meaningless quantum field theory with unmanageable divergences."

"The application of conventional field quantization to GR fails because it yields a nonrenormalizable theory"

"Quantum mechanics and general relativity are incompatible"

#### **However these are inaccurate**

- reflect an outdated view of field theory
- in particular, neglects understanding of effective field theory

#### **Physics is an experimental science**:

-constructed through discovery at accessible energies/distances
-description changes as we move to new domains
-new DOF and new interactions uncovered

-our present theories can only claim to hold at accessible scales

#### **Crucial rephrasing:**

Are QM and GR compatible over accessible scales, where we expect both to be correct?

Answer is **YES** 

- this is what effective field theory can do for you

Effective field theory handles separation into known DOF at ordinary scales and unknown physics at extreme scales

- known = GR and matter
- the known part of the theory is very well behaved

"There is a perfectly well-defined quantum theory of gravity that agrees accurately with all available experimental data."

F. Wilczek

# **Lessons of effective field theory for GR**:

#### At ordinary energies/scales:

The quantum theory of general relativity exists and is of the form of an effective field theory

The effective field theory treatment completes the covariant approach started by Feynman and DeWitt.

The non-renomalizability of QGR is not a problem -GR can be renormalized perturbatively.

Quantum general relativity is an excellent perturbative theory - we can make reliable predictions

There IS a quantum theory of gravity at ordinary energies

### However, there are still problems in gravity theory

- issue is not QM vs GR per se
- problems are at "extremes"

#### EFT helps reformulate the issues:

"Quantum general relativity points to the limits of its perturbative validity"

"Quantum general relativity is most likely not the final theory"

"The extremes of quantum GR have raise deep and important problems."

#### **But, this IS progress!**

- we have a solid foundation for the start of a more extensive theory

### **Effective Field Theory in action: I – The need**

Example: Nucleon scattering (here J=0, I=0 part only, and m<sub>π</sub>=0 for clarity)

General principles

- causality
- unitarity
- crossing

imply a dispersive representation of scattering amplitude

$$V(s,q^2) = \frac{1}{\pi} \int_0^\infty \frac{dt}{t-q^2} \rho(s,t) + \text{ (L.H.cut = short range)}$$
  
\$\overline{p}\$ is Imag part of amplitude

Nuclear potential is F.T. of  $V(s,q^2)$ 

### What goes into the spectral function?

- all physical on-shell intermediate states
- lightest DOF are pions need 2 pions
- no other state exists below  $\sim 0.6-0.9~GeV$



**Build interaction - product of on-shell tree level amplitudes** 



$$\rho(s,t) = \frac{-1}{32\pi} \int \frac{d\Omega_k}{4\pi} \,\mathcal{M}_1(p_1,-k,p_1-q,q-k)\mathcal{M}_2(p_3,-k,p_3+q,k-q)$$



$$\rho(s,t) = c_3(s)t^{3/2} + \dots$$

### **Plugging in known and measured interactions**:

The energy expansion in pictures:



**Result**: Longest distance piece

$$V_C(r) = -\frac{9g_A^2}{4\pi F_\pi^2} \left(\frac{3g_A^2}{16M} + c_3\right) \frac{1}{r^6} + \dots$$

#### **Reconstruct full low energy amplitude:**

on shell imaginary part generates real parts through dispersion relatio
 Quantum effects without loops

#### How to find this result in field theory?

- loops generate exactly these real and imaginary parts



Loop diagrams capture physics required by general principles

#### **But pion loops have wrong high energy behavior**

- don't know about true high energy theory



This is not a problem

-high energy = local
-can't be confused with long distance effect
-EFT can separate the low E from high E parts

### **EFT in action – II – Nonrenormalizable Lagrangians**

But this is not enough – chiral symmetry of QCD

$$\psi_L \rightarrow L \psi_L$$
 exact when  
 $\psi_R \rightarrow R \psi_R$  with L,R in SU(2)  $m_q = 0$   
 $m_\pi = 0$ 

Implies the need for a **non-linear** Lagrangian

$$U = e^{i\sigma \cdot \pi/F_{\pi}}$$

 $U \to L U R^{\dagger}$ 

### **The energy expansion:**

- derivatives = energies

$$\mathcal{L} = F_{\pi}^2 Tr(D_{\mu}UD^{\mu}U^{\dagger}) + L_1 [Tr(D_{\mu}UD^{\mu}U^{\dagger})]^2 + L_2 Tr(D_{\mu}UD_{\nu}U^{\dagger}) Tr(D^{\mu}UD^{\nu}U^{\dagger}) + \dots$$

At low energy only the leading term dominates

This shares some features with gravity:

nonlinear action nonrenormalizeable theory the energy expansion non-trivial backgrounds (Skyrmions) amplitudes that grow rapidly with energy naïve unitarity violation

#### **<u>EFT in action – III – Renormalizing the Nonrenormalizable</u>**

Use background field method and dim. reg.



