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Quantum gravity attempts to bring together general
relativity and quantum theory in a single framework.
The two pillars of XX century physics are incompati-
ble!

What clues can we find to guide us in that search?

Black holes provide one of such keys.
Even when they are prominent classical objects, they
might provide the clue to quantum gravity.

How?



Black Holes are believed to possess thermodynamical
properties, such as temperature and entropy, that are
associated to macroscopic properties.

But the origin of this behavior involves quantum physics
(i is present).

Do we need to solve quantum gravity to explain this?

Or, can we use this clue as a guide in our search?
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WHY QUANTUM GRAVITY ?

We have a strange situation in fundamental physics:

General Relativity is an excellent theory to describe all macro-
scopic phenomena. Even the Universe.

But all microscopic phenomena are described by a new set of
rules.

General Relativity does not follow the Quantum rules.

QFT methods for dealing with other interactions do not extend
to general relativity.

But we need to have a unified description of physics, not two
theories that are valid in different regimes!



PLANCK SCALE

Already Planck noticed that a combination of the three funda-
mental constants

; G and h

yields a new scale:

G
lp1 = \/ —- = 1.616252 X 107 "m
C
Also,
h G
mpy =\ = 21764 x 10 kgt = 4 = 5.30124 107

One expects that, at this scale, quantum gravity effects domi-
nate.



When or where do we expect to approach this regime?

In ordinary phenomena we are always very far from
that scale. Safe to ignore quantum gravitational ef-
fects.

Only when gravitational interaction dominates, and
causes total collapse (of a star), one approches densi-
ties and temperatures in the Planck scale.

And near the Big Bang.

Is there a another macroscopic situation where there
could be gravitational quantum effects?



BLACK HOLES AND QUANTUM GRAVITY ?

Black Holes are, as Chandrasekhar used to say:
“... the most perfect objects there are in The Universe: the
only elements in their construction are our concepts of space
and time. Since GR predicts a single family of solutions, they
are the simplest as well.” They are the crown of classical
physics in terms of their simplicity and beauty.

But, Bekenstein and Hawking told us that :

i) Black Holes satisfy some ‘thermodynamic-like laws’.

SM=—"064 = MoE kT, Ao S
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ii) When one invokes quantum mechanics (7) then
something weird happens:

_lih

~or

E=M

and

Black holes seem to have thermodynamic properties!

What are then the underlying degrees of freedom re-
sponsible for entropy?



The standard wisdom is that only with a full mar-
riage of the Quantum and Gravity will we be able to
understand this.

Different approaches:

e String Theory

e Causal Sets

e Entanglement Entropy

e Loop Quantum Gravity: This Meeting!!
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QUESTIONS TO BE ADDRESSED

e We need a quantum description for black holes

e How do we characterize black holes in equilibrium?
e Can we define quantum horizon states?

e Which states should we count?

e How does the entropy behave?

e Large BH: Bekenstein-Hawking entropy
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Horizons in Equilibrium.

Physically, one is interested in describing black holes in equilib-
rium. That is, equilibrium of the horizon, not the exterior. Can
one capture that notion via boundary conditions?

Yes! Answer: Isolated Horizons

Isolated horizon boundary conditions are imposed on an inner
boundary of the region under consideration.

(Ashtekar, AC, Krasnov, ATMP 3, 419, 2000)

The interior of the horizon is cut out.
In this a physical boundary?
No! but one can ask whether one can make sense of it:

What is then the physical interpretation of the boundary?
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e The null boundary A, the 3-D isolated horizon, provides an
effective description of the degrees of freedom of the inside re-
gion, that is cut out in the formalism.

13



ISOLATED HORIZONS

An isolated horizon is a null, non-expanding horizon A with
some notion of translational symmetry along its generators. Tech-
nically we consider Weakly Isolated Horizons (WIH). We will
also restrict ourselves to Type I, spherically symmetric, horizons
(see Engle’s talk for type II). There are two main consequences
of the boundary conditions:

e The gravitational degrees of freedom induced on the horizon
are captured in a U(1) connection,

1
VVa:__F2 1
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e The total symplectic structure of the theory (and this is true
even when most matter is present) gets split as,

Qtot — Qbulk + Qhor

with
ao

82 Gy

Qhor = 7{ dW A dW'
S

e The ‘connection part’ and the ‘triad part’ at the horizon must

satisfy the condition,
2wy
e
ao

which 1s called the ‘horizon constraint’.
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CONSTRAINTS

The Hamiltonian formalism tells us is a natural way what is
gauge and what not. In particular, with regard to the constraints
we know that:

e The relation between curvature and triad, the horizon con-
straint, is equivalent to (Gauss’ law.

e Diffeomorphims that leave S invariant are gauge (their vector
field are tangent to S).

e The scalar constraint must have N|,, = 0. Thus, the scalar
constraint leaves the horizon untouched; any gauge and diff-
invariant observable s a Dirac observable!

