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José A. Zapata (UNAM) Structure of LQ / Mexi Lazos November 9, 2012 1 / 12



Quantization

Elements of quantization

Family of classical theories

Family of quantum theories

Quantization map:

Obsclass
Q−→ Obsquant
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Loop quantization

Elements of loop quantization

Classical gauge theories

dof: Connection A, possibly a soldering 1-form e, and possibly other dof.
g+symm: Internal gauge invariance, possibly spatial diffeomorphism invariance,

possibly spacetime diff. inv., possibly space (or spacetime) isometries
examples: Yang-Mills, BF, Chern-Simons, ..., GR

Loop quantum gauge theories

Quantization map:

Obsclass ⊃ L-Obsclass
Q−→ L-Obsquant
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Kinematical canonical loop quantization

Kinematics of classical canonical gauge theory

Phase sp. T ?Aπ, where π = (E , π,Σ) a G -bundle

“Variables”: Hol-FluxΣ ⊂ Obsclass
PTc = Parallel transport along the curve
ES,f =

∫
S

E · f
Algebraic structure
{PTc1,PTc2} = 0, {PTc ,ES,f } = derivative operator on G,
{ES1,f 1,ES2,f 2} = commutator, etc

Gauge transfs. and symmetries
Internal g. transfs.: g : Σ→ G induces Tg : T ?Aπ → T ?Aπ
PTc(A)

g7−→ g(t(c))−1PTc(A)g(s(c)), ES,f
g7−→ ES ,R1(g)[f ]

Diffs. or isometries: φ : Σ→ Σ induces Tφ : T ?Aπ → T ?Aπ
PTc

φ7−→ PTφ(c), ES ,f
φ7−→ Eφ(S),f ◦φ−1
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Kinematical canonical loop quantization

Kinematics of classical canonical gauge theory (cont.)

Gauge invariant observables and reduced phase space
O : T ?Aπ → R such that
O ◦ Tg = O for all g , and (possibly) O ◦ Tφ = O for all φ

Õ([(p, q)])
.

= [O(p, q)]

where [(p, q)] ∈ T ?Aπ|constr./ ∼g .symm
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Kinematical canonical loop quantization

Kinematics of canonical loop quantum gauge theory:
Connection representation

ψγ(A) = fγ(PTe1(A), ...,PTen(A))

= fγ′(PTe′1(A), ...,PTe′m(A))

for any γ′ ≥ gamma and some fγ′ .

HΣ = L2(AΣ, dµAL)

(ψ1
γ1, ψ

2
γ2) =

∫
AΣ

ψ̄1
γ1ψ

2
γ2dµAL

=
∏

e∈Edges(γ)

∫
Ge

dµHaar,e f̄ 1
γ f 2
γ
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Kinematical canonical loop quantization

Kinematics of canonical loop quantum gauge theory:
Extended spin network basis

ψγ(A) =
∑
j

ψγ(j)j(A)

where j is a coloring of graphs assigning:
(i) irreps of G to edges, (ii) elements of appropriate basis to vertices

Example (coloring of Θ graph)
j=[e1:1, e2:2, e3:1; v1:(m(e1)=-1/2, m(e2)=1, m(e3)=1/2),
v2:(m(e1)=-1/2, m(e2)=0, m(e3)=-1/2)]

j(A) = R1(PTe1(A))
−1/2
−1/2R2(PTe2(A))1

0R1(PTe3(A))
1/2
−1/2

Orthogonality: (j , k) =
∏

e δ(j(e), k(e))
∏

v ,e δ(j(v , e)k(v , e))
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Kinematical canonical loop quantization

Kinematics of canonical loop quantum gauge theory

Kinematical observables
P̂Tcψγ = PTc · ψγ , ÊS ,f ψγ = Derivative operator(ψγ)

Gauge transfs. and symmetries
Internal g. transfs.: g : Σ→ G induces Ug : HΣ → HΣ

Ug j(A) = j(A) · [
∏

v(j) Rj(v ,e1)(g(v)sgn(v ,e)...Rj(v ,en)(g(v)sgn(v ,e)]

Diffs. or isometries: φ : Σ→ Σ induces Uφ : HΣ → HΣ

Uφj = (φ−1)?j

Gauge inv. observables
Ô : CylΣ → CylΣ, Ô† : CylΣ → CylΣ ,
U−1
g ÔUg = Ô for all g , and (possibly) U−1

φ ÔUφ = Ô for all φ

̂̃O[j ] = [Ôj ] , [j ] ∈ Hinv = CylΣ/ ∼

equiv. is wrt the orbit inner product η(j , k) = “ (j ,
∫
G DgUgk) ”
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Kinematical canonical loop quantization

Uniqueness theoremS

“Consider the algebra of kinematical observables of loop quantization,
Hol-FluxΣ. There is a unique representation of Hol-FluxΣ with a cyclic
invariant (internal gauge inv. and diff inv.) state.”
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Kinematical canonical loop quantization

Quantization / regularization O
Q7−→ Ô

We know Q for holonomies and fluxes

We mentioned that they are “enough” kinematical observables.
What does it mean?
O 7→ {O∆({PTc}∆, {ES,f }∆} which converges as ∆→ Σ

Does Ô∆ converge?
(i) In general there is no convergence of any type
(ii) Thiemann: For quantum gravity

ηdiff(j , lim∆→Σ
̂Cscalar(N˜ )

∆
k) exists for [j ] ∈ Hdiff
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Loop quantization

How to look for a propagator / inner product defining Hphys

Canonical: (i) regularize hamiltonian (convergence ???), or
(ii) regularize constraints and look for their kernel (Thiemann conv.
in QG may be OK)

Covariant: path integral methods “spin foams” (convergence ??)
Again in QG conv. may be OK due to spatial diff inv. This is how
spin foam models are used y Reisenberger and Rovelli.

However, recall lattice field theory where path int. and transfer
matrix methods make sense in the continuum limit of
Wilsonian renormalization.

“Loop quantization as a continumm limit?”
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What do we know about covariant loop quantization?
ask Robert Oeckl

Elements of covariant loop quantization

Covariant classical gauge theories
(i) general algebraic structure, (ii) loop quant. variables

Covariant loop quantum gauge theories: spin foam models
(i) They can be defined indep. of auxiliary discretizations (if some limits exist)

(ii) What is their physical meaning?

Quantization map:

Obsclass ⊃ L-Obsclass
Q−→ L-Obsquant

Which observables?
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