Quantum Lagrangian:

$$S = \int d^4x \left[ \mathcal{L}(\bar{U}) + \frac{1}{2} \Delta (D^2 + \sigma) \Delta \right]$$

Isolate one loop divergences:

$$\Delta \mathcal{L} = \frac{1}{192\pi^2(d-4)} \left[ \left[ Tr(D_\mu U D^\mu U^\dagger) \right]^2 + 2Tr(D_\mu U D_\nu U^\dagger) Tr(D^\mu U D^\nu U^\dagger) \right]$$

**Renormalize parameters:** 

$$L_1^{ren} = L_1 + \frac{1}{192\pi^2(d-4)} \qquad \qquad L_2^{ren} = L_2 + \frac{2}{192\pi^2(d-4)}$$

**Our example**: Nuclear potential  $(m_{\pi}=0)$ 

### High energy parts go into local operator:

- spurious pion loop behavior (and divergences)
- real QCD effects

$$H_{contact} = G_S \bar{N} N \bar{N} N$$

#### **Result:**

$$V_C(r) = G_S^{ren} \delta^3(r) - \frac{9g_A^2}{4\pi F_\pi^2} (\frac{3g_A^2}{16M} + c_3) \frac{1}{r^6}$$
  
not predictive predictive



### Summary:

Full field theory treatment (loops) required by very general principles despite non-renormalizability of effective theory

### EFT pathway

- identify low energy D.O.F and their low energy interactions
- allow general Lagrangian consistent with symmetries
- effects can be ordered by an energy expansion
- High energy parts of loops equivalent to local terms in Lagrangian and non-predictive
- Low energy parts of loops well defined and predictive

### Aside: E&M also satisfies dispersive constraints Feinberg

- best to use **covariant gauge** includes Coulomb potential
- cut involves the Compton amplitude

$$\rho(s,t) = \frac{-1}{32\pi} \int \frac{d\Omega_k}{4\pi} \,\mathcal{M}_{A\mu\nu}(p_1, -k, p_1 - q, q - k) \mathcal{M}_B^{\mu\nu}(p_3, -k, p_3 + q, k - q)$$
$$V_{EM}(r) = \frac{e^2}{4\pi r} \left[ 1 + \frac{e^2}{8\pi r} \,\frac{(m_A + m_B)}{m_A m_B c^2} - \frac{7e^2}{24\pi^2} \,\frac{\hbar}{m_A m_B c^3 r^2} \right]$$

Here, **resultant field theory is renormalizable**: QED - but basic logic is the same

Field theory approach confirmed.

Holstein and Ross

### **Quantum theory of General Relativity has the form of an effective field theory**

Weinberg Donoghue

Method for extracting the low energy quantum predictions

- uses low energy degrees of freedom and couplings
- independent of high energy completion of theory

#### **Basic distinction**:

- high energy effects (including divergences) are local
  - look like a term in a general Lagrangian
- low energy quantum effects are non-local
   distinct from the general Lagrangian

### **EFT pathway:**

-identify low energy D.O.F and their low energy interactions

- = gravitational waves and General relativity
- allow general Lagrangian consistent with symmetries
- effects can be ordered by an energy expansion
- High energy parts of loops equivalent to local terms in Lagrangian and non-predictive
- Low energy parts of loops well defined and predictive

### **EFT pathway:**

-identify low energy D.O.F and their low energy interactions

- = gravitational waves and General relativity
- allow general Lagrangian consistent with symmetries
- effects can be ordered by an energy expansion
- High energy parts of loops equivalent to local terms in Lagrangian and non-predictive
- Low energy parts of loops well defined and predictive

### **The general Action**

Need the most general Action consistent with general covariance.