In the quantum theory of the horizon we have to implement

these facts.
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THE BULK: LOOP QUANTUM GRAVITY

A canonical description in terms of SU(2) Yang-Mills:
Al SU(2) connection E!  triad

with A’ =T + v K'. Loop Quantum gravity on a 3-dimensional
space without boundary is based on two fundamental observables
of the basic variables, the Holonomy-Flux algebra generated by:

Holonomies, h.(A):=Pexp(/[, A) and
Electric Fluxes, E(f,S):= [(dS™E!, f

(Ashtekar, AC, Zapata, CQG 15, 2955, 1998)

In electromagnetism (U(1) case):

ha(4) = expli

«

A-da) =exp(i / B -dS) with o = 08S.
s
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The main assumption of Loop Quantum Gravity is that these
quantities become well defined operators. (LOST Theorem: There
is a unique representation on a Hilbert space of these observables

that is diffeomorphism invariant).
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Hilbert space:
HaL = @graphs Hr = Span of all Spin Networks |1, 7, 171) (1)

A Spin Network |T,f, m) is a state labeled by a graph T, and
some colorings (j,m) associated to edges and vertices.
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The spin networks have a very convenient interpretation. They
are the eigenstates of the quantized geometry, such as the area
operator,

A[S] - [, ) = 8xlyy Y Vil +2) |1, 7, m) 2)

edges

One sees that the edges of the graph, excite the quantum geom-

etry of the surface S at the intersection points between S and
T.
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Quantum Horizons. (ashtekar, Baez, AC, Krasnov, PRL 80 904, 1998)

e The boundary conditions are such that they capture the in-
tuitive description of a horizon in equilibrium and allow for a
consistent variational principle.

e One can use loop quantum geometry in the bulk and include
the boundary.

e The quantum geometry of the horizon has independent de-
grees of freedom that fluctuate ‘in tandem’ with the bulk quan-
tum geometry.

e The quantum boundary degrees of freedom are then respon-
sible for the entropy.

e The entropy thus found can be interpreted as the entropy
assigned by an ‘outside observer’ to the (2-dim) horizon S = ¥NA.
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HORIZON QUANTUM THEORY

Total Hilbert Space is of the form:
H=Hy ® Hs

where g, the surface Hilbert Space, can be built from Chern
Simons Hilbert spaces for a sphere with punctures.

The conditions on H that we need to impose are: Invariance
under diffeomorphisms of S and the quantum condition on V:
A ) A
(Id@FabJr W—VEébri@)Id) U =0
ao
Then, the theory we are considering is a quantum gravity the-
ory, with an isolated horizon of fixed area ay (and other multiple-
moments). Physical state would be such that, in the bulk satisfy

the ordinary constraints and, at the horizon, the quantum hori-

zon condition. ’3



ENTROPY

We are given a black hole of area ap. What entropy can we assign
to it? Let us take the microcanonical viewpoint. We shall count
the number of horizon states N such that they are compatible
with the macroscopic constraints and satisfy:

e The area eigenvalue (A) € [ay — 8, ag + 0]
e The quantum horizon condition.

The entropy § will be then given by

S=InN.

The challenge now is to identify those states that satisfy the two
conditions, and count them.
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CHARACTERIZATION OF THE STATES

There is a convenient way of characterizing the states by means
of the spin network basis. If an edge of a spin network with label
7; ends at the horizon S5, it creates a puncture, with label j;. The
area of the horizon will be the area that the operator on the bulk
assigns to it: A =87yl > \/5i(ji + 1).

Is there any other quantum number associated to the punctures
p;?7 Yes! the eigenstates of Eab that are also half integers m,;, such
that —|j;| < m; < |j;|]. The quantum horizon condition relates
these eigenstates to those of the horizon Chern-Simons theory.
The requirement that the horizon is a sphere (topological) then
imposes a ‘total projection condition’ on m’s:
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A ‘configuration’ the quantum horizon is then characterized by
a set of punctures p; and to each one a pair of half integer (j;, m;).