**Key**: R depends on <u>two derivatives</u> of the metric Order by the derivative expansion

$$R_{\mu\nu} = \partial_{\nu}\Gamma^{\lambda}_{\mu\lambda} - \partial_{\lambda}\Gamma^{\lambda}_{\mu\nu} + \Gamma^{\sigma}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\sigma}_{\mu\nu}\Gamma^{\lambda}_{\lambda\sigma}$$
$$\Gamma^{\lambda}_{\alpha\beta} = \frac{g^{\lambda\sigma}}{2} \left(\partial_{\alpha}g_{\beta\sigma} + \partial_{\beta}g_{\alpha\sigma} - \partial_{\sigma}g_{\alpha\beta}\right)$$

#### **Result:**

$$S_{grav} = \int d^4x \sqrt{-g} \left\{ \Lambda + \frac{2}{\kappa^2} R + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + \dots \right\}$$

#### **Parameters**

$$S_{grav} = \int d^4x \sqrt{-g} \left\{ \Lambda + \frac{2}{\kappa^2} R + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + \ldots \right\}$$

1)  $\Lambda = cosmological constant$ 

$$\Lambda = (1.2 \pm 0.4) \times 10^{-123} M_P^4$$

$$M_P = 1.22 \times 10^{19} \text{ GeV}$$

-this is observable only on cosmological scales-neglect for rest of talk-interesting aspects

#### 2) Newton's constant

$$\kappa^2 = 32\pi G$$

#### 3) Curvature –squared terms c<sub>1</sub>, c<sub>2</sub>

- studied by Stelle
- modify gravity at very small scales

 $c_1, c_2 \leq 10^{74}$ 

-essentially unconstrained by experiment

### **Quantization**

#### Quantization of gravity is now well known:

#### -Covariant quantization Feynman deWitt -gauge fixing, ghosts

- Background field method 't Hooft Veltman
 -retains symmetries of GR

**Background field:** 

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \kappa h_{\mu\nu}$$
  
$$g^{\mu\nu} = \bar{g}^{\mu\nu} - \kappa h^{\mu\nu} + \kappa^2 h^{\mu}_{\lambda} h^{\lambda\nu} + \dots$$

Expand around this background:

$$S_{grav} = \int d^4x \sqrt{-\bar{g}} \left[ \frac{2\bar{R}}{\kappa^2} + \mathcal{L}_g^{(1)} + \mathcal{L}_g^{(2)} + \dots \right] \qquad \qquad \mathcal{L}_g^{(1)} = \frac{h_{\mu\nu}}{\kappa} \left[ \bar{g}^{\mu\nu} \bar{R} - 2\bar{R}^{\mu\nu} \right] \\ \mathcal{L}_g^{(2)} = \frac{1}{2} h_{\mu\nu;\alpha} h^{\mu\nu;\alpha} - \frac{1}{2} h_{;\alpha} h^{;\alpha} + h_{;\alpha} h^{\alpha\beta}_{;\beta} - h_{\mu\beta;\alpha} h^{\mu\alpha;\beta} \\ + \bar{R} \left( \frac{1}{4} h^2 - \frac{1}{2} h_{\mu\nu} h^{\mu\nu} \right) + \left( 2h^{\lambda}_{\mu} h_{\nu\lambda} - h h_{\mu\nu} \right) \bar{R}^{\mu\nu}$$

Linear term vanishes by Einstein Eq.

### **Gauge fixing**: -harmonic gauge

$$\mathcal{L}_{gf} = \sqrt{-\bar{g}} \left\{ \left( h_{\mu\nu}^{;\nu} - \frac{1}{2} h_{;\mu} \right) \left( h_{;\lambda}^{\mu\lambda} - h^{;\mu} \right) \right\}$$

$$h \equiv h_{\lambda}^{\lambda}$$

#### **Ghost fields**:

$$\mathcal{L}_{ghost} = \sqrt{-\bar{g}}\eta^{*\mu} \left\{ \eta_{\mu;\lambda}^{;\lambda} - \bar{R}_{\mu\nu}\eta^{\nu} \right\}$$

#### Feynman rules:

A.1 Scalar propagator

The massive scalar propagator is:

$$=\frac{i}{q^2 - m^2 + i}$$

A.2 Graviton propagator

The graviton propagator in harmonic gauge can be written in the form:

where 
$$\begin{array}{l} \alpha\beta & \overbrace{q}{\partial\gamma\delta} & = \frac{i\mathcal{P}^{\alpha\beta\gamma\delta}}{q^2 + i\epsilon} \\ \mathcal{P}^{\alpha\beta\gamma\delta} &= \frac{1}{2} \left[ \eta^{\alpha\gamma}\eta^{\beta\delta} + \eta^{\beta\gamma}\eta^{\alpha\delta} - \eta^{\alpha\beta}\eta^{\gamma\delta} \right] \end{array}$$

A.3 2-scalar-1-graviton vertex

The 2-scalar-1-graviton vertex is discussed in the literature. We write it as:

$$\begin{array}{c} \overset{p^{p}}{\underset{q \rightarrow}{\longrightarrow}} \\ \end{array} = \tau_{1}^{\mu\nu}(p,p',m)$$

where

$$\tau_1^{\mu\nu}(p,p',m) = -\frac{i\kappa}{2} \left[ p^{\mu}p'^{\nu} + p^{\nu}p'^{\mu} - \eta^{\mu\nu} \left( (p\cdot p') - m^2 \right) \right]$$

A.4 2-scalar-2-graviton vertex

The 2-scalar-2-graviton vertex is also discussed in the literature. We write it here with the full symmetry of the two gravitons:

$$=\tau_2^{\eta\lambda\rho\sigma}(p,p',m)$$

$$\tau_{2}^{\eta\lambda\rho\sigma}(p,p') = i\kappa^{2} \left[ \left\{ I^{\eta\lambda\alpha\delta}I^{\rho\sigma\beta}_{\ \delta} - \frac{1}{4} \left\{ \eta^{\eta\lambda}I^{\rho\sigma\alpha\beta} + \eta^{\rho\sigma}I^{\eta\lambda\alpha\beta} \right\} \right\} (p_{\alpha}p'_{\beta} + p'_{\alpha}p_{\beta}) - \frac{1}{2} \left\{ I^{\eta\lambda\rho\sigma} - \frac{1}{2}\eta^{\eta\lambda}\eta^{\rho\sigma} \right\} \left[ (p \cdot p') - m^{2} \right] \right]$$

$$(61)$$

with

$$I_{\alpha\beta\gamma\delta} = \frac{1}{2}(\eta_{\alpha\gamma}\eta_{\beta\delta} + \eta_{\alpha\delta}\eta_{\beta\gamma})$$

A.5 3-graviton vertex

The 3-graviton vertex can be derived via the background field method and has the form[9],[10]

$$\begin{array}{c} \gamma \delta \\ \pi \end{array} \overset{\tau}{\underset{k \rightarrow \mu \nu}{\longrightarrow}} = \tau_3 ^{\mu \nu} \\ \pi \end{array} \overset{\tau}{\underset{k \rightarrow \mu \nu}{\longrightarrow}} = \tau_3 ^{\mu \nu} \\ \kappa \end{array} \overset{\tau}{\underset{k \rightarrow \mu \nu}{\longrightarrow}}$$

where

$$\begin{aligned} \tau_{3_{\alpha\beta\gamma\delta}}^{\mu\nu}(k,q) &= -\frac{i\kappa}{2} \times \left( \mathcal{P}_{\alpha\beta\gamma\delta} \left[ k^{\mu}k^{\nu} + (k-q)^{\mu}(k-q)^{\nu} + q^{\mu}q^{\nu} - \frac{3}{2}\eta^{\mu\nu}q^{2} \right] \\ &+ 2q_{\lambda}q_{\sigma} \left[ I_{\alpha\beta}{}^{\sigma\lambda}I_{\gamma\delta}{}^{\mu\nu} + I_{\gamma\delta}{}^{\sigma\lambda}I_{\alpha\beta}{}^{\mu\nu} - I_{\alpha\beta}{}^{\mu\sigma}I_{\gamma\delta}{}^{\nu\lambda} - I_{\gamma\delta}{}^{\mu\sigma}I_{\alpha\beta}{}^{\nu\lambda} \right] \\ &+ \left[ q_{\lambda}q^{\mu} \left( \eta_{\alpha\beta}I_{\gamma\delta}{}^{\nu\lambda} + \eta_{\gamma\delta}I_{\alpha\beta}{}^{\nu\lambda} \right) + q_{\lambda}q^{\nu} \left( \eta_{\alpha\beta}I_{\gamma\delta}{}^{\mu\lambda} + \eta_{\gamma\delta}I_{\alpha\beta}{}^{\mu\lambda} \right) \right. \\ &- q^{2} \left( \eta_{\alpha\beta}I_{\gamma\delta}{}^{\mu\nu} - \eta_{\gamma\delta}I_{\alpha\beta}{}^{\mu\nu} \right) - \eta^{\mu\nu}q_{\sigma}q_{\lambda} \left( \eta_{\alpha\beta}I_{\gamma\delta}{}^{\sigma\lambda} + \eta_{\gamma\delta}I_{\alpha\beta}{}^{\sigma\lambda} \right) \right] \\ &+ \left[ 2q_{\lambda} \left( I_{\alpha\beta}{}^{\lambda\sigma}I_{\gamma\delta\sigma}{}^{\nu}(k-q)^{\mu} + I_{\alpha\beta}{}^{\lambda\sigma}I_{\gamma\delta\sigma}{}^{\mu}(k-q)^{\nu} - I_{\gamma\delta}{}^{\lambda\sigma}I_{\alpha\beta\sigma}{}^{\nu}k^{\mu} - I_{\gamma\delta}{}^{\lambda\sigma}I_{\gamma\delta}{}^{\sigma} \right) \right] \\ &+ q^{2} \left( I_{\alpha\beta\sigma}{}^{\mu}I_{\gamma\delta}{}^{\nu\sigma} + I_{\alpha\beta}{}^{\nu\sigma}I_{\gamma\delta\sigma}{}^{\mu} \right) + \eta^{\mu\nu}q_{\sigma}q_{\lambda} \left( I_{\alpha\beta}{}^{\lambda\rho}I_{\gamma\delta\rho}{}^{\sigma} + I_{\gamma\delta}{}^{\lambda\rho}I_{\alpha\beta\rho}{}^{\sigma} \right) \right] \\ &+ \left\{ (k^{2} + (k-q)^{2}) \left[ I_{\alpha\beta}{}^{\mu\sigma}I_{\gamma\delta\sigma}{}^{\nu} + I_{\gamma\delta}{}^{\mu\sigma}I_{\alpha\beta\sigma}{}^{\mu\sigma} - \frac{1}{2}\eta^{\mu\nu}\mathcal{P}_{\alpha\beta\gamma\delta} \right] \\ &- \left( I_{\gamma\delta}{}^{\mu\nu}\eta_{\alpha\beta}k^{2} + I_{\alpha\beta}{}^{\mu\nu}\eta_{\gamma\delta}(k-q)^{2} \right) \right\} \right) \end{aligned}$$