The counting has three steps:

i) Given the classical area a(, find the possible sets {n;} of con-
figurations of j’s compatible with it.

ii) Given such a configuration, {n;}, find the degeneracy R({n;})
associated the possible orderings.

If we are given N punctures and two assignments of labels (j;, m;)
and (j;,m;). Are they physically distinguishable? or a there some
‘permutations’ of the labels that give indistinguishable states?

That is, what is the statistics of the punctures?

As usual, we should let the theory tell us. One does not postu-
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late any statistics. If one treats in a careful way the action of
the diffeomorphisms on the punctures one learns that when one
has a pair of punctures with the same labels 5 and m, then the
punctures are indistinguishable and one should not count them
twice. In all other cases the states are distinguishable.

iii) Given the degeneracy induced by the ‘statistics’, one has to
find the degeneracy associated to the number of horizon states
compatible with the configurations {n;}. This step involves a
choice. Are we going to keep track of both labels j;, m;? or are
we just going to count horizon state, labelled by m’s, that could
come from some j’s. This is the distinction between the DLM
and GM countings. Since this is the step that knows about the

horizon theory, it is at this point that a relation with CFT can
be found.
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THE COUNTING

We start with an isolated horizon, with an area a; and ask how
many states are there compatible with the two conditions. Two
relevant quantum numbers (j;,m;) for the Hilbert space.

Exact counting using number theory. Thus, given (n; /s, n1,n3/9, ..., 7/2),
where n,/, is the number of punctures with label s we count the
number of states:

Taking the large area approximation A > fp;, and using the Stirling
approximation. One gets:

A
§=—— " (4)
4@1 8

with 7 the solution to }_, 2270Vl — 1,
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The first correction to the entropy area relation is

e If we want to make contact with the Bekenstein-Hawking we
have to chose v = .

e The coefficient of the logarithmic term is universal.

e The formalism can be generalized to more general situations,
and the result is the same:

— Maxwell, Dilatonic (ashtekar, Ac, cQa 17 1317, 2000)
and Yang MillS Couplings (Ashtekar, Krishnan, Fairhurst, PRD 2000)

— Cosmological, Distortion and Rotation (ashtekar, Engle, Van der Broeck,

CQG 2004)

— Non-minimal Couplings. (Ashtekar, Ac, cQG 20 4473, 2003)
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ENTROPY QUANTIZATION

When one performs an exact counting of states (both using a
computer and using number theory methods) for small black
holes, one finds new structures,

(AC, Diaz-Polo, Fernandez-Borja, CQG 24 243 2007)
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Both the oscillations found with a large value of 0 as well as these
structures in the ‘spectrum’ posses the same periodicity

AAy = 2.41 03,

Is there any physical significance to this periodicity?

we chose the interval:
20 = AA

With this choice, the plot of the entropy vs area becomes:

(AC, Diaz-Polo, Fernandez-Borja, PRL 98, 181301 2007)

32



entropy

24 -

19
95

100 105
area
33

110



WHAT DOES THIS MEAN?

Instead of oscillations, Entropy seems to increase in discrete
steps.

Furthermore, the height of the steps seems to approach a con-
stant value as the area of the horizon grows, thus implementing
in a rather subtle way the conjecture by Bekenstein that entropy
should be equidistant for large black holes.

Is there any way of understanding this? Maybe

While the constant number in which the entropy of large black
holes ‘jumps’ is:

AS +— 2’70 In (3)
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CONCLUSIONS AND TAKE HOME MESSAGE

e Isolated Horizons provide a consistent framework to incorpo-
rate black holes locally in equilibrium.

e One can consistently quantize the theory.
e Entropy is finite and dominant term linear in Area.

e Any black hole of astrophysical interest is included

e Analysis of Planck scale BH’s shows ‘quantization of entropy’.

e Contact with Bekenstein’s heuristic model, and Mukhanov-
Bekenstein in a subtle manner

36



OUTLOOK

e We have not dealt with the singularity

e Ashtekar-Bojowald ‘paradigm’ for an extended quantum space-
time

e Based on expectations about singularity resolution coming

from LQC
e Hawking radiation?
e Lost Information Puzzle

e Full theory: How to specify quantum black holes from the full
theory?
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