### **EFT pathway:**

-identify low energy D.O.F and their low energy interactions

- allow general Lagrangian consistent with symmetries
- effects can be ordered by an energy expansion
- High energy parts of loops equivalent to local terms in Lagrangian and non-predictive
- Low energy parts of loops well defined and predictive

### **Performing quantum calculations**

#### Next step: Renormalization

- -divergences arise at high energies
- not of the form of the basic lagraingian

**Solution**: Effective field theory and renormalization - renormalize divergences into parameters of the most general lagrangian  $(c_1, c_2...)$ 

**Power counting theorem**: (pure gravity,  $\Lambda=0$ )

-each graviton loop=2 more powers in energy expansion

- -1 loop = Order  $(\partial g)^4$
- -2 loop = Order  $(\partial g)^6$

### **Renormalization**

**One loop calculation:** 

't Hooft and Veltman

 $Z[\phi, J] = TrlnD$ 

Divergences are local:

$$\Delta \mathcal{L}_{0}^{(1)} = \frac{1}{8\pi^{2}} \frac{1}{\epsilon} \left\{ \frac{1}{120} R^{2} + \frac{7}{20} R_{\mu\nu} R^{\mu\nu} \right\} \quad \epsilon = 4 - d$$

**Renormalize** parameters in general action:

$$c_1^{(r)} = c_1 + \frac{1}{960\pi^2\epsilon}$$
$$c_2^{(r)} = c_2 + \frac{7}{160\pi^2\epsilon}$$

Pure gravity "one loop finite" since  $R_{\mu\nu} = 0$ 

Note: Two loop calculation known in pure gravity

Goroff and Sagnotti

$$\Delta \mathcal{L}^{(2)} = \frac{209 \,\kappa}{2880(16\pi^2)^2} \frac{1}{\epsilon} \sqrt{-g} R^{\alpha\beta}_{\phantom{\alpha\beta}\gamma\delta} R^{\gamma\delta}_{\phantom{\beta}\rho\sigma} R^{\rho\sigma}_{\phantom{\beta}\alpha\beta}$$
  
Order of six derivatives

dim. reg. preserves symmetry

### **EFT pathway:**

-identify low energy D.O.F and their low energy interactions

- allow general Lagrangian consistent with symmetries
- effects can be ordered by an energy expansion
- High energy parts of loops equivalent to local terms in Lagrangian and non-predictive
- Low energy parts of loops well defined and predictive

### What are the quantum predictions?

#### Not the divergences

-they come from the Planck scale -unreliable part of theory

#### Not the parameters

-local terms in L

-we would have to measure them

#### Low energy propagation

 $Amp \sim q^2 \ln(-q^2) \quad , \quad \sqrt{-q^2}$ 

-not the same as terms in the Lagrangian

- most always non-analytic dependence in momentum space
- -can't be Taylor expanded can't be part of a local Lagrangian
- -long distance in coordinate space

# **Corrections to Newtonian Potential**

JFD 1994 JFD, Holstein, Bjerrum-Bohr 2002 Kriplovich Kirilin

### **Example of isolating low energy quantum corrections**

- long distance corrections to potential
- divergence free, parameter free
- high energy effects only influence very short distance potential

#### Scattering potential of two heavy masses.

Potential found using from

$$V(\mathbf{x}) = \frac{1}{2m_1} \frac{1}{2m_2} \int \frac{d^3q}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{x}} \mathcal{M}(\vec{q})$$

Classical potential has been well studied

Iwasaki Gupta-Radford Hiida-Okamura

### **Lowest order:**

one graviton exchange

$$(m_1) \xrightarrow{k_2 \quad k_4} (m_2)$$
$$k_1 \quad k_3$$

$$iM_{1(a)}(\vec{q}) = \tau_1^{\mu\nu}(k_1, k_2, m_1) \left[\frac{i\mathcal{P}_{\mu\nu\alpha\beta}}{q^2}\right] \tau_1^{\alpha\beta}(k_3, k_4, m_2)$$

#### Non-relativistic reduction:

$$M_{1(a)}(\vec{q}) = -\frac{4\pi G m_1 m_2}{\vec{q}^2}$$

**Potential:** 

$$V_{1(a)}(r) = -\frac{Gm_1m_2}{r}$$

### What to expect:



$$\int \frac{d^3 q}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} \frac{1}{|\mathbf{q}|^2} = \frac{1}{4\pi r}$$
$$\int \frac{d^3 q}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} \frac{1}{|\mathbf{q}|} = \frac{1}{2\pi^2 r^2}$$
$$\int \frac{d^3 q}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} \ln(\mathbf{q}^2) = \frac{-1}{2\pi r^3}$$

 $\begin{array}{ll} \underline{\text{Momentum space}} \\ \underline{\text{amplitudes:}} \end{array} & V(q^2) = \frac{GMm}{q^2} \begin{bmatrix} 1 + a'G(M+m)\sqrt{-q^2} + b'G\hbar q^2 \ln(-q^2) + c'Gq^2 \end{bmatrix} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$ 

### **Parameter free and divergence free**

Recall: divergences like local Lagrangian  $\sim R^2$ 

Also unknown parameters in local Lagrangian  $\sim c_1, c_2$ 

But this generates only "short distance term"

Note: R<sup>2</sup> has 4 derivatives  $R^2 \sim q^4$ 



Local lagrangian gives only short range terms

### The calculation:



# **Results:**

Pull out non-analytic terms: -for example the vertex corrections:

$$M_{5(a)+5(b)}(\vec{q}) = 2G^2 m_1 m_2 \left(\frac{\pi^2(m_1+m_2)}{|\vec{q}|} + \frac{5}{3}\log\vec{q}^2\right)$$
$$M_{5(c)+5(d)}(\vec{q}) = -\frac{52}{3}G^2 m_1 m_2\log\vec{q}^2$$

#### Sum diagrams:



### **Comments**

Both classical and quantum emerge from a one loop calculation!
 - classical first done by Gupta and Radford (1980)

1) Unmeasurably small correction:

- best perturbation theory known(!)

3) Quantum loop well behaved - no conflict of GR and QM

4) Other calculations
(Duff; JFD; Muzinich and Vokos; Hamber and Liu; Akhundov, Bellucci, and Sheikh )
-other potentials or mistakes

5) Why not done 30 years ago?power of effective field theory reasoning

### **Aside: Classical Physics from Quantum Loops**:

JFD, Holstein 2004 PRL

#### **Field theory folk lore:**

Loop expansion is an expansion in "Proofs" in field theory books  $\hbar$ 

This is not really true.

- numerous counter examples – such as the gravitational potential

- can remove a power of  $\hbar$  via kinematic dependence

$$\sqrt{\frac{m^2}{-q^2}} = \frac{m}{\hbar\sqrt{-k^2}}$$

- classical behavior seen when massless particles are involved

### 2 new results on quantum potential:

#### **Universal quantum corrections:**

Holstein Ross

Calculations for a variety of spins - different diagrams, different factors

Yet, both classical and quantum pieces are universal

#### **Dispersive confirmation of the potential**:

Donoghue Holstein

- demonstrates generality
- may be useful for understanding universality

### **Dispersive treatment of quantum potential**

JFD Holstein

#### **Interactions from sewing together tree amplitudes**

- only involves on-shell gravitons
- classical and quantum corrections emerge from low q<sup>2</sup> limit

Tree amplitudes easier to calculate than loops

#### **Universality of low energy limit:**

- leading corrections identical for different spins

### **Basic dispersive framework:**

diagrams satisfy analyticity requirements leads to a dispersive representation

$$V_2(s,q^2) = \frac{1}{\pi} \int_0^\infty \frac{dt}{t-q^2} \rho(s,t) + (\text{L.H.cut} = \text{short range})$$

Spectral functions calculated via Cutkosky rules - on shell intermediate states

quantum without loops

#### At low energy:

$$\rho(s,t) = a_2(s)\frac{1}{\sqrt{t}} + a_3(s) + \dots$$
$$V_2(s,q^2) = a_2(s)\frac{1}{\sqrt{-q^2}} - \frac{a_3(s)}{\pi}\ln(-q^2) + \dots$$
$$V_2(r) = \frac{1}{8\pi^2 m_A m_B} \left[\frac{a_2}{r^2} + \frac{a_3}{r^3}\right]$$

Note: leading non-analytic structures – independent of possible subtractions

### Gravitational potential via dispersive techniques:

- cut involves gravitational Compton amplitude



$$\rho_g(s,t) = \frac{-1}{32\pi} \int \frac{d\Omega_k}{4\pi} \,\mathcal{M}_A^{\mu\nu,\lambda\sigma}(p_1,-k,p_1-q,q-k) \,\mathcal{M}_B^{\alpha\beta,\gamma\delta}(p_3,-k,p_3+q,k-q) P_{\mu\nu,\alpha\beta} P_{\lambda\sigma,\gamma\delta}(p_3,-k,p_3+q,k-q) P_{\mu\nu,\alpha\beta}(p_3,-k,p_3+q,k-q) P_$$

Amplitudes are more complicated, but procedure is the same:

Reproduce usual result –diagram by diagram

Ghosts done by hand for now

$$V(r) = -\frac{GMm}{r} \left[ 1 + 3\frac{G(M+m)}{rc^2} + \frac{41}{10\pi} \frac{G\hbar}{r^2 c^3} \right]$$

VERY strong check on loop calculation

# **Universality of the quantum corrections:**

### Can we prove universality?:

### Electromagnetic amplitude has multipole expansion Weinberg

- at low energy, E1 transitions dominate fixed tensor structure
- E1 transition has fixed  $q^2 \rightarrow 0$  limit, normalized to charge

#### **Reasons to expect that gravitational interaction is similar**

- universal form factorization
- low energy is square of E1 amplitude fixed form

 $\Rightarrow$ all gravity spectral functions have the same low energy structure  $\Rightarrow$ same classical and quantum corrections

### **Example 2: Graviton – graviton scattering**

Fundamental quantum gravity process

Lowest order amplitude:

$$\mathcal{A}^{tree}(++;++) = \frac{i}{4} \frac{\kappa^2 s^3}{tu}$$

Cooke; Behrends Gastmans Grisaru et al

#### **One loop:**

Incredibly difficult using field theory

Dunbar and Norridge –string based methods! (just tool, not full string theory)

$$\begin{aligned} \mathcal{A}^{1-loop}(++;--) &= -i\frac{\kappa^4}{30720\pi^2} \left( s^2 + t^2 + u^2 \right) \\ \mathcal{A}^{1-loop}(++;+-) &= -\frac{1}{3} \mathcal{A}^{1-loop}(++;--) \\ \mathcal{A}^{1-loop}(++;++) &= \frac{\kappa^2}{4(4\pi)^{2-\epsilon}} \frac{\Gamma^2(1-\epsilon)\Gamma(1+\epsilon)}{\Gamma(1-2\epsilon)} \mathcal{A}^{tree}(++;++) \times (st\,u) \end{aligned} (3) \\ &\times \left[ \frac{2}{\epsilon} \left( \frac{\ln(-u)}{st} + \frac{\ln(-t)}{su} + \frac{\ln(-s)}{tu} \right) + \frac{1}{s^2} f\left( \frac{-t}{s}, \frac{-u}{s} \right) \right. \\ &+ 2 \left( \frac{\ln(-u)\ln(-s)}{su} + \frac{\ln(-t)\ln(-s)}{tu} + \frac{\ln(-t)\ln(-s)}{tu} + \frac{\ln(-t)\ln(-s)}{ts} \right) \right] \end{aligned}$$

where

$$f\left(\frac{-t}{s}, \frac{-u}{s}\right) = \frac{(t+2u)(2t+u)\left(2t^{4}+2t^{3}u-t^{2}u^{2}+2tu^{3}+2u^{4}\right)}{s^{6}}\left(\ln^{2}\frac{t}{u}+\pi^{2}\right) + \frac{(t-u)\left(341t^{4}+1609t^{3}u+2566t^{2}u^{2}+1609tu^{3}+341u^{4}\right)}{30s^{5}}\ln\frac{t}{u} + \frac{1922t^{4}+9143t^{3}u+14622t^{2}u^{2}+9143tu^{3}+1922u^{4}}{180s^{4}}, \quad (4)$$

#### **Infrared safe:**

The 1/ε is from infrared -soft graviton radiation -made finite in usual way 1/ε -> ln(1/resolution) (gives scale to loops) -cross section finite

$$\left(\frac{d\sigma}{d\Omega}\right)_{tree} + \left(\frac{d\sigma}{d\Omega}\right)_{rad.} + \left(\frac{d\sigma}{d\Omega}\right)_{nonrad.} =$$

$$= \frac{\kappa^4 s^5}{2048\pi^2 t^2 u^2} \left\{ 1 + \frac{\kappa^2 s}{16\pi^2} \left[ \ln \frac{-t}{s} \ln \frac{-u}{s} + \frac{tu}{2s^2} f\left(\frac{-t}{s}, \frac{-u}{s}\right) - \left(\frac{t}{s} \ln \frac{-t}{s} + \frac{u}{s} \ln \frac{-u}{s}\right) \left( 3\ln(2\pi^2) + \gamma + \ln \frac{s}{\Lambda^2} + \frac{\sum_{ij} \eta_i \eta_j \mathcal{F}^{(1)}(\gamma_{ij})}{\sum_{ij} \eta_i \eta_j \mathcal{F}^{(0)}(\gamma_{ij})} \right) \right] \right\}.$$

$$\left\{ \begin{array}{c} \star & \text{finite} \end{array} \right\}$$

Beautiful result:

-low energy theorem of quantum gravity

JFD + Torma

### **Hawking Radiation**

Hambli, Burgess

Exploratory calculation

-remove high energy contributios-Pauli Villars regulators

-flux from local limit of Green's function

$$\mathcal{F} \equiv -\langle T_t^{\ r} \rangle = -\langle T_{tr^{\star}} \rangle$$
$$= -\frac{1}{2} \lim_{x' \to x} \left( \frac{\partial}{\partial t'} \frac{\partial}{\partial r^{\star}} + \frac{\partial}{\partial r^{\star'}} \frac{\partial}{\partial t} \right) \ G(x, x').$$

-dependence on regulator vanishes exponentially

-radiation appears to be property of the low energy theory

### **Limitations of the effective field theory**

Corrections grow like  $Amp \sim A_0 \left[ 1 + Gq^2 + Gq^2 \ln q^2 \right]$ 

Overwhelm lowest order at  $q^2 \sim M_P^2$ 

Also sicknesses of  $R+R^2$  theories beyond  $M_P$  (J. Simon)

Effective theory predicts its own breakdown at  $M_P$  - could in principle be earlier

Needs to be replaced by more complete theory at that scale

### **The extreme IR limit**

Singularity theorems:

-most space times have singularities

-EFT breaks down near singularity

Can we take extreme IR limit? -wavelength greater than distance to nearest singularity?

- past black holes?

Possible treat singular region as source -boundary conditions needed

deSitter horizon in IR

### Matching to LQG/ spin foams etc

EFT should be low curvature limit of a more fundamental theory

Find low curvature backgrounds (4D) Identify spin 2 gravitons (without extra massless DOF) Verify leading coupling to stress energy

There exists Deser theorem => GR

Verify causality, unitarity, crossing

### Why gravity may be the best case to study

- EFT reasoning

#### **Applequist Carrazone theorem:**

Effects from high energy either appear as shifts in coupling constants (eg.  $c_1, c_2$ ) or are suppressed by powers of the heavy scale (eg.  $M_{Pl}$ ).

#### But all gravity interactions are suppressed by $M_{Pl}^{\ 2}$

- relative effect could then be much bigger  $\sim O(1)$ ?
- small violations of unitarity, causality....
- approximate general covariance?

**Analogy**:  $\pi^0 \rightarrow \gamma \gamma$  reveals # of colors of QCD

### **Summary**

#### We have a quantum theory of general relativity

- quantization and renormalization
- perturbative expansion

#### It is an effective field theory

- valid well below the Planck scale
- corrections are very well behaved

#### **Effective field theory techniques allow predictions**

- finite, parameter free
- due to low energy (massless) propagation

#### Need full theory at or before Planck scale

- many interesting questions need full theory
- not conflict between QM and GR, but lack of knowledge about fundamental high energy theory